Hexagon backend support

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146412 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/Hexagon/HexagonHardwareLoops.cpp b/lib/Target/Hexagon/HexagonHardwareLoops.cpp
new file mode 100644
index 0000000..c1abc4a
--- /dev/null
+++ b/lib/Target/Hexagon/HexagonHardwareLoops.cpp
@@ -0,0 +1,644 @@
+//===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass identifies loops where we can generate the Hexagon hardware
+// loop instruction.  The hardware loop can perform loop branches with a
+// zero-cycle overhead.
+//
+// The pattern that defines the induction variable can changed depending on
+// prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
+// normalizes induction variables, and the Loop Strength Reduction pass
+// run by 'llc' may also make changes to the induction variable.
+// The pattern detected by this phase is due to running Strength Reduction.
+//
+// Criteria for hardware loops:
+//  - Countable loops (w/ ind. var for a trip count)
+//  - Assumes loops are normalized by IndVarSimplify
+//  - Try inner-most loops first
+//  - No nested hardware loops.
+//  - No function calls in loops.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "hwloops"
+#include "llvm/Constants.h"
+#include "llvm/PassSupport.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include <algorithm>
+#include "Hexagon.h"
+#include "HexagonTargetMachine.h"
+
+using namespace llvm;
+
+STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
+
+namespace {
+  class CountValue;
+  struct HexagonHardwareLoops : public MachineFunctionPass {
+    MachineLoopInfo       *MLI;
+    MachineRegisterInfo   *MRI;
+    const TargetInstrInfo *TII;
+
+  public:
+    static char ID;   // Pass identification, replacement for typeid
+
+    HexagonHardwareLoops() : MachineFunctionPass(ID) {}
+
+    virtual bool runOnMachineFunction(MachineFunction &MF);
+
+    const char *getPassName() const { return "Hexagon Hardware Loops"; }
+
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.setPreservesCFG();
+      AU.addRequired<MachineDominatorTree>();
+      AU.addPreserved<MachineDominatorTree>();
+      AU.addRequired<MachineLoopInfo>();
+      AU.addPreserved<MachineLoopInfo>();
+      MachineFunctionPass::getAnalysisUsage(AU);
+    }
+
+  private:
+    /// getCanonicalInductionVariable - Check to see if the loop has a canonical
+    /// induction variable.
+    /// Should be defined in MachineLoop. Based upon version in class Loop.
+    const MachineInstr *getCanonicalInductionVariable(MachineLoop *L) const;
+
+    /// getTripCount - Return a loop-invariant LLVM register indicating the
+    /// number of times the loop will be executed.  If the trip-count cannot
+    /// be determined, this return null.
+    CountValue *getTripCount(MachineLoop *L) const;
+
+    /// isInductionOperation - Return true if the instruction matches the
+    /// pattern for an opertion that defines an induction variable.
+    bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const;
+
+    /// isInvalidOperation - Return true if the instruction is not valid within
+    /// a hardware loop.
+    bool isInvalidLoopOperation(const MachineInstr *MI) const;
+
+    /// containsInavlidInstruction - Return true if the loop contains an
+    /// instruction that inhibits using the hardware loop.
+    bool containsInvalidInstruction(MachineLoop *L) const;
+
+    /// converToHardwareLoop - Given a loop, check if we can convert it to a
+    /// hardware loop.  If so, then perform the conversion and return true.
+    bool convertToHardwareLoop(MachineLoop *L);
+
+  };
+
+  char HexagonHardwareLoops::ID = 0;
+
+
+  // CountValue class - Abstraction for a trip count of a loop. A
+  // smaller vesrsion of the MachineOperand class without the concerns
+  // of changing the operand representation.
