| //===- RegAllocBigBlock.cpp - A register allocator for large basic blocks -===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the RABigBlock class | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // This register allocator is derived from RegAllocLocal.cpp. Like it, this | 
 | // allocator works on one basic block at a time, oblivious to others. | 
 | // However, the algorithm used here is suited for long blocks of | 
 | // instructions - registers are spilled by greedily choosing those holding | 
 | // values that will not be needed for the longest amount of time. This works | 
 | // particularly well for blocks with 10 or more times as many instructions | 
 | // as machine registers, but can be used for general code. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // TODO: - automagically invoke linearscan for (groups of) small BBs? | 
 | //       - break ties when picking regs? (probably not worth it in a | 
 | //         JIT context) | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "regalloc" | 
 | #include "llvm/BasicBlock.h" | 
 | #include "llvm/CodeGen/Passes.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/LiveVariables.h" | 
 | #include "llvm/CodeGen/RegAllocRegistry.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/ADT/IndexedMap.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include <algorithm> | 
 | using namespace llvm; | 
 |  | 
 | STATISTIC(NumStores, "Number of stores added"); | 
 | STATISTIC(NumLoads , "Number of loads added"); | 
 | STATISTIC(NumFolded, "Number of loads/stores folded into instructions"); | 
 |  | 
 | static RegisterRegAlloc | 
 |   bigBlockRegAlloc("bigblock", "Big-block register allocator", | 
 |                 createBigBlockRegisterAllocator); | 
 |  | 
 | namespace { | 
 | /// VRegKeyInfo - Defines magic values required to use VirtRegs as DenseMap | 
 | /// keys. | 
 |   struct VRegKeyInfo { | 
 |     static inline unsigned getEmptyKey() { return -1U; } | 
 |     static inline unsigned getTombstoneKey() { return -2U; } | 
 |     static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; } | 
 |     static unsigned getHashValue(const unsigned &Key) { return Key; } | 
 |   }; | 
 |  | 
 |  | 
 | /// This register allocator is derived from RegAllocLocal.cpp. Like it, this | 
 | /// allocator works on one basic block at a time, oblivious to others. | 
 | /// However, the algorithm used here is suited for long blocks of | 
 | /// instructions - registers are spilled by greedily choosing those holding | 
 | /// values that will not be needed for the longest amount of time. This works | 
 | /// particularly well for blocks with 10 or more times as many instructions | 
 | /// as machine registers, but can be used for general code. | 
 | /// | 
 | /// TODO: - automagically invoke linearscan for (groups of) small BBs? | 
 | ///       - break ties when picking regs? (probably not worth it in a | 
 | ///         JIT context) | 
 | /// | 
 |   class VISIBILITY_HIDDEN RABigBlock : public MachineFunctionPass { | 
 |   public: | 
 |     static char ID; | 
 |     RABigBlock() : MachineFunctionPass(&ID) {} | 
 |   private: | 
 |     /// TM - For getting at TargetMachine info  | 
 |     /// | 
 |     const TargetMachine *TM; | 
 |      | 
 |     /// MF - Our generic MachineFunction pointer | 
 |     /// | 
 |     MachineFunction *MF; | 
 |      | 
 |     /// RegInfo - For dealing with machine register info (aliases, folds | 
 |     /// etc) | 
 |     const TargetRegisterInfo *RegInfo; | 
 |  | 
 |     typedef SmallVector<unsigned, 2> VRegTimes; | 
 |  | 
 |     /// VRegReadTable - maps VRegs in a BB to the set of times they are read | 
 |     /// | 
 |     DenseMap<unsigned, VRegTimes*, VRegKeyInfo> VRegReadTable; | 
 |  | 
 |     /// VRegReadIdx - keeps track of the "current time" in terms of | 
 |     /// positions in VRegReadTable | 
 |     DenseMap<unsigned, unsigned , VRegKeyInfo> VRegReadIdx; | 
 |  | 
 |     /// StackSlotForVirtReg - Maps virtual regs to the frame index where these | 
 |     /// values are spilled. | 
 |     IndexedMap<unsigned, VirtReg2IndexFunctor> StackSlotForVirtReg; | 
 |  | 
 |     /// Virt2PhysRegMap - This map contains entries for each virtual register | 
 |     /// that is currently available in a physical register. | 
 |     IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap; | 
 |  | 
 |     /// PhysRegsUsed - This array is effectively a map, containing entries for | 
 |     /// each physical register that currently has a value (ie, it is in | 
 |     /// Virt2PhysRegMap).  The value mapped to is the virtual register | 
 |     /// corresponding to the physical register (the inverse of the | 
 |     /// Virt2PhysRegMap), or 0.  The value is set to 0 if this register is pinned | 
 |     /// because it is used by a future instruction, and to -2 if it is not | 
