| //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This header defines the BitcodeReader class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Bitcode/ReaderWriter.h" |
| #include "BitcodeReader.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Module.h" |
| #include "llvm/AutoUpgrade.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/OperandTraits.h" |
| using namespace llvm; |
| |
| void BitcodeReader::FreeState() { |
| delete Buffer; |
| Buffer = 0; |
| std::vector<PATypeHolder>().swap(TypeList); |
| ValueList.clear(); |
| |
| std::vector<AttrListPtr>().swap(MAttributes); |
| std::vector<BasicBlock*>().swap(FunctionBBs); |
| std::vector<Function*>().swap(FunctionsWithBodies); |
| DeferredFunctionInfo.clear(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions to implement forward reference resolution, etc. |
| //===----------------------------------------------------------------------===// |
| |
| /// ConvertToString - Convert a string from a record into an std::string, return |
| /// true on failure. |
| template<typename StrTy> |
| static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, |
| StrTy &Result) { |
| if (Idx > Record.size()) |
| return true; |
| |
| for (unsigned i = Idx, e = Record.size(); i != e; ++i) |
| Result += (char)Record[i]; |
| return false; |
| } |
| |
| static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { |
| switch (Val) { |
| default: // Map unknown/new linkages to external |
| case 0: return GlobalValue::ExternalLinkage; |
| case 1: return GlobalValue::WeakLinkage; |
| case 2: return GlobalValue::AppendingLinkage; |
| case 3: return GlobalValue::InternalLinkage; |
| case 4: return GlobalValue::LinkOnceLinkage; |
| case 5: return GlobalValue::DLLImportLinkage; |
| case 6: return GlobalValue::DLLExportLinkage; |
| case 7: return GlobalValue::ExternalWeakLinkage; |
| case 8: return GlobalValue::CommonLinkage; |
| } |
| } |
| |
| static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { |
| switch (Val) { |
| default: // Map unknown visibilities to default. |
| case 0: return GlobalValue::DefaultVisibility; |
| case 1: return GlobalValue::HiddenVisibility; |
| case 2: return GlobalValue::ProtectedVisibility; |
| } |
| } |
| |
| static int GetDecodedCastOpcode(unsigned Val) { |
| switch (Val) { |
| default: return -1; |
| case bitc::CAST_TRUNC : return Instruction::Trunc; |
| case bitc::CAST_ZEXT : return Instruction::ZExt; |
| case bitc::CAST_SEXT : return Instruction::SExt; |
| case bitc::CAST_FPTOUI : return Instruction::FPToUI; |
| case bitc::CAST_FPTOSI : return Instruction::FPToSI; |
| case bitc::CAST_UITOFP : return Instruction::UIToFP; |
| case bitc::CAST_SITOFP : return Instruction::SIToFP; |
| case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; |
| case bitc::CAST_FPEXT : return Instruction::FPExt; |
| case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; |
| case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; |
| case bitc::CAST_BITCAST : return Instruction::BitCast; |
| } |
| } |
| static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { |
| switch (Val) { |
| default: return -1; |
| case bitc::BINOP_ADD: return Instruction::Add; |
| case bitc::BINOP_SUB: return Instruction::Sub; |
| case bitc::BINOP_MUL: return Instruction::Mul; |
| case bitc::BINOP_UDIV: return Instruction::UDiv; |
| case bitc::BINOP_SDIV: |
| return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv; |
| case bitc::BINOP_UREM: return Instruction::URem; |
| case bitc::BINOP_SREM: |
| return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem; |
| case bitc::BINOP_SHL: return Instruction::Shl; |
| case bitc::BINOP_LSHR: return Instruction::LShr; |
| case bitc::BINOP_ASHR: return Instruction::AShr; |
| case bitc::BINOP_AND: return Instruction::And; |
| case bitc::BINOP_OR: return Instruction::Or; |
| case bitc::BINOP_XOR: return Instruction::Xor; |
| } |
| } |
| |
| namespace llvm { |
| namespace { |
| /// @brief A class for maintaining the slot number definition |
| /// as a placeholder for the actual definition for forward constants defs. |
| class ConstantPlaceHolder : public ConstantExpr { |
| ConstantPlaceHolder(); // DO NOT IMPLEMENT |
| void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT |
| public: |
| // allocate space for exactly one operand |
| void *operator new(size_t s) { |
| return User::operator new(s, 1); |
| } |
| explicit ConstantPlaceHolder(const Type *Ty) |
| : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { |
| Op<0>() = UndefValue::get(Type::Int32Ty); |
| } |
| |
| /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const ConstantPlaceHolder *) { return true; } |
| static bool classof(const Value *V) { |
| return isa<ConstantExpr>(V) && |
| cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; |
| } |
| |
| |
| /// Provide fast operand accessors |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| } |
| |
| |
| // FIXME: can we inherit this from ConstantExpr? |
| template <> |
| struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> { |
| }; |
| |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) |
| } |
| |
| void BitcodeReaderValueList::resize(unsigned Desired) { |
| if (Desired > Capacity) { |
| // Since we expect many values to come from the bitcode file we better |
| // allocate the double amount, so that the array size grows exponentially |
| // at each reallocation. Also, add a small amount of 100 extra elements |
| // each time, to reallocate less frequently when the array is still small. |
| // |
| Capacity = Desired * 2 + 100; |
| Use *New = allocHungoffUses(Capacity); |
| Use *Old = OperandList; |
| unsigned Ops = getNumOperands(); |
| for (int i(Ops - 1); i >= 0; --i) |
| New[i] = Old[i].get(); |
| OperandList = New; |
| if (Old) Use::zap(Old, Old + Ops, true); |
| } |
| } |
| |
| Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, |
| const Type *Ty) { |
| if (Idx >= size()) { |
| // Insert a bunch of null values. |
| resize(Idx + 1); |
| NumOperands = Idx+1; |
| } |
| |
| if (Value *V = OperandList[Idx]) { |
| assert(Ty == V->getType() && "Type mismatch in constant table!"); |
| return cast<Constant>(V); |
| } |
| |
| // Create and return a placeholder, which will later be RAUW'd. |
| Constant *C = new ConstantPlaceHolder(Ty); |
| OperandList[Idx] = C; |
| return C; |
| } |
| |
| Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { |
| if (Idx >= size()) { |
| // Insert a bunch of null values. |
| resize(Idx + 1); |
| NumOperands = Idx+1; |
| } |
| |
| if (Value *V = OperandList[Idx]) { |
| assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); |
| return V; |
| } |
| |
| // No type specified, must be invalid reference. |
| if (Ty == 0) return 0; |
| |
| // Create and return a placeholder, which will later be RAUW'd. |
| Value *V = new Argument(Ty); |
| OperandList[Idx] = V; |
| return V; |
| } |
| |
| /// ResolveConstantForwardRefs - Once all constants are read, this method bulk |
| /// resolves any forward references. The idea behind this is that we sometimes |
| /// get constants (such as large arrays) which reference *many* forward ref |
| /// constants. Replacing each of these causes a lot of thrashing when |
| /// building/reuniquing the constant. Instead of doing this, we look at all the |
| /// uses and rewrite all the place holders at once for any constant that uses |
| /// a placeholder. |
| void BitcodeReaderValueList::ResolveConstantForwardRefs() { |
| // Sort the values by-pointer so that they are efficient to look up with a |
| // binary search. |
| std::sort(ResolveConstants.begin(), ResolveConstants.end()); |
| |
| SmallVector<Constant*, 64> NewOps; |
| |
| while (!ResolveConstants.empty()) { |
| Value *RealVal = getOperand(ResolveConstants.back().second); |
| Constant *Placeholder = ResolveConstants.back().first; |
| ResolveConstants.pop_back(); |
| |
| // Loop over all users of the placeholder, updating them to reference the |
| // new value. If they reference more than one placeholder, update them all |
| // at once. |
| while (!Placeholder->use_empty()) { |
| Value::use_iterator UI = Placeholder->use_begin(); |
| |
| // If the using object isn't uniqued, just update the operands. This |
| // handles instructions and initializers for global variables. |
| if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) { |
| UI.getUse().set(RealVal); |
| continue; |
| } |
| |
| // Otherwise, we have a constant that uses the placeholder. Replace that |
| // constant with a new constant that has *all* placeholder uses updated. |
| Constant *UserC = cast<Constant>(*UI); |
| for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); |
| I != E; ++I) { |
| Value *NewOp; |
| if (!isa<ConstantPlaceHolder>(*I)) { |