+  class CountValue {
+  public:
+    enum CountValueType {
+      CV_Register,
+      CV_Immediate
+    };
+  private:
+    CountValueType Kind;
+    union Values {
+      unsigned RegNum;
+      int64_t ImmVal;
+      Values(unsigned r) : RegNum(r) {}
+      Values(int64_t i) : ImmVal(i) {}
+    } Contents;
+    bool isNegative;
+
+  public:
+    CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r),
+                                       isNegative(neg) {}
+    explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i),
+                                     isNegative(i < 0) {}
+    CountValueType getType() const { return Kind; }
+    bool isReg() const { return Kind == CV_Register; }
+    bool isImm() const { return Kind == CV_Immediate; }
+    bool isNeg() const { return isNegative; }
+
+    unsigned getReg() const {
+      assert(isReg() && "Wrong CountValue accessor");
+      return Contents.RegNum;
+    }
+    void setReg(unsigned Val) {
+      Contents.RegNum = Val;
+    }
+    int64_t getImm() const {
+      assert(isImm() && "Wrong CountValue accessor");
+      if (isNegative) {
+        return -Contents.ImmVal;
+      }
+      return Contents.ImmVal;
+    }
+    void setImm(int64_t Val) {
+      Contents.ImmVal = Val;
+    }
+
+    void print(raw_ostream &OS, const TargetMachine *TM = 0) const {
+      if (isReg()) { OS << PrintReg(getReg()); }
+      if (isImm()) { OS << getImm(); }
+    }
+  };
+
+  struct HexagonFixupHwLoops : public MachineFunctionPass {
+  public:
+    static char ID;     // Pass identification, replacement for typeid.
+
+    HexagonFixupHwLoops() : MachineFunctionPass(ID) {}
+
+    virtual bool runOnMachineFunction(MachineFunction &MF);
+
+    const char *getPassName() const { return "Hexagon Hardware Loop Fixup"; }
+
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.setPreservesCFG();
+      MachineFunctionPass::getAnalysisUsage(AU);
+    }
+
+  private:
+    /// Maximum distance between the loop instr and the basic block.
+    /// Just an estimate.
+    static const unsigned MAX_LOOP_DISTANCE = 200;
+
+    /// fixupLoopInstrs - Check the offset between each loop instruction and
+    /// the loop basic block to determine if we can use the LOOP instruction
+    /// or if we need to set the LC/SA registers explicitly.
+    bool fixupLoopInstrs(MachineFunction &MF);
+
+    /// convertLoopInstr - Add the instruction to set the LC and SA registers
+    /// explicitly.
+    void convertLoopInstr(MachineFunction &MF,
+                          MachineBasicBlock::iterator &MII,
+                          RegScavenger &RS);
+
+  };
+
+  char HexagonFixupHwLoops::ID = 0;
+
+} // end anonymous namespace
+
+
+/// isHardwareLoop - Returns true if the instruction is a hardware loop
+/// instruction.
+static bool isHardwareLoop(const MachineInstr *MI) {
+  return MI->getOpcode() == Hexagon::LOOP0_r ||
+    MI->getOpcode() == Hexagon::LOOP0_i;
+}
+
+/// isCompareEquals - Returns true if the instruction is a compare equals
+/// instruction with an immediate operand.
+static bool isCompareEqualsImm(const MachineInstr *MI) {
+  return MI->getOpcode() == Hexagon::CMPEQri;
+}
+
+
+/// createHexagonHardwareLoops - Factory for creating
+/// the hardware loop phase.
+FunctionPass *llvm::createHexagonHardwareLoops() {
+  return new HexagonHardwareLoops();
+}
+
+
+bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
+  DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
+
+  bool Changed = false;
+
+  // get the loop information
+  MLI = &getAnalysis<MachineLoopInfo>();
+  // get the register information
+  MRI = &MF.getRegInfo();
+  // the target specific instructio info.