 |     /// allocatable.  If the entry for a physical register is -1, then the | 
 |     /// physical register is "not in the map". | 
 |     /// | 
 |     std::vector<int> PhysRegsUsed; | 
 |  | 
 |     /// VirtRegModified - This bitset contains information about which virtual | 
 |     /// registers need to be spilled back to memory when their registers are | 
 |     /// scavenged.  If a virtual register has simply been rematerialized, there | 
 |     /// is no reason to spill it to memory when we need the register back. | 
 |     /// | 
 |     std::vector<int> VirtRegModified; | 
 |  | 
 |     /// MBBLastInsnTime - the number of the the last instruction in MBB | 
 |     /// | 
 |     int MBBLastInsnTime; | 
 |  | 
 |     /// MBBCurTime - the number of the the instruction being currently processed | 
 |     /// | 
 |     int MBBCurTime; | 
 |  | 
 |     unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) { | 
 |       return Virt2PhysRegMap[VirtReg]; | 
 |     } | 
 |  | 
 |     unsigned &getVirt2StackSlot(unsigned VirtReg) { | 
 |       return StackSlotForVirtReg[VirtReg]; | 
 |     } | 
 |  | 
 |     /// markVirtRegModified - Lets us flip bits in the VirtRegModified bitset | 
 |     /// | 
 |     void markVirtRegModified(unsigned Reg, bool Val = true) { | 
 |       assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); | 
 |       Reg -= TargetRegisterInfo::FirstVirtualRegister; | 
 |       if (VirtRegModified.size() <= Reg) | 
 |         VirtRegModified.resize(Reg+1); | 
 |       VirtRegModified[Reg] = Val; | 
 |     } | 
 |      | 
 |     /// isVirtRegModified - Lets us query the VirtRegModified bitset | 
 |     /// | 
 |     bool isVirtRegModified(unsigned Reg) const { | 
 |       assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); | 
 |       assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size() | 
 |              && "Illegal virtual register!"); | 
 |       return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister]; | 
 |     } | 
 |  | 
 |   public: | 
 |     /// getPassName - returns the BigBlock allocator's name | 
 |     /// | 
 |     virtual const char *getPassName() const { | 
 |       return "BigBlock Register Allocator"; | 
 |     } | 
 |  | 
 |     /// getAnalaysisUsage - declares the required analyses | 
 |     /// | 
 |     virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |       AU.addRequiredID(PHIEliminationID); | 
 |       AU.addRequiredID(TwoAddressInstructionPassID); | 
 |       MachineFunctionPass::getAnalysisUsage(AU); | 
 |     } | 
 |  | 
 |   private: | 
 |     /// runOnMachineFunction - Register allocate the whole function | 
 |     /// | 
 |     bool runOnMachineFunction(MachineFunction &Fn); | 
 |  | 
 |     /// AllocateBasicBlock - Register allocate the specified basic block. | 
 |     /// | 
 |     void AllocateBasicBlock(MachineBasicBlock &MBB); | 
 |  | 
 |     /// FillVRegReadTable - Fill out the table of vreg read times given a BB | 
 |     /// | 
 |     void FillVRegReadTable(MachineBasicBlock &MBB); | 
 |      | 
 |     /// areRegsEqual - This method returns true if the specified registers are | 
 |     /// related to each other.  To do this, it checks to see if they are equal | 
 |     /// or if the first register is in the alias set of the second register. | 
 |     /// | 
 |     bool areRegsEqual(unsigned R1, unsigned R2) const { | 
 |       if (R1 == R2) return true; | 
 |       for (const unsigned *AliasSet = RegInfo->getAliasSet(R2); | 
 |            *AliasSet; ++AliasSet) { | 
 |         if (*AliasSet == R1) return true; | 
 |       } | 
 |       return false; | 
 |     } | 
 |  | 
 |     /// getStackSpaceFor - This returns the frame index of the specified virtual | 
 |     /// register on the stack, allocating space if necessary. | 
 |     int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); | 
 |  | 
 |     /// removePhysReg - This method marks the specified physical register as no | 
 |     /// longer being in use. | 
 |     /// | 
 |     void removePhysReg(unsigned PhysReg); | 
 |  | 
 |     /// spillVirtReg - This method spills the value specified by PhysReg into | 
 |     /// the virtual register slot specified by VirtReg.  It then updates the RA | 
 |     /// data structures to indicate the fact that PhysReg is now available. | 
 |     /// | 
 |     void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, | 
 |                       unsigned VirtReg, unsigned PhysReg); | 
 |  | 
 |     /// spillPhysReg - This method spills the specified physical register into | 
 |     /// the virtual register slot associated with it.  If OnlyVirtRegs is set to | 
 |     /// true, then the request is ignored if the physical register does not | 
 |     /// contain a virtual register. | 
 |     /// | 
 |     void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, | 
 |                       unsigned PhysReg, bool OnlyVirtRegs = false); | 