| // Not a placeholder reference. |
| NewOp = *I; |
| } else if (*I == Placeholder) { |
| // Common case is that it just references this one placeholder. |
| NewOp = RealVal; |
| } else { |
| // Otherwise, look up the placeholder in ResolveConstants. |
| ResolveConstantsTy::iterator It = |
| std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), |
| std::pair<Constant*, unsigned>(cast<Constant>(*I), |
| 0)); |
| assert(It != ResolveConstants.end() && It->first == *I); |
| NewOp = this->getOperand(It->second); |
| } |
| |
| NewOps.push_back(cast<Constant>(NewOp)); |
| } |
| |
| // Make the new constant. |
| Constant *NewC; |
| if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { |
| NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size()); |
| } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { |
| NewC = ConstantStruct::get(&NewOps[0], NewOps.size(), |
| UserCS->getType()->isPacked()); |
| } else if (isa<ConstantVector>(UserC)) { |
| NewC = ConstantVector::get(&NewOps[0], NewOps.size()); |
| } else { |
| // Must be a constant expression. |
| NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], |
| NewOps.size()); |
| } |
| |
| UserC->replaceAllUsesWith(NewC); |
| UserC->destroyConstant(); |
| NewOps.clear(); |
| } |
| |
| delete Placeholder; |
| } |
| } |
| |
| |
| const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { |
| // If the TypeID is in range, return it. |
| if (ID < TypeList.size()) |
| return TypeList[ID].get(); |
| if (!isTypeTable) return 0; |
| |
| // The type table allows forward references. Push as many Opaque types as |
| // needed to get up to ID. |
| while (TypeList.size() <= ID) |
| TypeList.push_back(OpaqueType::get()); |
| return TypeList.back().get(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Functions for parsing blocks from the bitcode file |
| //===----------------------------------------------------------------------===// |
| |
| bool BitcodeReader::ParseAttributeBlock() { |
| if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) |
| return Error("Malformed block record"); |
| |
| if (!MAttributes.empty()) |
| return Error("Multiple PARAMATTR blocks found!"); |
| |
| SmallVector<uint64_t, 64> Record; |
| |
| SmallVector<AttributeWithIndex, 8> Attrs; |
| |
| // Read all the records. |
| while (1) { |
| unsigned Code = Stream.ReadCode(); |
| if (Code == bitc::END_BLOCK) { |
| if (Stream.ReadBlockEnd()) |
| return Error("Error at end of PARAMATTR block"); |
| return false; |
| } |
| |
| if (Code == bitc::ENTER_SUBBLOCK) { |
| // No known subblocks, always skip them. |
| Stream.ReadSubBlockID(); |
| if (Stream.SkipBlock()) |
| return Error("Malformed block record"); |
| continue; |
| } |
| |
| if (Code == bitc::DEFINE_ABBREV) { |
| Stream.ReadAbbrevRecord(); |
| continue; |
| } |
| |
| // Read a record. |
| Record.clear(); |
| switch (Stream.ReadRecord(Code, Record)) { |
| default: // Default behavior: ignore. |
| break; |
| case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] |
| if (Record.size() & 1) |
| return Error("Invalid ENTRY record"); |
| |
| // FIXME : Remove this autoupgrade code in LLVM 3.0. |
| // If Function attributes are using index 0 then transfer them |
| // to index ~0. Index 0 is used for return value attributes but used to be |
| // used for function attributes. |
| Attributes RetAttribute = Attribute::None; |
| Attributes FnAttribute = Attribute::None; |
| for (unsigned i = 0, e = Record.size(); i != e; i += 2) { |
| if (Record[i] == 0) |
| RetAttribute = Record[i+1]; |
| else if (Record[i] == ~0U) |
| FnAttribute = Record[i+1]; |
| } |
| |
| unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| |
| Attribute::ReadOnly|Attribute::ReadNone); |
| |
| if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && |
| (RetAttribute & OldRetAttrs) != 0) { |
| if (FnAttribute == Attribute::None) { // add a slot so they get added. |
| Record.push_back(~0U); |
| Record.push_back(0); |
| } |
| |
| FnAttribute |= RetAttribute & OldRetAttrs; |
| RetAttribute &= ~OldRetAttrs; |
| } |
| |
| for (unsigned i = 0, e = Record.size(); i != e; i += 2) { |
| if (Record[i] == 0) { |
| if (RetAttribute != Attribute::None) |
| Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); |
| } else if (Record[i] == ~0U) { |
| if (FnAttribute != Attribute::None) |
| Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); |
| } else if (Record[i+1] != Attribute::None) |
| Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); |
| } |
| |
| MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); |
| Attrs.clear(); |
| break; |
| } |
| } |
| } |
| } |
| |
| |
| bool BitcodeReader::ParseTypeTable() { |
| if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) |
| return Error("Malformed block record"); |
| |
| if (!TypeList.empty()) |
| return Error("Multiple TYPE_BLOCKs found!"); |
| |
| SmallVector<uint64_t, 64> Record; |
| unsigned NumRecords = 0; |
| |
| // Read all the records for this type table. |
| while (1) { |
| unsigned Code = Stream.ReadCode(); |
| if (Code == bitc::END_BLOCK) { |
| if (NumRecords != TypeList.size()) |
| return Error("Invalid type forward reference in TYPE_BLOCK"); |
| if (Stream.ReadBlockEnd()) |
| return Error("Error at end of type table block"); |
| return false; |
| } |
| |
| if (Code == bitc::ENTER_SUBBLOCK) { |
| // No known subblocks, always skip them. |
| Stream.ReadSubBlockID(); |
| if (Stream.SkipBlock()) |
| return Error("Malformed block record"); |
| continue; |
| } |
| |
| if (Code == bitc::DEFINE_ABBREV) { |
| Stream.ReadAbbrevRecord(); |
| continue; |
| } |
| |
| // Read a record. |
| Record.clear(); |
| const Type *ResultTy = 0; |
| switch (Stream.ReadRecord(Code, Record)) { |
| default: // Default behavior: unknown type. |
| ResultTy = 0; |
| break; |
| case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] |
| // TYPE_CODE_NUMENTRY contains a count of the number of types in the |
| // type list. This allows us to reserve space. |
| if (Record.size() < 1) |
| return Error("Invalid TYPE_CODE_NUMENTRY record"); |
| TypeList.reserve(Record[0]); |
| continue; |
| case bitc::TYPE_CODE_VOID: // VOID |
| ResultTy = Type::VoidTy; |
| break; |
| case bitc::TYPE_CODE_FLOAT: // FLOAT |
| ResultTy = Type::FloatTy; |
| break; |
| case bitc::TYPE_CODE_DOUBLE: // DOUBLE |
| ResultTy = Type::DoubleTy; |
| break; |
| case bitc::TYPE_CODE_X86_FP80: // X86_FP80 |
| ResultTy = Type::X86_FP80Ty; |
| break; |
| case bitc::TYPE_CODE_FP128: // FP128 |
| ResultTy = Type::FP128Ty; |
| break; |
| case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 |
| ResultTy = Type::PPC_FP128Ty; |
| break; |
| case bitc::TYPE_CODE_LABEL: // LABEL |
| ResultTy = Type::LabelTy; |
| break; |
| case bitc::TYPE_CODE_OPAQUE: // OPAQUE |
| ResultTy = 0; |
| break; |
| case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] |
| if (Record.size() < 1) |
| return Error("Invalid Integer type record"); |
| |
| ResultTy = IntegerType::get(Record[0]); |
| break; |
| case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or |
| // [pointee type, address space] |
| if (Record.size() < 1) |
| return Error("Invalid POINTER type record"); |
| unsigned AddressSpace = 0; |
| if (Record.size() == 2) |
| AddressSpace = Record[1]; |
| ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace); |
| break; |
| } |
| case bitc::TYPE_CODE_FUNCTION: { |
| // FIXME: attrid is dead, remove it in LLVM 3.0 |
| // FUNCTION: [vararg, attrid, retty, paramty x N] |
| if (Record.size() < 3) |
| return Error("Invalid FUNCTION type record"); |
| std::vector<const Type*> ArgTys; |
| for (unsigned i = 3, e = Record.size(); i != e; ++i) |
| ArgTys.push_back(getTypeByID(Record[i], true)); |
| |
| ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, |
| Record[0]); |
| break; |
| } |
| case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] |
| if (Record.size() < 1) |
| return Error("Invalid STRUCT type record"); |
| std::vector<const Type*> EltTys; |
| for (unsigned i = 1, e = Record.size(); i != e; ++i) |
| EltTys.push_back(getTypeByID(Record[i], true)); |
| ResultTy = StructType::get(EltTys, Record[0]); |
| break; |
| } |
| case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] |
| if (Record.size() < 2) |
| return Error("Invalid ARRAY type record"); |
| ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); |
| break; |
| case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] |
| if (Record.size() < 2) |
| return Error("Invalid VECTOR type record"); |
| ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); |
| break; |
| } |
| |
| if (NumRecords == TypeList.size()) { |
| // If this is a new type slot, just append it. |
| TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get()); |