+  TII = MF.getTarget().getInstrInfo();
+
+  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
+       I != E; ++I) {
+    MachineLoop *L = *I;
+    if (!L->getParentLoop()) {
+      Changed |= convertToHardwareLoop(L);
+    }
+  }
+
+  return Changed;
+}
+
+/// getCanonicalInductionVariable - Check to see if the loop has a canonical
+/// induction variable. We check for a simple recurrence pattern - an
+/// integer recurrence that decrements by one each time through the loop and
+/// ends at zero.  If so, return the phi node that corresponds to it.
+///
+/// Based upon the similar code in LoopInfo except this code is specific to
+/// the machine.
+/// This method assumes that the IndVarSimplify pass has been run by 'opt'.
+///
+const MachineInstr
+*HexagonHardwareLoops::getCanonicalInductionVariable(MachineLoop *L) const {
+  MachineBasicBlock *TopMBB = L->getTopBlock();
+  MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
+  assert(PI != TopMBB->pred_end() &&
+         "Loop must have more than one incoming edge!");
+  MachineBasicBlock *Backedge = *PI++;
+  if (PI == TopMBB->pred_end()) return 0;  // dead loop
+  MachineBasicBlock *Incoming = *PI++;
+  if (PI != TopMBB->pred_end()) return 0;  // multiple backedges?
+
+  // make sure there is one incoming and one backedge and determine which
+  // is which.
+  if (L->contains(Incoming)) {
+    if (L->contains(Backedge))
+      return 0;
+    std::swap(Incoming, Backedge);
+  } else if (!L->contains(Backedge))
+    return 0;
+
+  // Loop over all of the PHI nodes, looking for a canonical induction variable:
+  //   - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2".
+  //   - The recurrence comes from the backedge.
+  //   - the definition is an induction operatio.n
+  for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end();
+       I != E && I->isPHI(); ++I) {
+    const MachineInstr *MPhi = &*I;
+    unsigned DefReg = MPhi->getOperand(0).getReg();
+    for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
+      // Check each operand for the value from the backedge.
+      MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB();
+      if (L->contains(MBB)) { // operands comes from the backedge
+        // Check if the definition is an induction operation.
+        const MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg());
+        if (isInductionOperation(DI, DefReg)) {
+          return MPhi;
+        }
+      }
+    }
+  }
+  return 0;
+}
+
+/// getTripCount - Return a loop-invariant LLVM value indicating the
+/// number of times the loop will be executed.  The trip count can
+/// be either a register or a constant value.  If the trip-count
+/// cannot be determined, this returns null.
+///
+/// We find the trip count from the phi instruction that defines the
+/// induction variable.  We follow the links to the CMP instruction
+/// to get the trip count.
+///
+/// Based upon getTripCount in LoopInfo.
+///
+CountValue *HexagonHardwareLoops::getTripCount(MachineLoop *L) const {
+  // Check that the loop has a induction variable.
+  const MachineInstr *IV_Inst = getCanonicalInductionVariable(L);
+  if (IV_Inst == 0) return 0;
+
+  // Canonical loops will end with a 'cmpeq_ri IV, Imm',
+  //  if Imm is 0, get the count from the PHI opnd
+  //  if Imm is -M, than M is the count
+  //  Otherwise, Imm is the count
+  const MachineOperand *IV_Opnd;
+  const MachineOperand *InitialValue;
+  if (!L->contains(IV_Inst->getOperand(2).getMBB())) {
+    InitialValue = &IV_Inst->getOperand(1);
+    IV_Opnd = &IV_Inst->getOperand(3);
+  } else {
+    InitialValue = &IV_Inst->getOperand(3);
+    IV_Opnd = &IV_Inst->getOperand(1);
+  }
+
+  // Look for the cmp instruction to determine if we
+  // can get a useful trip count.  The trip count can
+  // be either a register or an immediate.  The location
+  // of the value depends upon the type (reg or imm).