 |  | 
 |     /// assignVirtToPhysReg - This method updates local state so that we know | 
 |     /// that PhysReg is the proper container for VirtReg now.  The physical | 
 |     /// register must not be used for anything else when this is called. | 
 |     /// | 
 |     void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg); | 
 |  | 
 |     /// isPhysRegAvailable - Return true if the specified physical register is | 
 |     /// free and available for use.  This also includes checking to see if | 
 |     /// aliased registers are all free... | 
 |     /// | 
 |     bool isPhysRegAvailable(unsigned PhysReg) const; | 
 |  | 
 |     /// getFreeReg - Look to see if there is a free register available in the | 
 |     /// specified register class.  If not, return 0. | 
 |     /// | 
 |     unsigned getFreeReg(const TargetRegisterClass *RC); | 
 |  | 
 |     /// chooseReg - Pick a physical register to hold the specified | 
 |     /// virtual register by choosing the one which will be read furthest | 
 |     /// in the future. | 
 |     /// | 
 |     unsigned chooseReg(MachineBasicBlock &MBB, MachineInstr *MI, | 
 |                     unsigned VirtReg); | 
 |  | 
 |     /// reloadVirtReg - This method transforms the specified specified virtual | 
 |     /// register use to refer to a physical register.  This method may do this | 
 |     /// in one of several ways: if the register is available in a physical | 
 |     /// register already, it uses that physical register.  If the value is not | 
 |     /// in a physical register, and if there are physical registers available, | 
 |     /// it loads it into a register.  If register pressure is high, and it is | 
 |     /// possible, it tries to fold the load of the virtual register into the | 
 |     /// instruction itself.  It avoids doing this if register pressure is low to | 
 |     /// improve the chance that subsequent instructions can use the reloaded | 
 |     /// value.  This method returns the modified instruction. | 
 |     /// | 
 |     MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, | 
 |                                 unsigned OpNum); | 
 |  | 
 |   }; | 
 |   char RABigBlock::ID = 0; | 
 | } | 
 |  | 
 | /// getStackSpaceFor - This allocates space for the specified virtual register | 
 | /// to be held on the stack. | 
 | int RABigBlock::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { | 
 |   // Find the location Reg would belong... | 
 |   int FrameIdx = getVirt2StackSlot(VirtReg); | 
 |  | 
 |   if (FrameIdx) | 
 |     return FrameIdx - 1;          // Already has space allocated? | 
 |  | 
 |   // Allocate a new stack object for this spill location... | 
 |   FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(), | 
 |                                                        RC->getAlignment()); | 
 |  | 
 |   // Assign the slot... | 
 |   getVirt2StackSlot(VirtReg) = FrameIdx + 1; | 
 |   return FrameIdx; | 
 | } | 
 |  | 
 |  | 
 | /// removePhysReg - This method marks the specified physical register as no | 
 | /// longer being in use. | 
 | /// | 
 | void RABigBlock::removePhysReg(unsigned PhysReg) { | 
 |   PhysRegsUsed[PhysReg] = -1;      // PhyReg no longer used | 
 | } | 
 |  | 
 |  | 
 | /// spillVirtReg - This method spills the value specified by PhysReg into the | 
 | /// virtual register slot specified by VirtReg.  It then updates the RA data | 
 | /// structures to indicate the fact that PhysReg is now available. | 
 | /// | 
 | void RABigBlock::spillVirtReg(MachineBasicBlock &MBB, | 
 |                            MachineBasicBlock::iterator I, | 
 |                            unsigned VirtReg, unsigned PhysReg) { | 
 |   assert(VirtReg && "Spilling a physical register is illegal!" | 
 |          " Must not have appropriate kill for the register or use exists beyond" | 
 |          " the intended one."); | 
 |   DOUT << "  Spilling register " << RegInfo->getName(PhysReg) | 
 |        << " containing %reg" << VirtReg; | 
 |    | 
 |   const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo(); | 
 |    | 
 |   if (!isVirtRegModified(VirtReg)) | 
 |     DOUT << " which has not been modified, so no store necessary!"; | 
 |  | 
 |   // Otherwise, there is a virtual register corresponding to this physical | 
 |   // register.  We only need to spill it into its stack slot if it has been | 
 |   // modified. | 
 |   if (isVirtRegModified(VirtReg)) { | 
 |     const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); | 
 |     int FrameIndex = getStackSpaceFor(VirtReg, RC); | 
 |     DOUT << " to stack slot #" << FrameIndex; | 
 |     TII->storeRegToStackSlot(MBB, I, PhysReg, true, FrameIndex, RC); | 
 |     ++NumStores;   // Update statistics | 
 |   } | 
 |  | 
 |   getVirt2PhysRegMapSlot(VirtReg) = 0;   // VirtReg no longer available | 
 |  | 
 |   DOUT << "\n"; | 
 |   removePhysReg(PhysReg); | 