| ++NumRecords; |
| } else if (ResultTy == 0) { |
| // Otherwise, this was forward referenced, so an opaque type was created, |
| // but the result type is actually just an opaque. Leave the one we |
| // created previously. |
| ++NumRecords; |
| } else { |
| // Otherwise, this was forward referenced, so an opaque type was created. |
| // Resolve the opaque type to the real type now. |
| assert(NumRecords < TypeList.size() && "Typelist imbalance"); |
| const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); |
| |
| // Don't directly push the new type on the Tab. Instead we want to replace |
| // the opaque type we previously inserted with the new concrete value. The |
| // refinement from the abstract (opaque) type to the new type causes all |
| // uses of the abstract type to use the concrete type (NewTy). This will |
| // also cause the opaque type to be deleted. |
| const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); |
| |
| // This should have replaced the old opaque type with the new type in the |
| // value table... or with a preexisting type that was already in the |
| // system. Let's just make sure it did. |
| assert(TypeList[NumRecords-1].get() != OldTy && |
| "refineAbstractType didn't work!"); |
| } |
| } |
| } |
| |
| |
| bool BitcodeReader::ParseTypeSymbolTable() { |
| if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) |
| return Error("Malformed block record"); |
| |
| SmallVector<uint64_t, 64> Record; |
| |
| // Read all the records for this type table. |
| std::string TypeName; |
| while (1) { |
| unsigned Code = Stream.ReadCode(); |
| if (Code == bitc::END_BLOCK) { |
| if (Stream.ReadBlockEnd()) |
| return Error("Error at end of type symbol table block"); |
| return false; |
| } |
| |
| if (Code == bitc::ENTER_SUBBLOCK) { |
| // No known subblocks, always skip them. |
| Stream.ReadSubBlockID(); |
| if (Stream.SkipBlock()) |
| return Error("Malformed block record"); |
| continue; |
| } |
| |
| if (Code == bitc::DEFINE_ABBREV) { |
| Stream.ReadAbbrevRecord(); |
| continue; |
| } |
| |
| // Read a record. |
| Record.clear(); |
| switch (Stream.ReadRecord(Code, Record)) { |
| default: // Default behavior: unknown type. |
| break; |
| case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] |
| if (ConvertToString(Record, 1, TypeName)) |
| return Error("Invalid TST_ENTRY record"); |
| unsigned TypeID = Record[0]; |
| if (TypeID >= TypeList.size()) |
| return Error("Invalid Type ID in TST_ENTRY record"); |
| |
| TheModule->addTypeName(TypeName, TypeList[TypeID].get()); |
| TypeName.clear(); |
| break; |
| } |
| } |
| } |
| |
| bool BitcodeReader::ParseValueSymbolTable() { |
| if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) |
| return Error("Malformed block record"); |
| |
| SmallVector<uint64_t, 64> Record; |
| |
| // Read all the records for this value table. |
| SmallString<128> ValueName; |
| while (1) { |
| unsigned Code = Stream.ReadCode(); |
| if (Code == bitc::END_BLOCK) { |
| if (Stream.ReadBlockEnd()) |
| return Error("Error at end of value symbol table block"); |
| return false; |
| } |
| if (Code == bitc::ENTER_SUBBLOCK) { |
| // No known subblocks, always skip them. |
| Stream.ReadSubBlockID(); |
| if (Stream.SkipBlock()) |
| return Error("Malformed block record"); |
| continue; |
| } |
| |
| if (Code == bitc::DEFINE_ABBREV) { |
| Stream.ReadAbbrevRecord(); |
| continue; |
| } |
| |
| // Read a record. |
| Record.clear(); |
| switch (Stream.ReadRecord(Code, Record)) { |
| default: // Default behavior: unknown type. |
| break; |
| case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] |
| if (ConvertToString(Record, 1, ValueName)) |
| return Error("Invalid TST_ENTRY record"); |
| unsigned ValueID = Record[0]; |
| if (ValueID >= ValueList.size()) |
| return Error("Invalid Value ID in VST_ENTRY record"); |
| Value *V = ValueList[ValueID]; |
| |
| V->setName(&ValueName[0], ValueName.size()); |
| ValueName.clear(); |
| break; |
| } |
| case bitc::VST_CODE_BBENTRY: { |
| if (ConvertToString(Record, 1, ValueName)) |
| return Error("Invalid VST_BBENTRY record"); |
| BasicBlock *BB = getBasicBlock(Record[0]); |
| if (BB == 0) |
| return Error("Invalid BB ID in VST_BBENTRY record"); |
| |
| BB->setName(&ValueName[0], ValueName.size()); |
| ValueName.clear(); |
| break; |
| } |
| } |
| } |
| } |
| |
| /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in |
| /// the LSB for dense VBR encoding. |
| static uint64_t DecodeSignRotatedValue(uint64_t V) { |
| if ((V & 1) == 0) |
| return V >> 1; |
| if (V != 1) |
| return -(V >> 1); |
| // There is no such thing as -0 with integers. "-0" really means MININT. |
| return 1ULL << 63; |
| } |
| |
| /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global |
| /// values and aliases that we can. |
| bool BitcodeReader::ResolveGlobalAndAliasInits() { |
| std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; |
| std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; |
| |
| GlobalInitWorklist.swap(GlobalInits); |
| AliasInitWorklist.swap(AliasInits); |
| |
| while (!GlobalInitWorklist.empty()) { |
| unsigned ValID = GlobalInitWorklist.back().second; |
| if (ValID >= ValueList.size()) { |
| // Not ready to resolve this yet, it requires something later in the file. |
| GlobalInits.push_back(GlobalInitWorklist.back()); |
| } else { |
| if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) |
| GlobalInitWorklist.back().first->setInitializer(C); |
| else |
| return Error("Global variable initializer is not a constant!"); |
| } |
| GlobalInitWorklist.pop_back(); |
| } |
| |
| while (!AliasInitWorklist.empty()) { |
| unsigned ValID = AliasInitWorklist.back().second; |
| if (ValID >= ValueList.size()) { |
| AliasInits.push_back(AliasInitWorklist.back()); |
| } else { |
| if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) |
| AliasInitWorklist.back().first->setAliasee(C); |
| else |
| return Error("Alias initializer is not a constant!"); |
| } |
| AliasInitWorklist.pop_back(); |
| } |
| return false; |
| } |
| |
| |
| bool BitcodeReader::ParseConstants() { |
| if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) |
| return Error("Malformed block record"); |
| |
| SmallVector<uint64_t, 64> Record; |
| |
| // Read all the records for this value table. |
| const Type *CurTy = Type::Int32Ty; |
| unsigned NextCstNo = ValueList.size(); |
| while (1) { |
| unsigned Code = Stream.ReadCode(); |
| if (Code == bitc::END_BLOCK) |
| break; |
| |
| if (Code == bitc::ENTER_SUBBLOCK) { |
| // No known subblocks, always skip them. |
| Stream.ReadSubBlockID(); |
| if (Stream.SkipBlock()) |
| return Error("Malformed block record"); |
| continue; |
| } |
| |
| if (Code == bitc::DEFINE_ABBREV) { |
| Stream.ReadAbbrevRecord(); |
| continue; |
| } |
| |
| // Read a record. |
| Record.clear(); |
| Value *V = 0; |
| switch (Stream.ReadRecord(Code, Record)) { |
| default: // Default behavior: unknown constant |
| case bitc::CST_CODE_UNDEF: // UNDEF |
| V = UndefValue::get(CurTy); |
| break; |
| case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] |
| if (Record.empty()) |
| return Error("Malformed CST_SETTYPE record"); |
| if (Record[0] >= TypeList.size()) |
| return Error("Invalid Type ID in CST_SETTYPE record"); |
| CurTy = TypeList[Record[0]]; |
| continue; // Skip the ValueList manipulation. |
| case bitc::CST_CODE_NULL: // NULL |
| V = Constant::getNullValue(CurTy); |
| break; |
| case bitc::CST_CODE_INTEGER: // INTEGER: [intval] |
| if (!isa<IntegerType>(CurTy) || Record.empty()) |
| return Error("Invalid CST_INTEGER record"); |
| V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); |
| break; |
| case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] |
| if (!isa<IntegerType>(CurTy) || Record.empty()) |
| return Error("Invalid WIDE_INTEGER record"); |
| |
| unsigned NumWords = Record.size(); |
| SmallVector<uint64_t, 8> Words; |
| Words.resize(NumWords); |
| for (unsigned i = 0; i != NumWords; ++i) |
| Words[i] = DecodeSignRotatedValue(Record[i]); |
| V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(), |
| NumWords, &Words[0])); |
| break; |
| } |
| case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] |
| if (Record.empty()) |
| return Error("Invalid FLOAT record"); |
| if (CurTy == Type::FloatTy) |
| V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0]))); |
| else if (CurTy == Type::DoubleTy) |
| V = ConstantFP::get(APFloat(APInt(64, Record[0]))); |
| else if (CurTy == Type::X86_FP80Ty) |
| V = ConstantFP::get(APFloat(APInt(80, 2, &Record[0]))); |
| else if (CurTy == Type::FP128Ty) |
| V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true)); |
| else if (CurTy == Type::PPC_FP128Ty) |
| V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]))); |