+  while ((IV_Opnd = IV_Opnd->getNextOperandForReg())) {
+    const MachineInstr *MI = IV_Opnd->getParent();
+    if (L->contains(MI) && isCompareEqualsImm(MI)) {
+      const MachineOperand &MO = MI->getOperand(2);
+      assert(MO.isImm() && "IV Cmp Operand should be 0");
+      int64_t ImmVal = MO.getImm();
+
+      const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg());
+      assert(L->contains(IV_DefInstr->getParent()) &&
+             "IV definition should occurs in loop");
+      int64_t iv_value = IV_DefInstr->getOperand(2).getImm();
+
+      if (ImmVal == 0) {
+        // Make sure the induction variable changes by one on each iteration.
+        if (iv_value != 1 && iv_value != -1) {
+          return 0;
+        }
+        return new CountValue(InitialValue->getReg(), iv_value > 0);
+      } else {
+        assert(InitialValue->isReg() && "Expecting register for init value");
+        const MachineInstr *DefInstr = MRI->getVRegDef(InitialValue->getReg());
+        if (DefInstr && DefInstr->getOpcode() == Hexagon::TFRI) {
+          int64_t count = ImmVal - DefInstr->getOperand(1).getImm();
+          if ((count % iv_value) != 0) {
+            return 0;
+          }
+          return new CountValue(count/iv_value);
+        }
+      }
+    }
+  }
+  return 0;
+}
+
+/// isInductionOperation - return true if the operation is matches the
+/// pattern that defines an induction variable:
+///    add iv, c
+///
+bool
+HexagonHardwareLoops::isInductionOperation(const MachineInstr *MI,
+                                           unsigned IVReg) const {
+  return (MI->getOpcode() ==
+          Hexagon::ADD_ri && MI->getOperand(1).getReg() == IVReg);
+}
+
+/// isInvalidOperation - Return true if the operation is invalid within
+/// hardware loop.
+bool
+HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI) const {
+
+  // call is not allowed because the callee may use a hardware loop
+  if (MI->getDesc().isCall()) {
+    return true;
+  }
+  // do not allow nested hardware loops
+  if (isHardwareLoop(MI)) {
+    return true;
+  }
+  // check if the instruction defines a hardware loop register
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    const MachineOperand &MO = MI->getOperand(i);
+    if (MO.isReg() && MO.isDef() &&
+        (MO.getReg() == Hexagon::LC0 || MO.getReg() == Hexagon::LC1 ||
+         MO.getReg() == Hexagon::SA0 || MO.getReg() == Hexagon::SA0)) {
+      return true;
+    }
+  }
+  return false;
+}
+
+/// containsInvalidInstruction - Return true if the loop contains
+/// an instruction that inhibits the use of the hardware loop function.
+///
+bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const {
+  const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
+  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
+    MachineBasicBlock *MBB = Blocks[i];
+    for (MachineBasicBlock::iterator
+           MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
+      const MachineInstr *MI = &*MII;
+      if (isInvalidLoopOperation(MI)) {
+        return true;
+      }
+    }
+  }
+  return false;
+}
+
+/// converToHardwareLoop - check if the loop is a candidate for
+/// converting to a hardware loop.  If so, then perform the
+/// transformation.
+///
+/// This function works on innermost loops first.  A loop can
+/// be converted if it is a counting loop; either a register
+/// value or an immediate.
+///
+/// The code makes several assumptions about the representation
+/// of the loop in llvm.
+bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
+  bool Changed = false;
+  // Process nested loops first.
+  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
+    Changed |= convertToHardwareLoop(*I);
+  }
+  // If a nested loop has been converted, then we can't convert this loop.
+  if (Changed) {
+    return Changed;
+  }
+  // Are we able to determine the trip count for the loop?
+  CountValue *TripCount = getTripCount(L);
+  if (TripCount == 0) {
+    return false;
+  }
+  // Does the loop contain any invalid instructions?
+  if (containsInvalidInstruction(L)) {
+    return false;
+  }
+  MachineBasicBlock *Preheader = L->getLoopPreheader();
+  // No preheader means there's not place for the loop instr.