 | } | 
 |  | 
 |  | 
 | /// spillPhysReg - This method spills the specified physical register into the | 
 | /// virtual register slot associated with it.  If OnlyVirtRegs is set to true, | 
 | /// then the request is ignored if the physical register does not contain a | 
 | /// virtual register. | 
 | /// | 
 | void RABigBlock::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, | 
 |                            unsigned PhysReg, bool OnlyVirtRegs) { | 
 |   if (PhysRegsUsed[PhysReg] != -1) {            // Only spill it if it's used! | 
 |     assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!"); | 
 |     if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs) | 
 |       spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg); | 
 |   } else { | 
 |     // If the selected register aliases any other registers, we must make | 
 |     // sure that one of the aliases isn't alive. | 
 |     for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); | 
 |          *AliasSet; ++AliasSet) | 
 |       if (PhysRegsUsed[*AliasSet] != -1 &&     // Spill aliased register. | 
 |           PhysRegsUsed[*AliasSet] != -2)       // If allocatable. | 
 |         if (PhysRegsUsed[*AliasSet]) | 
 |           spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /// assignVirtToPhysReg - This method updates local state so that we know | 
 | /// that PhysReg is the proper container for VirtReg now.  The physical | 
 | /// register must not be used for anything else when this is called. | 
 | /// | 
 | void RABigBlock::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { | 
 |   assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!"); | 
 |   // Update information to note the fact that this register was just used, and | 
 |   // it holds VirtReg. | 
 |   PhysRegsUsed[PhysReg] = VirtReg; | 
 |   getVirt2PhysRegMapSlot(VirtReg) = PhysReg; | 
 | } | 
 |  | 
 |  | 
 | /// isPhysRegAvailable - Return true if the specified physical register is free | 
 | /// and available for use.  This also includes checking to see if aliased | 
 | /// registers are all free... | 
 | /// | 
 | bool RABigBlock::isPhysRegAvailable(unsigned PhysReg) const { | 
 |   if (PhysRegsUsed[PhysReg] != -1) return false; | 
 |  | 
 |   // If the selected register aliases any other allocated registers, it is | 
 |   // not free! | 
 |   for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); | 
 |        *AliasSet; ++AliasSet) | 
 |     if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use? | 
 |       return false;                    // Can't use this reg then. | 
 |   return true; | 
 | } | 
 |  | 
 |    | 
 | /// getFreeReg - Look to see if there is a free register available in the | 
 | /// specified register class.  If not, return 0. | 
 | /// | 
 | unsigned RABigBlock::getFreeReg(const TargetRegisterClass *RC) { | 
 |   // Get iterators defining the range of registers that are valid to allocate in | 
 |   // this class, which also specifies the preferred allocation order. | 
 |   TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF); | 
 |   TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF); | 
 |  | 
 |   for (; RI != RE; ++RI) | 
 |     if (isPhysRegAvailable(*RI)) {       // Is reg unused? | 
 |       assert(*RI != 0 && "Cannot use register!"); | 
 |       return *RI; // Found an unused register! | 
 |     } | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | /// chooseReg - Pick a physical register to hold the specified | 
 | /// virtual register by choosing the one whose value will be read | 
 | /// furthest in the future. | 
 | /// | 
 | unsigned RABigBlock::chooseReg(MachineBasicBlock &MBB, MachineInstr *I, | 
 |                          unsigned VirtReg) { | 
 |   const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); | 
 |   // First check to see if we have a free register of the requested type... | 
 |   unsigned PhysReg = getFreeReg(RC); | 
 |  | 
 |   // If we didn't find an unused register, find the one which will be | 
 |   // read at the most distant point in time. | 
 |   if (PhysReg == 0) { | 
 |     unsigned delay=0, longest_delay=0; | 
 |     VRegTimes* ReadTimes; | 
 |  | 
 |     unsigned curTime = MBBCurTime; | 
 |  | 
 |     // for all physical regs in the RC, | 
 |     for(TargetRegisterClass::iterator pReg = RC->begin();  | 
 |                                       pReg != RC->end();  ++pReg) { | 
 |       // how long until they're read? | 
 |       if(PhysRegsUsed[*pReg]>0) { // ignore non-allocatable regs | 
 |         ReadTimes = VRegReadTable[PhysRegsUsed[*pReg]]; | 
 |         if(ReadTimes && !ReadTimes->empty()) { | 
 |             unsigned& pt = VRegReadIdx[PhysRegsUsed[*pReg]]; | 
 |             while(pt < ReadTimes->size() && (*ReadTimes)[pt] < curTime) { | 
 |                 ++pt; | 
 |             } | 
 |  | 
 |             if(pt < ReadTimes->size()) | 