| else |
| V = UndefValue::get(CurTy); |
| break; |
| } |
| |
| case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] |
| if (Record.empty()) |
| return Error("Invalid CST_AGGREGATE record"); |
| |
| unsigned Size = Record.size(); |
| std::vector<Constant*> Elts; |
| |
| if (const StructType *STy = dyn_cast<StructType>(CurTy)) { |
| for (unsigned i = 0; i != Size; ++i) |
| Elts.push_back(ValueList.getConstantFwdRef(Record[i], |
| STy->getElementType(i))); |
| V = ConstantStruct::get(STy, Elts); |
| } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { |
| const Type *EltTy = ATy->getElementType(); |
| for (unsigned i = 0; i != Size; ++i) |
| Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); |
| V = ConstantArray::get(ATy, Elts); |
| } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { |
| const Type *EltTy = VTy->getElementType(); |
| for (unsigned i = 0; i != Size; ++i) |
| Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); |
| V = ConstantVector::get(Elts); |
| } else { |
| V = UndefValue::get(CurTy); |
| } |
| break; |
| } |
| case bitc::CST_CODE_STRING: { // STRING: [values] |
| if (Record.empty()) |
| return Error("Invalid CST_AGGREGATE record"); |
| |
| const ArrayType *ATy = cast<ArrayType>(CurTy); |
| const Type *EltTy = ATy->getElementType(); |
| |
| unsigned Size = Record.size(); |
| std::vector<Constant*> Elts; |
| for (unsigned i = 0; i != Size; ++i) |
| Elts.push_back(ConstantInt::get(EltTy, Record[i])); |
| V = ConstantArray::get(ATy, Elts); |
| break; |
| } |
| case bitc::CST_CODE_CSTRING: { // CSTRING: [values] |
| if (Record.empty()) |
| return Error("Invalid CST_AGGREGATE record"); |
| |
| const ArrayType *ATy = cast<ArrayType>(CurTy); |
| const Type *EltTy = ATy->getElementType(); |
| |
| unsigned Size = Record.size(); |
| std::vector<Constant*> Elts; |
| for (unsigned i = 0; i != Size; ++i) |
| Elts.push_back(ConstantInt::get(EltTy, Record[i])); |
| Elts.push_back(Constant::getNullValue(EltTy)); |
| V = ConstantArray::get(ATy, Elts); |
| break; |
| } |
| case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] |
| if (Record.size() < 3) return Error("Invalid CE_BINOP record"); |
| int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); |
| if (Opc < 0) { |
| V = UndefValue::get(CurTy); // Unknown binop. |
| } else { |
| Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); |
| Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); |
| V = ConstantExpr::get(Opc, LHS, RHS); |
| } |
| break; |
| } |
| case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] |
| if (Record.size() < 3) return Error("Invalid CE_CAST record"); |
| int Opc = GetDecodedCastOpcode(Record[0]); |
| if (Opc < 0) { |
| V = UndefValue::get(CurTy); // Unknown cast. |
| } else { |
| const Type *OpTy = getTypeByID(Record[1]); |
| if (!OpTy) return Error("Invalid CE_CAST record"); |
| Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); |
| V = ConstantExpr::getCast(Opc, Op, CurTy); |
| } |
| break; |
| } |
| case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] |
| if (Record.size() & 1) return Error("Invalid CE_GEP record"); |
| SmallVector<Constant*, 16> Elts; |
| for (unsigned i = 0, e = Record.size(); i != e; i += 2) { |
| const Type *ElTy = getTypeByID(Record[i]); |
| if (!ElTy) return Error("Invalid CE_GEP record"); |
| Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); |
| } |
| V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1); |
| break; |
| } |
| case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] |
| if (Record.size() < 3) return Error("Invalid CE_SELECT record"); |
| V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], |
| Type::Int1Ty), |
| ValueList.getConstantFwdRef(Record[1],CurTy), |
| ValueList.getConstantFwdRef(Record[2],CurTy)); |
| break; |
| case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] |
| if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); |
| const VectorType *OpTy = |
| dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); |
| if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); |
| Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); |
| Constant *Op1 = ValueList.getConstantFwdRef(Record[2], |
| OpTy->getElementType()); |
| V = ConstantExpr::getExtractElement(Op0, Op1); |
| break; |
| } |
| case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] |
| const VectorType *OpTy = dyn_cast<VectorType>(CurTy); |
| if (Record.size() < 3 || OpTy == 0) |
| return Error("Invalid CE_INSERTELT record"); |
| Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); |
| Constant *Op1 = ValueList.getConstantFwdRef(Record[1], |
| OpTy->getElementType()); |
| Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty); |
| V = ConstantExpr::getInsertElement(Op0, Op1, Op2); |
| break; |
| } |
| case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] |
| const VectorType *OpTy = dyn_cast<VectorType>(CurTy); |
| if (Record.size() < 3 || OpTy == 0) |
| return Error("Invalid CE_INSERTELT record"); |
| Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); |
| Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); |
| const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements()); |
| Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); |
| V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); |
| break; |
| } |
| case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] |
| if (Record.size() < 4) return Error("Invalid CE_CMP record"); |
| const Type *OpTy = getTypeByID(Record[0]); |
| if (OpTy == 0) return Error("Invalid CE_CMP record"); |
| Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); |
| Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); |
| |
| if (OpTy->isFloatingPoint()) |
| V = ConstantExpr::getFCmp(Record[3], Op0, Op1); |
| else if (!isa<VectorType>(OpTy)) |
| V = ConstantExpr::getICmp(Record[3], Op0, Op1); |
| else if (OpTy->isFPOrFPVector()) |
| V = ConstantExpr::getVFCmp(Record[3], Op0, Op1); |
| else |
| V = ConstantExpr::getVICmp(Record[3], Op0, Op1); |
| break; |
| } |
| case bitc::CST_CODE_INLINEASM: { |
| if (Record.size() < 2) return Error("Invalid INLINEASM record"); |
| std::string AsmStr, ConstrStr; |
| bool HasSideEffects = Record[0]; |
| unsigned AsmStrSize = Record[1]; |
| if (2+AsmStrSize >= Record.size()) |
| return Error("Invalid INLINEASM record"); |
| unsigned ConstStrSize = Record[2+AsmStrSize]; |
| if (3+AsmStrSize+ConstStrSize > Record.size()) |
| return Error("Invalid INLINEASM record"); |
| |
| for (unsigned i = 0; i != AsmStrSize; ++i) |
| AsmStr += (char)Record[2+i]; |
| for (unsigned i = 0; i != ConstStrSize; ++i) |
| ConstrStr += (char)Record[3+AsmStrSize+i]; |
| const PointerType *PTy = cast<PointerType>(CurTy); |
| V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), |
| AsmStr, ConstrStr, HasSideEffects); |
| break; |
| } |
| } |
| |
| ValueList.AssignValue(V, NextCstNo); |
| ++NextCstNo; |
| } |
| |
| if (NextCstNo != ValueList.size()) |
| return Error("Invalid constant reference!"); |
| |
| if (Stream.ReadBlockEnd()) |
| return Error("Error at end of constants block"); |
| |
| // Once all the constants have been read, go through and resolve forward |
| // references. |
| ValueList.ResolveConstantForwardRefs(); |
| return false; |
| } |
| |
| /// RememberAndSkipFunctionBody - When we see the block for a function body, |
| /// remember where it is and then skip it. This lets us lazily deserialize the |
| /// functions. |
| bool BitcodeReader::RememberAndSkipFunctionBody() { |
| // Get the function we are talking about. |
| if (FunctionsWithBodies.empty()) |
| return Error("Insufficient function protos"); |
| |
| Function *Fn = FunctionsWithBodies.back(); |
| FunctionsWithBodies.pop_back(); |
| |
| // Save the current stream state. |
| uint64_t CurBit = Stream.GetCurrentBitNo(); |
| DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage()); |
| |
| // Set the functions linkage to GhostLinkage so we know it is lazily |
| // deserialized. |
| Fn->setLinkage(GlobalValue::GhostLinkage); |
| |
| // Skip over the function block for now. |
| if (Stream.SkipBlock()) |
| return Error("Malformed block record"); |
| return false; |
| } |
| |
| bool BitcodeReader::ParseModule(const std::string &ModuleID) { |
| // Reject multiple MODULE_BLOCK's in a single bitstream. |
| if (TheModule) |
| return Error("Multiple MODULE_BLOCKs in same stream"); |
| |
| if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) |
| return Error("Malformed block record"); |
| |
| // Otherwise, create the module. |
| TheModule = new Module(ModuleID); |
| |
| SmallVector<uint64_t, 64> Record; |
| std::vector<std::string> SectionTable; |
| std::vector<std::string> GCTable; |
| |
| // Read all the records for this module. |