+  if (Preheader == 0) {
+    return false;
+  }
+  MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
+
+  MachineBasicBlock *LastMBB = L->getExitingBlock();
+  // Don't generate hw loop if the loop has more than one exit.
+  if (LastMBB == 0) {
+    return false;
+  }
+  MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
+
+  // Determine the loop start.
+  MachineBasicBlock *LoopStart = L->getTopBlock();
+  if (L->getLoopLatch() != LastMBB) {
+    // When the exit and latch are not the same, use the latch block as the
+    // start.
+    // The loop start address is used only after the 1st iteration, and the loop
+    // latch may contains instrs. that need to be executed after the 1st iter.
+    LoopStart = L->getLoopLatch();
+    // Make sure the latch is a successor of the exit, otherwise it won't work.
+    if (!LastMBB->isSuccessor(LoopStart)) {
+      return false;
+    }
+  }
+
+  // Convert the loop to a hardware loop
+  DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
+
+  if (TripCount->isReg()) {
+    // Create a copy of the loop count register.
+    MachineFunction *MF = LastMBB->getParent();
+    const TargetRegisterClass *RC =
+      MF->getRegInfo().getRegClass(TripCount->getReg());
+    unsigned CountReg = MF->getRegInfo().createVirtualRegister(RC);
+    BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
+            TII->get(TargetOpcode::COPY), CountReg).addReg(TripCount->getReg());
+    if (TripCount->isNeg()) {
+      unsigned CountReg1 = CountReg;
+      CountReg = MF->getRegInfo().createVirtualRegister(RC);
+      BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
+              TII->get(Hexagon::NEG), CountReg).addReg(CountReg1);
+    }
+
+    // Add the Loop instruction to the begining of the loop.
+    BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
+            TII->get(Hexagon::LOOP0_r)).addMBB(LoopStart).addReg(CountReg);
+  } else {
+    assert(TripCount->isImm() && "Expecting immedate vaule for trip count");
+    // Add the Loop immediate instruction to the beginning of the loop.
+    int64_t CountImm = TripCount->getImm();
+    BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
+            TII->get(Hexagon::LOOP0_i)).addMBB(LoopStart).addImm(CountImm);
+  }
+
+  // Make sure the loop start always has a reference in the CFG.  We need to
+  // create a BlockAddress operand to get this mechanism to work both the
+  // MachineBasicBlock and BasicBlock objects need the flag set.
+  LoopStart->setHasAddressTaken();
+  // This line is needed to set the hasAddressTaken flag on the BasicBlock
+  // object
+  BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
+
+  // Replace the loop branch with an endloop instruction.
+  DebugLoc dl = LastI->getDebugLoc();
+  BuildMI(*LastMBB, LastI, dl, TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart);
+
+  // The loop ends with either:
+  //  - a conditional branch followed by an unconditional branch, or
+  //  - a conditional branch to the loop start.
+  if (LastI->getOpcode() == Hexagon::JMP_Pred ||
+      LastI->getOpcode() == Hexagon::JMP_PredNot) {
+    // delete one and change/add an uncond. branch to out of the loop
+    MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
+    LastI = LastMBB->erase(LastI);
+    if (!L->contains(BranchTarget)) {
+      if (LastI != LastMBB->end()) {
+        TII->RemoveBranch(*LastMBB);
+      }
+      SmallVector<MachineOperand, 0> Cond;
+      TII->InsertBranch(*LastMBB, BranchTarget, 0, Cond, dl);
+    }
+  } else {
+    // Conditional branch to loop start; just delete it.
+    LastMBB->erase(LastI);
+  }
+  delete TripCount;
+
+  ++NumHWLoops;
+  return true;
+}
+
+/// createHexagonFixupHwLoops - Factory for creating the hardware loop
+/// phase.