 |                 delay = (*ReadTimes)[pt] - curTime; | 
 |             else | 
 |                 delay = MBBLastInsnTime + 1 - curTime; | 
 |         } else { | 
 |             // This register is only defined, but never | 
 |             // read in this MBB. Therefore the next read | 
 |             // happens after the end of this MBB | 
 |             delay = MBBLastInsnTime + 1 - curTime; | 
 |         } | 
 |  | 
 |          | 
 |         if(delay > longest_delay) { | 
 |           longest_delay = delay; | 
 |           PhysReg = *pReg; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     if(PhysReg == 0) { // ok, now we're desperate. We couldn't choose | 
 |                        // a register to spill by looking through the | 
 |                        // read timetable, so now we just spill the | 
 |                        // first allocatable register we find. | 
 |                         | 
 |       // for all physical regs in the RC, | 
 |       for(TargetRegisterClass::iterator pReg = RC->begin();  | 
 |                                         pReg != RC->end();  ++pReg) { | 
 |         // if we find a register we can spill | 
 |         if(PhysRegsUsed[*pReg]>=-1) | 
 |           PhysReg = *pReg; // choose it to be spilled | 
 |       } | 
 |     } | 
 |      | 
 |     assert(PhysReg && "couldn't choose a register to spill :( "); | 
 |     // TODO: assert that RC->contains(PhysReg) / handle aliased registers? | 
 |  | 
 |     // since we needed to look in the table we need to spill this register. | 
 |     spillPhysReg(MBB, I, PhysReg); | 
 |   } | 
 |  | 
 |   // assign the vreg to our chosen physical register | 
 |   assignVirtToPhysReg(VirtReg, PhysReg); | 
 |   return PhysReg; // and return it | 
 | } | 
 |  | 
 |  | 
 | /// reloadVirtReg - This method transforms an instruction with a virtual | 
 | /// register use to one that references a physical register. It does this as | 
 | /// follows: | 
 | /// | 
 | ///   1) If the register is already in a physical register, it uses it. | 
 | ///   2) Otherwise, if there is a free physical register, it uses that. | 
 | ///   3) Otherwise, it calls chooseReg() to get the physical register | 
 | ///      holding the most distantly needed value, generating a spill in | 
 | ///      the process. | 
 | /// | 
 | /// This method returns the modified instruction. | 
 | MachineInstr *RABigBlock::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, | 
 |                                      unsigned OpNum) { | 
 |   unsigned VirtReg = MI->getOperand(OpNum).getReg(); | 
 |   const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo(); | 
 |  | 
 |   // If the virtual register is already available in a physical register, | 
 |   // just update the instruction and return. | 
 |   if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) { | 
 |     MI->getOperand(OpNum).setReg(PR); | 
 |     return MI; | 
 |   } | 
 |  | 
 |   // Otherwise, if we have free physical registers available to hold the | 
 |   // value, use them. | 
 |   const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); | 
 |   unsigned PhysReg = getFreeReg(RC); | 
 |   int FrameIndex = getStackSpaceFor(VirtReg, RC); | 
 |  | 
 |   if (PhysReg) {   // we have a free register, so use it. | 
 |     assignVirtToPhysReg(VirtReg, PhysReg); | 
 |   } else {  // no free registers available. | 
 |     // try to fold the spill into the instruction | 
 |     SmallVector<unsigned, 2> Ops; | 
 |     Ops.push_back(OpNum); | 
 |     if(MachineInstr* FMI = TII->foldMemoryOperand(*MF, MI, Ops, FrameIndex)) { | 
 |       ++NumFolded; | 
 |       FMI->copyKillDeadInfo(MI); | 
 |       return MBB.insert(MBB.erase(MI), FMI); | 
 |     } | 
 |      | 
 |     // determine which of the physical registers we'll kill off, since we | 
 |     // couldn't fold. | 
 |     PhysReg = chooseReg(MBB, MI, VirtReg); | 
 |   } | 
 |  | 
 |   // this virtual register is now unmodified (since we just reloaded it) | 
 |   markVirtRegModified(VirtReg, false); | 
 |  | 
 |   DOUT << "  Reloading %reg" << VirtReg << " into " | 
 |        << RegInfo->getName(PhysReg) << "\n"; | 
 |  | 
 |   // Add move instruction(s) | 
 |   TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC); | 
 |   ++NumLoads;    // Update statistics | 
 |  | 
 |   MF->getRegInfo().setPhysRegUsed(PhysReg); | 
 |   MI->getOperand(OpNum).setReg(PhysReg);  // Assign the input register | 
 |   return MI; | 
 | } | 
 |  | 
 | /// Fill out the vreg read timetable. Since ReadTime increases | 
 | /// monotonically, the individual readtime sets will be sorted | 
 | /// in ascending order. | 
 | void RABigBlock::FillVRegReadTable(MachineBasicBlock &MBB) { | 
 |   // loop over each instruction | 
 |   MachineBasicBlock::iterator MII; | 
 |   unsigned ReadTime; | 
 |    | 
 |   for(ReadTime=0, MII = MBB.begin(); MII != MBB.end(); ++ReadTime, ++MII) { | 