| while (!Stream.AtEndOfStream()) { |
| unsigned Code = Stream.ReadCode(); |
| if (Code == bitc::END_BLOCK) { |
| if (Stream.ReadBlockEnd()) |
| return Error("Error at end of module block"); |
| |
| // Patch the initializers for globals and aliases up. |
| ResolveGlobalAndAliasInits(); |
| if (!GlobalInits.empty() || !AliasInits.empty()) |
| return Error("Malformed global initializer set"); |
| if (!FunctionsWithBodies.empty()) |
| return Error("Too few function bodies found"); |
| |
| // Look for intrinsic functions which need to be upgraded at some point |
| for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); |
| FI != FE; ++FI) { |
| Function* NewFn; |
| if (UpgradeIntrinsicFunction(FI, NewFn)) |
| UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); |
| } |
| |
| // Force deallocation of memory for these vectors to favor the client that |
| // want lazy deserialization. |
| std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); |
| std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); |
| std::vector<Function*>().swap(FunctionsWithBodies); |
| return false; |
| } |
| |
| if (Code == bitc::ENTER_SUBBLOCK) { |
| switch (Stream.ReadSubBlockID()) { |
| default: // Skip unknown content. |
| if (Stream.SkipBlock()) |
| return Error("Malformed block record"); |
| break; |
| case bitc::BLOCKINFO_BLOCK_ID: |
| if (Stream.ReadBlockInfoBlock()) |
| return Error("Malformed BlockInfoBlock"); |
| break; |
| case bitc::PARAMATTR_BLOCK_ID: |
| if (ParseAttributeBlock()) |
| return true; |
| break; |
| case bitc::TYPE_BLOCK_ID: |
| if (ParseTypeTable()) |
| return true; |
| break; |
| case bitc::TYPE_SYMTAB_BLOCK_ID: |
| if (ParseTypeSymbolTable()) |
| return true; |
| break; |
| case bitc::VALUE_SYMTAB_BLOCK_ID: |
| if (ParseValueSymbolTable()) |
| return true; |
| break; |
| case bitc::CONSTANTS_BLOCK_ID: |
| if (ParseConstants() || ResolveGlobalAndAliasInits()) |
| return true; |
| break; |
| case bitc::FUNCTION_BLOCK_ID: |
| // If this is the first function body we've seen, reverse the |
| // FunctionsWithBodies list. |
| if (!HasReversedFunctionsWithBodies) { |
| std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); |
| HasReversedFunctionsWithBodies = true; |
| } |
| |
| if (RememberAndSkipFunctionBody()) |
| return true; |
| break; |
| } |
| continue; |
| } |
| |
| if (Code == bitc::DEFINE_ABBREV) { |
| Stream.ReadAbbrevRecord(); |
| continue; |
| } |
| |
| // Read a record. |
| switch (Stream.ReadRecord(Code, Record)) { |
| default: break; // Default behavior, ignore unknown content. |
| case bitc::MODULE_CODE_VERSION: // VERSION: [version#] |
| if (Record.size() < 1) |
| return Error("Malformed MODULE_CODE_VERSION"); |
| // Only version #0 is supported so far. |
| if (Record[0] != 0) |
| return Error("Unknown bitstream version!"); |
| break; |
| case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] |
| std::string S; |
| if (ConvertToString(Record, 0, S)) |
| return Error("Invalid MODULE_CODE_TRIPLE record"); |
| TheModule->setTargetTriple(S); |
| break; |
| } |
| case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] |
| std::string S; |
| if (ConvertToString(Record, 0, S)) |
| return Error("Invalid MODULE_CODE_DATALAYOUT record"); |
| TheModule->setDataLayout(S); |
| break; |
| } |
| case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] |
| std::string S; |
| if (ConvertToString(Record, 0, S)) |
| return Error("Invalid MODULE_CODE_ASM record"); |
| TheModule->setModuleInlineAsm(S); |
| break; |
| } |
| case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] |
| std::string S; |
| if (ConvertToString(Record, 0, S)) |
| return Error("Invalid MODULE_CODE_DEPLIB record"); |
| TheModule->addLibrary(S); |
| break; |
| } |
| case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] |
| std::string S; |
| if (ConvertToString(Record, 0, S)) |
| return Error("Invalid MODULE_CODE_SECTIONNAME record"); |
| SectionTable.push_back(S); |
| break; |
| } |
| case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] |
| std::string S; |
| if (ConvertToString(Record, 0, S)) |
| return Error("Invalid MODULE_CODE_GCNAME record"); |
| GCTable.push_back(S); |
| break; |
| } |
| // GLOBALVAR: [pointer type, isconst, initid, |
| // linkage, alignment, section, visibility, threadlocal] |
| case bitc::MODULE_CODE_GLOBALVAR: { |
| if (Record.size() < 6) |
| return Error("Invalid MODULE_CODE_GLOBALVAR record"); |
| const Type *Ty = getTypeByID(Record[0]); |
| if (!isa<PointerType>(Ty)) |
| return Error("Global not a pointer type!"); |
| unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); |
| Ty = cast<PointerType>(Ty)->getElementType(); |
| |
| bool isConstant = Record[1]; |
| GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); |
| unsigned Alignment = (1 << Record[4]) >> 1; |
| std::string Section; |
| if (Record[5]) { |
| if (Record[5]-1 >= SectionTable.size()) |
| return Error("Invalid section ID"); |
| Section = SectionTable[Record[5]-1]; |
| } |
| GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; |
| if (Record.size() > 6) |
| Visibility = GetDecodedVisibility(Record[6]); |
| bool isThreadLocal = false; |
| if (Record.size() > 7) |
| isThreadLocal = Record[7]; |
| |
| GlobalVariable *NewGV = |
| new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule, |
| isThreadLocal, AddressSpace); |
| NewGV->setAlignment(Alignment); |
| if (!Section.empty()) |
| NewGV->setSection(Section); |
| NewGV->setVisibility(Visibility); |
| NewGV->setThreadLocal(isThreadLocal); |
| |
| ValueList.push_back(NewGV); |
| |
| // Remember which value to use for the global initializer. |
| if (unsigned InitID = Record[2]) |
| GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); |
| break; |
| } |
| // FUNCTION: [type, callingconv, isproto, linkage, paramattr, |
| // alignment, section, visibility, gc] |
| case bitc::MODULE_CODE_FUNCTION: { |
| if (Record.size() < 8) |
| return Error("Invalid MODULE_CODE_FUNCTION record"); |
| const Type *Ty = getTypeByID(Record[0]); |
| if (!isa<PointerType>(Ty)) |
| return Error("Function not a pointer type!"); |
| const FunctionType *FTy = |
| dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); |
| if (!FTy) |
| return Error("Function not a pointer to function type!"); |
| |
| Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, |
| "", TheModule); |
| |
| Func->setCallingConv(Record[1]); |
| bool isProto = Record[2]; |
| Func->setLinkage(GetDecodedLinkage(Record[3])); |
| Func->setAttributes(getAttributes(Record[4])); |
| |
| Func->setAlignment((1 << Record[5]) >> 1); |
| if (Record[6]) { |
| if (Record[6]-1 >= SectionTable.size()) |
| return Error("Invalid section ID"); |
| Func->setSection(SectionTable[Record[6]-1]); |
| } |
| Func->setVisibility(GetDecodedVisibility(Record[7])); |
| if (Record.size() > 8 && Record[8]) { |
| if (Record[8]-1 > GCTable.size()) |
| return Error("Invalid GC ID"); |
| Func->setGC(GCTable[Record[8]-1].c_str()); |
| } |
| ValueList.push_back(Func); |
| |
| // If this is a function with a body, remember the prototype we are |
| // creating now, so that we can match up the body with them later. |
| if (!isProto) |
| FunctionsWithBodies.push_back(Func); |
| break; |
| } |
| // ALIAS: [alias type, aliasee val#, linkage] |
| // ALIAS: [alias type, aliasee val#, linkage, visibility] |
| case bitc::MODULE_CODE_ALIAS: { |
| if (Record.size() < 3) |
| return Error("Invalid MODULE_ALIAS record"); |
| const Type *Ty = getTypeByID(Record[0]); |
| if (!isa<PointerType>(Ty)) |
| return Error("Function not a pointer type!"); |
| |
| GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), |
| "", 0, TheModule); |
| // Old bitcode files didn't have visibility field. |
| if (Record.size() > 3) |
| NewGA->setVisibility(GetDecodedVisibility(Record[3])); |
| ValueList.push_back(NewGA); |
| AliasInits.push_back(std::make_pair(NewGA, Record[1])); |
| break; |
| } |
| /// MODULE_CODE_PURGEVALS: [numvals] |
| case bitc::MODULE_CODE_PURGEVALS: |
| // Trim down the value list to the specified size. |
| if (Record.size() < 1 || Record[0] > ValueList.size()) |
| return Error("Invalid MODULE_PURGEVALS record"); |
| ValueList.shrinkTo(Record[0]); |
| break; |
| } |
| Record.clear(); |
| } |
| |
| return Error("Premature end of bitstream"); |
| } |
| |
| /// SkipWrapperHeader - Some systems wrap bc files with a special header for |
| /// padding or other reasons. The format of this header is: |
| /// |
| /// struct bc_header { |
| /// uint32_t Magic; // 0x0B17C0DE |
| /// uint32_t Version; // Version, currently always 0. |
| /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. |
| /// uint32_t BitcodeSize; // Size of traditional bitcode file. |
| /// ... potentially other gunk ... |