+FunctionPass *llvm::createHexagonFixupHwLoops() {
+  return new HexagonFixupHwLoops();
+}
+
+bool HexagonFixupHwLoops::runOnMachineFunction(MachineFunction &MF) {
+  DEBUG(dbgs() << "****** Hexagon Hardware Loop Fixup ******\n");
+
+  bool Changed = fixupLoopInstrs(MF);
+  return Changed;
+}
+
+/// fixupLoopInsts - For Hexagon, if the loop label is to far from the
+/// loop instruction then we need to set the LC0 and SA0 registers
+/// explicitly instead of using LOOP(start,count).  This function
+/// checks the distance, and generates register assignments if needed.
+///
+/// This function makes two passes over the basic blocks.  The first
+/// pass computes the offset of the basic block from the start.
+/// The second pass checks all the loop instructions.
+bool HexagonFixupHwLoops::fixupLoopInstrs(MachineFunction &MF) {
+
+  // Offset of the current instruction from the start.
+  unsigned InstOffset = 0;
+  // Map for each basic block to it's first instruction.
+  DenseMap<MachineBasicBlock*, unsigned> BlockToInstOffset;
+
+  // First pass - compute the offset of each basic block.
+  for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
+       MBB != MBBe; ++MBB) {
+    BlockToInstOffset[MBB] = InstOffset;
+    InstOffset += (MBB->size() * 4);
+  }
+
+  // Second pass - check each loop instruction to see if it needs to
+  // be converted.
+  InstOffset = 0;
+  bool Changed = false;
+  RegScavenger RS;
+
+  // Loop over all the basic blocks.
+  for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
+       MBB != MBBe; ++MBB) {
+    InstOffset = BlockToInstOffset[MBB];
+    RS.enterBasicBlock(MBB);
+
+    // Loop over all the instructions.
+    MachineBasicBlock::iterator MIE = MBB->end();
+    MachineBasicBlock::iterator MII = MBB->begin();
+    while (MII != MIE) {
+      if (isHardwareLoop(MII)) {
+        RS.forward(MII);
+        assert(MII->getOperand(0).isMBB() &&
+               "Expect a basic block as loop operand");
+        int diff = InstOffset - BlockToInstOffset[MII->getOperand(0).getMBB()];
+        diff = (diff > 0 ? diff : -diff);
+        if ((unsigned)diff > MAX_LOOP_DISTANCE) {
+          // Convert to explicity setting LC0 and SA0.
+          convertLoopInstr(MF, MII, RS);
+          MII = MBB->erase(MII);
+          Changed = true;
+        } else {
+          ++MII;
+        }
+      } else {
+        ++MII;
+      }
+      InstOffset += 4;
+    }
+  }
+
+  return Changed;
+
+}
+
+/// convertLoopInstr - convert a loop instruction to a sequence of instructions
+/// that set the lc and sa register explicitly.
+void HexagonFixupHwLoops::convertLoopInstr(MachineFunction &MF,
+                                           MachineBasicBlock::iterator &MII,
+                                           RegScavenger &RS) {
+  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+  MachineBasicBlock *MBB = MII->getParent();
+  DebugLoc DL = MII->getDebugLoc();
+  unsigned Scratch = RS.scavengeRegister(Hexagon::IntRegsRegisterClass, MII, 0);
+
+  // First, set the LC0 with the trip count.
+  if (MII->getOperand(1).isReg()) {
+    // Trip count is a register
+    BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
+      .addReg(MII->getOperand(1).getReg());
+  } else {
+    // Trip count is an immediate.
+    BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFRI), Scratch)
+      .addImm(MII->getOperand(1).getImm());
+    BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
+      .addReg(Scratch);
+  }
+  // Then, set the SA0 with the loop start address.
+  BuildMI(*MBB, MII, DL, TII->get(Hexagon::CONST32_Label), Scratch)
+    .addMBB(MII->getOperand(0).getMBB());
+  BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::SA0).addReg(Scratch);
+}