 |     MachineInstr *MI = MII; | 
 |      | 
 |     for (unsigned i = 0; i != MI->getNumOperands(); ++i) { | 
 |       MachineOperand& MO = MI->getOperand(i); | 
 |       // look for vreg reads.. | 
 |       if (MO.isReg() && !MO.isDef() && MO.getReg() && | 
 |           TargetRegisterInfo::isVirtualRegister(MO.getReg())) { | 
 |           // ..and add them to the read table. | 
 |           VRegTimes* &Times = VRegReadTable[MO.getReg()]; | 
 |           if(!VRegReadTable[MO.getReg()]) { | 
 |               Times = new VRegTimes; | 
 |               VRegReadIdx[MO.getReg()] = 0; | 
 |           } | 
 |         Times->push_back(ReadTime); | 
 |       } | 
 |     } | 
 |  | 
 |   }   | 
 |  | 
 |   MBBLastInsnTime = ReadTime; | 
 |  | 
 |   for(DenseMap<unsigned, VRegTimes*, VRegKeyInfo>::iterator Reads = VRegReadTable.begin(); | 
 |       Reads != VRegReadTable.end(); ++Reads) { | 
 |       if(Reads->second) { | 
 |           DOUT << "Reads[" << Reads->first << "]=" << Reads->second->size() << "\n"; | 
 |       } | 
 |   } | 
 | } | 
 |  | 
 | /// isReadModWriteImplicitKill - True if this is an implicit kill for a | 
 | /// read/mod/write register, i.e. update partial register. | 
 | static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) { | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand& MO = MI->getOperand(i); | 
 |     if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() && | 
 |         MO.isDef() && !MO.isDead()) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// isReadModWriteImplicitDef - True if this is an implicit def for a | 
 | /// read/mod/write register, i.e. update partial register. | 
 | static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) { | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand& MO = MI->getOperand(i); | 
 |     if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() && | 
 |         !MO.isDef() && MO.isKill()) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | void RABigBlock::AllocateBasicBlock(MachineBasicBlock &MBB) { | 
 |   // loop over each instruction | 
 |   MachineBasicBlock::iterator MII = MBB.begin(); | 
 |   const TargetInstrInfo &TII = *TM->getInstrInfo(); | 
 |    | 
 |   DEBUG(const BasicBlock *LBB = MBB.getBasicBlock(); | 
 |         if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName()); | 
 |  | 
 |   // If this is the first basic block in the machine function, add live-in | 
 |   // registers as active. | 
 |   if (&MBB == &*MF->begin()) { | 
 |     for (MachineRegisterInfo::livein_iterator | 
 |          I = MF->getRegInfo().livein_begin(), | 
 |          E = MF->getRegInfo().livein_end(); I != E; ++I) { | 
 |       unsigned Reg = I->first; | 
 |       MF->getRegInfo().setPhysRegUsed(Reg); | 
 |       PhysRegsUsed[Reg] = 0;            // It is free and reserved now | 
 |       for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg); | 
 |            *AliasSet; ++AliasSet) { | 
 |         if (PhysRegsUsed[*AliasSet] != -2) { | 
 |           PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now | 
 |           MF->getRegInfo().setPhysRegUsed(*AliasSet); | 
 |         } | 
 |       } | 
 |     }     | 
 |   } | 
 |    | 
 |   // Otherwise, sequentially allocate each instruction in the MBB. | 
 |   MBBCurTime = -1; | 
 |   while (MII != MBB.end()) { | 
 |     MachineInstr *MI = MII++; | 
 |     MBBCurTime++; | 
 |     const TargetInstrDesc &TID = MI->getDesc(); | 
 |     DEBUG(DOUT << "\nTime=" << MBBCurTime << " Starting RegAlloc of: " << *MI; | 
 |           DOUT << "  Regs have values: "; | 
 |           for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i) | 
 |             if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) | 
 |                DOUT << "[" << RegInfo->getName(i) | 
 |                     << ",%reg" << PhysRegsUsed[i] << "] "; | 
 |           DOUT << "\n"); | 
 |  | 
 |     SmallVector<unsigned, 8> Kills; | 
 |     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |       MachineOperand& MO = MI->getOperand(i); | 
 |       if (MO.isReg() && MO.isKill()) { | 
 |         if (!MO.isImplicit()) | 
 |           Kills.push_back(MO.getReg()); | 
 |         else if (!isReadModWriteImplicitKill(MI, MO.getReg())) | 
 |           // These are extra physical register kills when a sub-register | 
 |           // is defined (def of a sub-register is a read/mod/write of the | 
 |           // larger registers). Ignore. | 
 |           Kills.push_back(MO.getReg()); | 
 |       } | 
 |     } | 
 |  | 
 |     // Get the used operands into registers.  This has the potential to spill | 
 |     // incoming values if we are out of registers.  Note that we completely | 
 |     // ignore physical register uses here.  We assume that if an explicit | 
 |     // physical register is referenced by the instruction, that it is guaranteed | 