| /// }; |
| /// |
| /// This function is called when we find a file with a matching magic number. |
| /// In this case, skip down to the subsection of the file that is actually a BC |
| /// file. |
| static bool SkipWrapperHeader(unsigned char *&BufPtr, unsigned char *&BufEnd) { |
| enum { |
| KnownHeaderSize = 4*4, // Size of header we read. |
| OffsetField = 2*4, // Offset in bytes to Offset field. |
| SizeField = 3*4 // Offset in bytes to Size field. |
| }; |
| |
| |
| // Must contain the header! |
| if (BufEnd-BufPtr < KnownHeaderSize) return true; |
| |
| unsigned Offset = ( BufPtr[OffsetField ] | |
| (BufPtr[OffsetField+1] << 8) | |
| (BufPtr[OffsetField+2] << 16) | |
| (BufPtr[OffsetField+3] << 24)); |
| unsigned Size = ( BufPtr[SizeField ] | |
| (BufPtr[SizeField +1] << 8) | |
| (BufPtr[SizeField +2] << 16) | |
| (BufPtr[SizeField +3] << 24)); |
| |
| // Verify that Offset+Size fits in the file. |
| if (Offset+Size > unsigned(BufEnd-BufPtr)) |
| return true; |
| BufPtr += Offset; |
| BufEnd = BufPtr+Size; |
| return false; |
| } |
| |
| bool BitcodeReader::ParseBitcode() { |
| TheModule = 0; |
| |
| if (Buffer->getBufferSize() & 3) |
| return Error("Bitcode stream should be a multiple of 4 bytes in length"); |
| |
| unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); |
| unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); |
| |
| // If we have a wrapper header, parse it and ignore the non-bc file contents. |
| // The magic number is 0x0B17C0DE stored in little endian. |
| if (BufPtr != BufEnd && BufPtr[0] == 0xDE && BufPtr[1] == 0xC0 && |
| BufPtr[2] == 0x17 && BufPtr[3] == 0x0B) |
| if (SkipWrapperHeader(BufPtr, BufEnd)) |
| return Error("Invalid bitcode wrapper header"); |
| |
| Stream.init(BufPtr, BufEnd); |
| |
| // Sniff for the signature. |
| if (Stream.Read(8) != 'B' || |
| Stream.Read(8) != 'C' || |
| Stream.Read(4) != 0x0 || |
| Stream.Read(4) != 0xC || |
| Stream.Read(4) != 0xE || |
| Stream.Read(4) != 0xD) |
| return Error("Invalid bitcode signature"); |
| |
| // We expect a number of well-defined blocks, though we don't necessarily |
| // need to understand them all. |
| while (!Stream.AtEndOfStream()) { |
| unsigned Code = Stream.ReadCode(); |
| |
| if (Code != bitc::ENTER_SUBBLOCK) |
| return Error("Invalid record at top-level"); |
| |
| unsigned BlockID = Stream.ReadSubBlockID(); |
| |
| // We only know the MODULE subblock ID. |
| switch (BlockID) { |
| case bitc::BLOCKINFO_BLOCK_ID: |
| if (Stream.ReadBlockInfoBlock()) |
| return Error("Malformed BlockInfoBlock"); |
| break; |
| case bitc::MODULE_BLOCK_ID: |
| if (ParseModule(Buffer->getBufferIdentifier())) |
| return true; |
| break; |
| default: |
| if (Stream.SkipBlock()) |
| return Error("Malformed block record"); |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| /// ParseFunctionBody - Lazily parse the specified function body block. |
| bool BitcodeReader::ParseFunctionBody(Function *F) { |
| if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) |
| return Error("Malformed block record"); |
| |
| unsigned ModuleValueListSize = ValueList.size(); |
| |
| // Add all the function arguments to the value table. |
| for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) |
| ValueList.push_back(I); |
| |
| unsigned NextValueNo = ValueList.size(); |
| BasicBlock *CurBB = 0; |
| unsigned CurBBNo = 0; |
| |
| // Read all the records. |
| SmallVector<uint64_t, 64> Record; |
| while (1) { |
| unsigned Code = Stream.ReadCode(); |
| if (Code == bitc::END_BLOCK) { |
| if (Stream.ReadBlockEnd()) |
| return Error("Error at end of function block"); |
| break; |
| } |
| |
| if (Code == bitc::ENTER_SUBBLOCK) { |
| switch (Stream.ReadSubBlockID()) { |
| default: // Skip unknown content. |
| if (Stream.SkipBlock()) |
| return Error("Malformed block record"); |
| break; |
| case bitc::CONSTANTS_BLOCK_ID: |
| if (ParseConstants()) return true; |
| NextValueNo = ValueList.size(); |
| break; |
| case bitc::VALUE_SYMTAB_BLOCK_ID: |
| if (ParseValueSymbolTable()) return true; |
| break; |
| } |
| continue; |
| } |
| |
| if (Code == bitc::DEFINE_ABBREV) { |
| Stream.ReadAbbrevRecord(); |
| continue; |
| } |
| |
| // Read a record. |
| Record.clear(); |
| Instruction *I = 0; |
| switch (Stream.ReadRecord(Code, Record)) { |
| default: // Default behavior: reject |
| return Error("Unknown instruction"); |
| case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] |
| if (Record.size() < 1 || Record[0] == 0) |
| return Error("Invalid DECLAREBLOCKS record"); |
| // Create all the basic blocks for the function. |
| FunctionBBs.resize(Record[0]); |
| for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) |
| FunctionBBs[i] = BasicBlock::Create("", F); |
| CurBB = FunctionBBs[0]; |
| continue; |
| |
| case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] |
| unsigned OpNum = 0; |
| Value *LHS, *RHS; |
| if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || |
| getValue(Record, OpNum, LHS->getType(), RHS) || |
| OpNum+1 != Record.size()) |
| return Error("Invalid BINOP record"); |
| |
| int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType()); |
| if (Opc == -1) return Error("Invalid BINOP record"); |
| I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] |
| unsigned OpNum = 0; |
| Value *Op; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Op) || |
| OpNum+2 != Record.size()) |
| return Error("Invalid CAST record"); |
| |
| const Type *ResTy = getTypeByID(Record[OpNum]); |
| int Opc = GetDecodedCastOpcode(Record[OpNum+1]); |
| if (Opc == -1 || ResTy == 0) |
| return Error("Invalid CAST record"); |
| I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] |
| unsigned OpNum = 0; |
| Value *BasePtr; |
| if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) |
| return Error("Invalid GEP record"); |
| |
| SmallVector<Value*, 16> GEPIdx; |
| while (OpNum != Record.size()) { |
| Value *Op; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Op)) |
| return Error("Invalid GEP record"); |
| GEPIdx.push_back(Op); |
| } |
| |
| I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_EXTRACTVAL: { |
| // EXTRACTVAL: [opty, opval, n x indices] |
| unsigned OpNum = 0; |
| Value *Agg; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) |
| return Error("Invalid EXTRACTVAL record"); |
| |
| SmallVector<unsigned, 4> EXTRACTVALIdx; |
| for (unsigned RecSize = Record.size(); |
| OpNum != RecSize; ++OpNum) { |
| uint64_t Index = Record[OpNum]; |
| if ((unsigned)Index != Index) |
| return Error("Invalid EXTRACTVAL index"); |
| EXTRACTVALIdx.push_back((unsigned)Index); |
| } |
| |
| I = ExtractValueInst::Create(Agg, |
| EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_INSERTVAL: { |
| // INSERTVAL: [opty, opval, opty, opval, n x indices] |
| unsigned OpNum = 0; |
| Value *Agg; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) |
| return Error("Invalid INSERTVAL record"); |
| Value *Val; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Val)) |
| return Error("Invalid INSERTVAL record"); |
| |
| SmallVector<unsigned, 4> INSERTVALIdx; |
| for (unsigned RecSize = Record.size(); |
| OpNum != RecSize; ++OpNum) { |
| uint64_t Index = Record[OpNum]; |
| if ((unsigned)Index != Index) |
| return Error("Invalid INSERTVAL index"); |
| INSERTVALIdx.push_back((unsigned)Index); |
| } |
| |
| I = InsertValueInst::Create(Agg, Val, |
| INSERTVALIdx.begin(), INSERTVALIdx.end()); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] |
| // obsolete form of select |
| // handles select i1 ... in old bitcode |
| unsigned OpNum = 0; |
| Value *TrueVal, *FalseVal, *Cond; |
| if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || |
| getValue(Record, OpNum, TrueVal->getType(), FalseVal) || |
| getValue(Record, OpNum, Type::Int1Ty, Cond)) |
| return Error("Invalid SELECT record"); |
| |
| I = SelectInst::Create(Cond, TrueVal, FalseVal); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] |
| // new form of select |
| // handles select i1 or select [N x i1] |
| unsigned OpNum = 0; |
| Value *TrueVal, *FalseVal, *Cond; |
| if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || |
| getValue(Record, OpNum, TrueVal->getType(), FalseVal) || |
| getValueTypePair(Record, OpNum, NextValueNo, Cond)) |
| return Error("Invalid SELECT record"); |
| |
| // select condition can be either i1 or [N x i1] |
| if (const VectorType* vector_type = |
| dyn_cast<const VectorType>(Cond->getType())) { |
| // expect <n x i1> |
| if (vector_type->getElementType() != Type::Int1Ty) |
| return Error("Invalid SELECT condition type"); |
| } else { |
| // expect i1 |
| if (Cond->getType() != Type::Int1Ty) |
| return Error("Invalid SELECT condition type"); |
| } |
| |
