* Add code to reduce multiplies by constant integers to shifts, adds and
subtracts. This is a very rough and nasty implementation of Lefevre's
"pattern finding" algorithm. With a few small changes though, it should
end up beating most other methods in common use, regardless of the size
of the constant (currently, it's often one or two shifts worse)
TODO: rewrite it so it's not hideously ugly (this is a translation from
perl, which doesn't help ;)
bypass most of it for multiplies by 2^n+1
(eventually) teach it that some combinations of shift+add are
cheaper than others (e.g. shladd on ia64, scaled adds on alpha)
get it to try multiple booth encodings in search of the cheapest
routine
make it work for negative constants
This is hacked up as a DAG->DAG transform, so once I clean it up I hope
it'll be pulled out of here and put somewhere else. The only thing backends
should really have to worry about for now is where to draw the line
between using this code vs. going ahead and doing an integer multiply
anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21560 91177308-0d34-0410-b5e6-96231b3b80d8
1 file changed