 |     // to be live-in, or the input is badly hosed. | 
 |     // | 
 |     for (unsigned i = 0; i != MI->getNumOperands(); ++i) { | 
 |       MachineOperand& MO = MI->getOperand(i); | 
 |       // here we are looking for only used operands (never def&use) | 
 |       if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() && | 
 |           TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
 |         MI = reloadVirtReg(MBB, MI, i); | 
 |     } | 
 |  | 
 |     // If this instruction is the last user of this register, kill the | 
 |     // value, freeing the register being used, so it doesn't need to be | 
 |     // spilled to memory. | 
 |     // | 
 |     for (unsigned i = 0, e = Kills.size(); i != e; ++i) { | 
 |       unsigned VirtReg = Kills[i]; | 
 |       unsigned PhysReg = VirtReg; | 
 |       if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { | 
 |         // If the virtual register was never materialized into a register, it | 
 |         // might not be in the map, but it won't hurt to zero it out anyway. | 
 |         unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); | 
 |         PhysReg = PhysRegSlot; | 
 |         PhysRegSlot = 0; | 
 |       } else if (PhysRegsUsed[PhysReg] == -2) { | 
 |         // Unallocatable register dead, ignore. | 
 |         continue; | 
 |       } else { | 
 |         assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) && | 
 |                "Silently clearing a virtual register?"); | 
 |       } | 
 |  | 
 |       if (PhysReg) { | 
 |         DOUT << "  Last use of " << RegInfo->getName(PhysReg) | 
 |              << "[%reg" << VirtReg <<"], removing it from live set\n"; | 
 |         removePhysReg(PhysReg); | 
 |         for (const unsigned *AliasSet = RegInfo->getSubRegisters(PhysReg); | 
 |              *AliasSet; ++AliasSet) { | 
 |           if (PhysRegsUsed[*AliasSet] != -2) { | 
 |             DOUT  << "  Last use of " | 
 |                   << RegInfo->getName(*AliasSet) | 
 |                   << "[%reg" << VirtReg <<"], removing it from live set\n"; | 
 |             removePhysReg(*AliasSet); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Loop over all of the operands of the instruction, spilling registers that | 
 |     // are defined, and marking explicit destinations in the PhysRegsUsed map. | 
 |     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |       MachineOperand& MO = MI->getOperand(i); | 
 |       if (MO.isReg() && MO.isDef() && !MO.isImplicit() && MO.getReg() && | 
 |           TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { | 
 |         unsigned Reg = MO.getReg(); | 
 |         if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP. | 
 |         // These are extra physical register defs when a sub-register | 
 |         // is defined (def of a sub-register is a read/mod/write of the | 
 |         // larger registers). Ignore. | 
 |         if (isReadModWriteImplicitDef(MI, MO.getReg())) continue; | 
 |  | 
 |         MF->getRegInfo().setPhysRegUsed(Reg); | 
 |         spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg | 
 |         PhysRegsUsed[Reg] = 0;            // It is free and reserved now | 
 |         for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg); | 
 |              *AliasSet; ++AliasSet) { | 
 |           if (PhysRegsUsed[*AliasSet] != -2) { | 
 |             PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now | 
 |             MF->getRegInfo().setPhysRegUsed(*AliasSet); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Loop over the implicit defs, spilling them as well. | 
 |     if (TID.getImplicitDefs()) { | 
 |       for (const unsigned *ImplicitDefs = TID.getImplicitDefs(); | 
 |            *ImplicitDefs; ++ImplicitDefs) { | 
 |         unsigned Reg = *ImplicitDefs; | 
 |         if (PhysRegsUsed[Reg] != -2) { | 
 |           spillPhysReg(MBB, MI, Reg, true); | 
 |           PhysRegsUsed[Reg] = 0;            // It is free and reserved now | 
 |         } | 
 |         MF->getRegInfo().setPhysRegUsed(Reg); | 
 |         for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg); | 
 |              *AliasSet; ++AliasSet) { | 
 |           if (PhysRegsUsed[*AliasSet] != -2) { | 
 |             PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now | 
 |             MF->getRegInfo().setPhysRegUsed(*AliasSet); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     SmallVector<unsigned, 8> DeadDefs; | 
 |     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |       MachineOperand& MO = MI->getOperand(i); | 
 |       if (MO.isReg() && MO.isDead()) | 
 |         DeadDefs.push_back(MO.getReg()); | 
 |     } | 
 |  | 
 |     // Okay, we have allocated all of the source operands and spilled any values | 
 |     // that would be destroyed by defs of this instruction.  Loop over the | 
 |     // explicit defs and assign them to a register, spilling incoming values if | 