| I = SelectInst::Create(Cond, TrueVal, FalseVal); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] |
| unsigned OpNum = 0; |
| Value *Vec, *Idx; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || |
| getValue(Record, OpNum, Type::Int32Ty, Idx)) |
| return Error("Invalid EXTRACTELT record"); |
| I = new ExtractElementInst(Vec, Idx); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] |
| unsigned OpNum = 0; |
| Value *Vec, *Elt, *Idx; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || |
| getValue(Record, OpNum, |
| cast<VectorType>(Vec->getType())->getElementType(), Elt) || |
| getValue(Record, OpNum, Type::Int32Ty, Idx)) |
| return Error("Invalid INSERTELT record"); |
| I = InsertElementInst::Create(Vec, Elt, Idx); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] |
| unsigned OpNum = 0; |
| Value *Vec1, *Vec2, *Mask; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || |
| getValue(Record, OpNum, Vec1->getType(), Vec2)) |
| return Error("Invalid SHUFFLEVEC record"); |
| |
| if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) |
| return Error("Invalid SHUFFLEVEC record"); |
| I = new ShuffleVectorInst(Vec1, Vec2, Mask); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred] |
| // VFCmp/VICmp |
| // or old form of ICmp/FCmp returning bool |
| unsigned OpNum = 0; |
| Value *LHS, *RHS; |
| if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || |
| getValue(Record, OpNum, LHS->getType(), RHS) || |
| OpNum+1 != Record.size()) |
| return Error("Invalid CMP record"); |
| |
| if (LHS->getType()->isFloatingPoint()) |
| I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); |
| else if (!isa<VectorType>(LHS->getType())) |
| I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); |
| else if (LHS->getType()->isFPOrFPVector()) |
| I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); |
| else |
| I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] |
| // Fcmp/ICmp returning bool or vector of bool |
| unsigned OpNum = 0; |
| Value *LHS, *RHS; |
| if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || |
| getValue(Record, OpNum, LHS->getType(), RHS) || |
| OpNum+1 != Record.size()) |
| return Error("Invalid CMP2 record"); |
| |
| if (LHS->getType()->isFPOrFPVector()) |
| I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); |
| else |
| I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] |
| if (Record.size() != 2) |
| return Error("Invalid GETRESULT record"); |
| unsigned OpNum = 0; |
| Value *Op; |
| getValueTypePair(Record, OpNum, NextValueNo, Op); |
| unsigned Index = Record[1]; |
| I = ExtractValueInst::Create(Op, Index); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] |
| { |
| unsigned Size = Record.size(); |
| if (Size == 0) { |
| I = ReturnInst::Create(); |
| break; |
| } |
| |
| unsigned OpNum = 0; |
| SmallVector<Value *,4> Vs; |
| do { |
| Value *Op = NULL; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Op)) |
| return Error("Invalid RET record"); |
| Vs.push_back(Op); |
| } while(OpNum != Record.size()); |
| |
| const Type *ReturnType = F->getReturnType(); |
| if (Vs.size() > 1 || |
| (isa<StructType>(ReturnType) && |
| (Vs.empty() || Vs[0]->getType() != ReturnType))) { |
| Value *RV = UndefValue::get(ReturnType); |
| for (unsigned i = 0, e = Vs.size(); i != e; ++i) { |
| I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); |
| CurBB->getInstList().push_back(I); |
| ValueList.AssignValue(I, NextValueNo++); |
| RV = I; |
| } |
| I = ReturnInst::Create(RV); |
| break; |
| } |
| |
| I = ReturnInst::Create(Vs[0]); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] |
| if (Record.size() != 1 && Record.size() != 3) |
| return Error("Invalid BR record"); |
| BasicBlock *TrueDest = getBasicBlock(Record[0]); |
| if (TrueDest == 0) |
| return Error("Invalid BR record"); |
| |
| if (Record.size() == 1) |
| I = BranchInst::Create(TrueDest); |
| else { |
| BasicBlock *FalseDest = getBasicBlock(Record[1]); |
| Value *Cond = getFnValueByID(Record[2], Type::Int1Ty); |
| if (FalseDest == 0 || Cond == 0) |
| return Error("Invalid BR record"); |
| I = BranchInst::Create(TrueDest, FalseDest, Cond); |
| } |
| break; |
| } |
| case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops] |
| if (Record.size() < 3 || (Record.size() & 1) == 0) |
| return Error("Invalid SWITCH record"); |
| const Type *OpTy = getTypeByID(Record[0]); |
| Value *Cond = getFnValueByID(Record[1], OpTy); |
| BasicBlock *Default = getBasicBlock(Record[2]); |
| if (OpTy == 0 || Cond == 0 || Default == 0) |
| return Error("Invalid SWITCH record"); |
| unsigned NumCases = (Record.size()-3)/2; |
| SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); |
| for (unsigned i = 0, e = NumCases; i != e; ++i) { |
| ConstantInt *CaseVal = |
| dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); |
| BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); |
| if (CaseVal == 0 || DestBB == 0) { |
| delete SI; |
| return Error("Invalid SWITCH record!"); |
| } |
| SI->addCase(CaseVal, DestBB); |
| } |
| I = SI; |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_INVOKE: { |
| // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] |
| if (Record.size() < 4) return Error("Invalid INVOKE record"); |
| AttrListPtr PAL = getAttributes(Record[0]); |
| unsigned CCInfo = Record[1]; |
| BasicBlock *NormalBB = getBasicBlock(Record[2]); |
| BasicBlock *UnwindBB = getBasicBlock(Record[3]); |
| |
| unsigned OpNum = 4; |
| Value *Callee; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) |
| return Error("Invalid INVOKE record"); |
| |
| const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); |
| const FunctionType *FTy = !CalleeTy ? 0 : |
| dyn_cast<FunctionType>(CalleeTy->getElementType()); |
| |
| // Check that the right number of fixed parameters are here. |
| if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || |
| Record.size() < OpNum+FTy->getNumParams()) |
| return Error("Invalid INVOKE record"); |
| |
| SmallVector<Value*, 16> Ops; |
| for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { |
| Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); |
| if (Ops.back() == 0) return Error("Invalid INVOKE record"); |
| } |
| |
| if (!FTy->isVarArg()) { |
| if (Record.size() != OpNum) |
| return Error("Invalid INVOKE record"); |
| } else { |
| // Read type/value pairs for varargs params. |
| while (OpNum != Record.size()) { |
| Value *Op; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Op)) |
| return Error("Invalid INVOKE record"); |
| Ops.push_back(Op); |
| } |
| } |
| |
| I = InvokeInst::Create(Callee, NormalBB, UnwindBB, |
| Ops.begin(), Ops.end()); |
| cast<InvokeInst>(I)->setCallingConv(CCInfo); |
| cast<InvokeInst>(I)->setAttributes(PAL); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_UNWIND: // UNWIND |
| I = new UnwindInst(); |
| break; |
| case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE |
| I = new UnreachableInst(); |
| break; |
| case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] |
| if (Record.size() < 1 || ((Record.size()-1)&1)) |
| return Error("Invalid PHI record"); |
| const Type *Ty = getTypeByID(Record[0]); |
| if (!Ty) return Error("Invalid PHI record"); |
| |
| PHINode *PN = PHINode::Create(Ty); |
| PN->reserveOperandSpace((Record.size()-1)/2); |
| |
| for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { |
| Value *V = getFnValueByID(Record[1+i], Ty); |
| BasicBlock *BB = getBasicBlock(Record[2+i]); |
| if (!V || !BB) return Error("Invalid PHI record"); |
| PN->addIncoming(V, BB); |
| } |
| I = PN; |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] |
| if (Record.size() < 3) |
| return Error("Invalid MALLOC record"); |
| const PointerType *Ty = |
| dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); |
| Value *Size = getFnValueByID(Record[1], Type::Int32Ty); |
| unsigned Align = Record[2]; |
| if (!Ty || !Size) return Error("Invalid MALLOC record"); |
| I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] |
| unsigned OpNum = 0; |
| Value *Op; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Op) || |
| OpNum != Record.size()) |
| return Error("Invalid FREE record"); |
| I = new FreeInst(Op); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align] |
| if (Record.size() < 3) |
| return Error("Invalid ALLOCA record"); |
| const PointerType *Ty = |
| dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); |
| Value *Size = getFnValueByID(Record[1], Type::Int32Ty); |
| unsigned Align = Record[2]; |
| if (!Ty || !Size) return Error("Invalid ALLOCA record"); |
| I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] |
| unsigned OpNum = 0; |
| Value *Op; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Op) || |
| OpNum+2 != Record.size()) |
| return Error("Invalid LOAD record"); |