 |     // we need to scavenge a register. | 
 |     // | 
 |     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |       MachineOperand& MO = MI->getOperand(i); | 
 |       if (MO.isReg() && MO.isDef() && MO.getReg() && | 
 |           TargetRegisterInfo::isVirtualRegister(MO.getReg())) { | 
 |         unsigned DestVirtReg = MO.getReg(); | 
 |         unsigned DestPhysReg; | 
 |  | 
 |         // If DestVirtReg already has a value, use it. | 
 |         if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) | 
 |           DestPhysReg = chooseReg(MBB, MI, DestVirtReg); | 
 |         MF->getRegInfo().setPhysRegUsed(DestPhysReg); | 
 |         markVirtRegModified(DestVirtReg); | 
 |         MI->getOperand(i).setReg(DestPhysReg);  // Assign the output register | 
 |       } | 
 |     } | 
 |  | 
 |     // If this instruction defines any registers that are immediately dead, | 
 |     // kill them now. | 
 |     // | 
 |     for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) { | 
 |       unsigned VirtReg = DeadDefs[i]; | 
 |       unsigned PhysReg = VirtReg; | 
 |       if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { | 
 |         unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); | 
 |         PhysReg = PhysRegSlot; | 
 |         assert(PhysReg != 0); | 
 |         PhysRegSlot = 0; | 
 |       } else if (PhysRegsUsed[PhysReg] == -2) { | 
 |         // Unallocatable register dead, ignore. | 
 |         continue; | 
 |       } | 
 |  | 
 |       if (PhysReg) { | 
 |         DOUT  << "  Register " << RegInfo->getName(PhysReg) | 
 |               << " [%reg" << VirtReg | 
 |               << "] is never used, removing it from live set\n"; | 
 |         removePhysReg(PhysReg); | 
 |         for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); | 
 |              *AliasSet; ++AliasSet) { | 
 |           if (PhysRegsUsed[*AliasSet] != -2) { | 
 |             DOUT  << "  Register " << RegInfo->getName(*AliasSet) | 
 |                   << " [%reg" << *AliasSet | 
 |                   << "] is never used, removing it from live set\n"; | 
 |             removePhysReg(*AliasSet); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |      | 
 |     // Finally, if this is a noop copy instruction, zap it. | 
 |     unsigned SrcReg, DstReg, SrcSubReg, DstSubReg; | 
 |     if (TII.isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg) && | 
 |         SrcReg == DstReg) | 
 |       MBB.erase(MI); | 
 |   } | 
 |  | 
 |   MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); | 
 |  | 
 |   // Spill all physical registers holding virtual registers now. | 
 |   for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) | 
 |     if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) { | 
 |       if (unsigned VirtReg = PhysRegsUsed[i]) | 
 |         spillVirtReg(MBB, MI, VirtReg, i); | 
 |       else | 
 |         removePhysReg(i); | 
 |     } | 
 | } | 
 |  | 
 | /// runOnMachineFunction - Register allocate the whole function | 
 | /// | 
 | bool RABigBlock::runOnMachineFunction(MachineFunction &Fn) { | 
 |   DOUT << "Machine Function " << "\n"; | 
 |   MF = &Fn; | 
 |   TM = &Fn.getTarget(); | 
 |   RegInfo = TM->getRegisterInfo(); | 
 |  | 
 |   PhysRegsUsed.assign(RegInfo->getNumRegs(), -1); | 
 |    | 
 |   // At various places we want to efficiently check to see whether a register | 
 |   // is allocatable.  To handle this, we mark all unallocatable registers as | 
 |   // being pinned down, permanently. | 
 |   { | 
 |     BitVector Allocable = RegInfo->getAllocatableSet(Fn); | 
 |     for (unsigned i = 0, e = Allocable.size(); i != e; ++i) | 
 |       if (!Allocable[i]) | 
 |         PhysRegsUsed[i] = -2;  // Mark the reg unallocable. | 
 |   } | 
 |  | 
 |   // initialize the virtual->physical register map to have a 'null' | 
 |   // mapping for all virtual registers | 
 |   Virt2PhysRegMap.grow(MF->getRegInfo().getLastVirtReg()); | 
 |   StackSlotForVirtReg.grow(MF->getRegInfo().getLastVirtReg()); | 
 |   VirtRegModified.resize(MF->getRegInfo().getLastVirtReg() -  | 
 |                          TargetRegisterInfo::FirstVirtualRegister + 1, 0); | 
 |  | 
 |   // Loop over all of the basic blocks, eliminating virtual register references | 
 |   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); | 
 |        MBB != MBBe; ++MBB) { | 
 |     // fill out the read timetable  | 
 |     FillVRegReadTable(*MBB); | 
 |     // use it to allocate the BB | 
 |     AllocateBasicBlock(*MBB); | 
 |     // clear it | 
 |     VRegReadTable.clear(); | 
 |   } | 
 |    | 
 |   StackSlotForVirtReg.clear(); | 
 |   PhysRegsUsed.clear(); | 
 |   VirtRegModified.clear(); | 
 |   Virt2PhysRegMap.clear(); | 
 |   return true; | 
 | } | 
 |  | 
 | FunctionPass *llvm::createBigBlockRegisterAllocator() { | 
 |   return new RABigBlock(); | 
 | } | 
 |  |