| |
| I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] |
| unsigned OpNum = 0; |
| Value *Val, *Ptr; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || |
| getValue(Record, OpNum, |
| cast<PointerType>(Ptr->getType())->getElementType(), Val) || |
| OpNum+2 != Record.size()) |
| return Error("Invalid STORE record"); |
| |
| I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] |
| // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. |
| unsigned OpNum = 0; |
| Value *Val, *Ptr; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Val) || |
| getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)|| |
| OpNum+2 != Record.size()) |
| return Error("Invalid STORE record"); |
| |
| I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_CALL: { |
| // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] |
| if (Record.size() < 3) |
| return Error("Invalid CALL record"); |
| |
| AttrListPtr PAL = getAttributes(Record[0]); |
| unsigned CCInfo = Record[1]; |
| |
| unsigned OpNum = 2; |
| Value *Callee; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) |
| return Error("Invalid CALL record"); |
| |
| const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); |
| const FunctionType *FTy = 0; |
| if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); |
| if (!FTy || Record.size() < FTy->getNumParams()+OpNum) |
| return Error("Invalid CALL record"); |
| |
| SmallVector<Value*, 16> Args; |
| // Read the fixed params. |
| for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { |
| if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) |
| Args.push_back(getBasicBlock(Record[OpNum])); |
| else |
| Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); |
| if (Args.back() == 0) return Error("Invalid CALL record"); |
| } |
| |
| // Read type/value pairs for varargs params. |
| if (!FTy->isVarArg()) { |
| if (OpNum != Record.size()) |
| return Error("Invalid CALL record"); |
| } else { |
| while (OpNum != Record.size()) { |
| Value *Op; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Op)) |
| return Error("Invalid CALL record"); |
| Args.push_back(Op); |
| } |
| } |
| |
| I = CallInst::Create(Callee, Args.begin(), Args.end()); |
| cast<CallInst>(I)->setCallingConv(CCInfo>>1); |
| cast<CallInst>(I)->setTailCall(CCInfo & 1); |
| cast<CallInst>(I)->setAttributes(PAL); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] |
| if (Record.size() < 3) |
| return Error("Invalid VAARG record"); |
| const Type *OpTy = getTypeByID(Record[0]); |
| Value *Op = getFnValueByID(Record[1], OpTy); |
| const Type *ResTy = getTypeByID(Record[2]); |
| if (!OpTy || !Op || !ResTy) |
| return Error("Invalid VAARG record"); |
| I = new VAArgInst(Op, ResTy); |
| break; |
| } |
| } |
| |
| // Add instruction to end of current BB. If there is no current BB, reject |
| // this file. |
| if (CurBB == 0) { |
| delete I; |
| return Error("Invalid instruction with no BB"); |
| } |
| CurBB->getInstList().push_back(I); |
| |
| // If this was a terminator instruction, move to the next block. |
| if (isa<TerminatorInst>(I)) { |
| ++CurBBNo; |
| CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; |
| } |
| |
| // Non-void values get registered in the value table for future use. |
| if (I && I->getType() != Type::VoidTy) |
| ValueList.AssignValue(I, NextValueNo++); |
| } |
| |
| // Check the function list for unresolved values. |
| if (Argument *A = dyn_cast<Argument>(ValueList.back())) { |
| if (A->getParent() == 0) { |
| // We found at least one unresolved value. Nuke them all to avoid leaks. |
| for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ |
| if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { |
| A->replaceAllUsesWith(UndefValue::get(A->getType())); |
| delete A; |
| } |
| } |
| return Error("Never resolved value found in function!"); |
| } |
| } |
| |
| // Trim the value list down to the size it was before we parsed this function. |
| ValueList.shrinkTo(ModuleValueListSize); |
| std::vector<BasicBlock*>().swap(FunctionBBs); |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ModuleProvider implementation |
| //===----------------------------------------------------------------------===// |
| |
| |
| bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) { |
| // If it already is material, ignore the request. |
| if (!F->hasNotBeenReadFromBitcode()) return false; |
| |
| DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII = |
| DeferredFunctionInfo.find(F); |
| assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); |
| |
| // Move the bit stream to the saved position of the deferred function body and |
| // restore the real linkage type for the function. |
| Stream.JumpToBit(DFII->second.first); |
| F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second); |
| |
| if (ParseFunctionBody(F)) { |
| if (ErrInfo) *ErrInfo = ErrorString; |
| return true; |
| } |
| |
| // Upgrade any old intrinsic calls in the function. |
| for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), |
| E = UpgradedIntrinsics.end(); I != E; ++I) { |
| if (I->first != I->second) { |
| for (Value::use_iterator UI = I->first->use_begin(), |
| UE = I->first->use_end(); UI != UE; ) { |
| if (CallInst* CI = dyn_cast<CallInst>(*UI++)) |
| UpgradeIntrinsicCall(CI, I->second); |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| void BitcodeReader::dematerializeFunction(Function *F) { |
| // If this function isn't materialized, or if it is a proto, this is a noop. |
| if (F->hasNotBeenReadFromBitcode() || F->isDeclaration()) |
| return; |
| |
| assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); |
| |
| // Just forget the function body, we can remat it later. |
| F->deleteBody(); |
| F->setLinkage(GlobalValue::GhostLinkage); |
| } |
| |
| |
| Module *BitcodeReader::materializeModule(std::string *ErrInfo) { |
| for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I = |
| DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E; |
| ++I) { |
| Function *F = I->first; |
| if (F->hasNotBeenReadFromBitcode() && |
| materializeFunction(F, ErrInfo)) |
| return 0; |
| } |
| |
| // Upgrade any intrinsic calls that slipped through (should not happen!) and |
| // delete the old functions to clean up. We can't do this unless the entire |
| // module is materialized because there could always be another function body |
| // with calls to the old function. |
| for (std::vector<std::pair<Function*, Function*> >::iterator I = |
| UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { |
| if (I->first != I->second) { |
| for (Value::use_iterator UI = I->first->use_begin(), |
| UE = I->first->use_end(); UI != UE; ) { |
| if (CallInst* CI = dyn_cast<CallInst>(*UI++)) |
| UpgradeIntrinsicCall(CI, I->second); |
| } |
| ValueList.replaceUsesOfWith(I->first, I->second); |
| I->first->eraseFromParent(); |
| } |
| } |
| std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); |
| |
| return TheModule; |
| } |
| |
| |
| /// This method is provided by the parent ModuleProvde class and overriden |
| /// here. It simply releases the module from its provided and frees up our |
| /// state. |
| /// @brief Release our hold on the generated module |
| Module *BitcodeReader::releaseModule(std::string *ErrInfo) { |
| // Since we're losing control of this Module, we must hand it back complete |
| Module *M = ModuleProvider::releaseModule(ErrInfo); |
| FreeState(); |
| return M; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // External interface |
| //===----------------------------------------------------------------------===// |
| |
| /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file. |
| /// |
| ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer, |
| std::string *ErrMsg) { |
| BitcodeReader *R = new BitcodeReader(Buffer); |
| if (R->ParseBitcode()) { |
| if (ErrMsg) |
| *ErrMsg = R->getErrorString(); |
| |
| // Don't let the BitcodeReader dtor delete 'Buffer'. |
| R->releaseMemoryBuffer(); |
| delete R; |
| return 0; |
| } |
| return R; |
| } |
| |
| /// ParseBitcodeFile - Read the specified bitcode file, returning the module. |
| /// If an error occurs, return null and fill in *ErrMsg if non-null. |
| Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){ |
| BitcodeReader *R; |
| R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg)); |
| if (!R) return 0; |
| |
| // Read in the entire module. |
| Module *M = R->materializeModule(ErrMsg); |
| |
| // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether |
| // there was an error. |
| R->releaseMemoryBuffer(); |
| |
| // If there was no error, tell ModuleProvider not to delete it when its dtor |
| // is run. |
| if (M) |
| M = R->releaseModule(ErrMsg); |
| |
| delete R; |
| return M; |
| } |