Initial checkin of "local" register allocator.  Bugs are still present.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5078 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/RegAllocLocal.cpp b/lib/CodeGen/RegAllocLocal.cpp
new file mode 100644
index 0000000..a372390
--- /dev/null
+++ b/lib/CodeGen/RegAllocLocal.cpp
@@ -0,0 +1,490 @@
+//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
+//
+// This register allocator allocates registers to a basic block at a time,
+// attempting to keep values in registers and reusing registers as appropriate.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/Target/MachineInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "Support/Statistic.h"
+#include <iostream>
+
+/// PhysRegClassMap - Construct a mapping of physical register numbers to their
+/// register classes.
+///
+/// NOTE: This class will eventually be pulled out to somewhere shared.
+///
+class PhysRegClassMap {
+  std::map<unsigned, const TargetRegisterClass*> PhysReg2RegClassMap;
+public:
+  PhysRegClassMap(const MRegisterInfo *RI) {
+    for (MRegisterInfo::const_iterator I = RI->regclass_begin(),
+           E = RI->regclass_end(); I != E; ++I)
+      for (unsigned i=0; i < (*I)->getNumRegs(); ++i)
+        PhysReg2RegClassMap[(*I)->getRegister(i)] = *I;
+  }
+
+  const TargetRegisterClass *operator[](unsigned Reg) {
+    assert(PhysReg2RegClassMap[Reg] && "Register is not a known physreg!");
+    return PhysReg2RegClassMap[Reg];
+  }
+
+  const TargetRegisterClass *get(unsigned Reg) { return operator[](Reg); }
+};
+
+namespace {
+  Statistic<> NumSpilled ("ra-local", "Number of registers spilled");
+  Statistic<> NumReloaded("ra-local", "Number of registers reloaded");
+
+  class RA : public FunctionPass {
+    TargetMachine &TM;
+    MachineFunction *MF;
+    const MRegisterInfo *RegInfo;
+    unsigned NumBytesAllocated;
+    PhysRegClassMap PhysRegClasses;
+    
+    // Maps SSA Regs => offsets on the stack where these values are stored
+    std::map<unsigned, unsigned> VirtReg2OffsetMap;
+
+    // Virt2PhysRegMap - This map contains entries for each virtual register
+    // that is currently available in a physical register.
+    //
+    std::map<unsigned, unsigned> Virt2PhysRegMap;
+    
+    // PhysRegsUsed - This map contains entries for each physical register that
+    // currently has a value (ie, it is in Virt2PhysRegMap).  The value mapped
+    // to is the virtual register corresponding to the physical register (the
+    // inverse of the Virt2PhysRegMap), or 0.  The value is set to 0 if this
+    // register is pinned because it is used by a future instruction.
+    //
+    std::map<unsigned, unsigned> PhysRegsUsed;
+
+    // PhysRegsUseOrder - This contains a list of the physical registers that
+    // currently have a virtual register value in them.  This list provides an
+    // ordering of registers, imposing a reallocation order.  This list is only
+    // used if all registers are allocated and we have to spill one, in which
+    // case we spill the least recently used register.  Entries at the front of
+    // the list are the least recently used registers, entries at the back are
+    // the most recently used.
+    //
+    std::vector<unsigned> PhysRegsUseOrder;
+
+    void MarkPhysRegRecentlyUsed(unsigned Reg) {
+      assert(std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg) !=
+             PhysRegsUseOrder.end() && "Register isn't used yet!");
+      if (PhysRegsUseOrder.back() != Reg) {
+        for (unsigned i = PhysRegsUseOrder.size(); ; --i)
+          if (PhysRegsUseOrder[i-1] == Reg) {  // remove from middle
+            PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
+            PhysRegsUseOrder.push_back(Reg);  // Add it to the end of the list
+            return;
+          }
+      }
+    }
+
+  public:
+
+    RA(TargetMachine &tm)
+      : TM(tm), RegInfo(tm.getRegisterInfo()), PhysRegClasses(RegInfo) {
+      cleanupAfterFunction();
+    }
+
+    bool runOnFunction(Function &Fn) {
+      return runOnMachineFunction(MachineFunction::get(&Fn));
+    }
+
+    virtual const char *getPassName() const {
+      return "Local Register Allocator";
+    }
+
+  private:
+    /// runOnMachineFunction - Register allocate the whole function
+    bool runOnMachineFunction(MachineFunction &Fn);
+
+    /// AllocateBasicBlock - Register allocate the specified basic block.
+    void AllocateBasicBlock(MachineBasicBlock &MBB);
+
+    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
+    /// in predecessor basic blocks.
+    void EliminatePHINodes(MachineBasicBlock &MBB);
+
+
+    /// getStackSpaceFor - This returns the offset of the specified virtual
+    /// register on the stack, allocating space if neccesary.
+    unsigned getStackSpaceFor(unsigned VirtReg, 
+                              const TargetRegisterClass *regClass);
+
+    void cleanupAfterFunction() {
+      VirtReg2OffsetMap.clear();
+      NumBytesAllocated = 4;   // FIXME: This is X86 specific
+    }
+
+
+    /// spillVirtReg - This method spills the value specified by PhysReg into
+    /// the virtual register slot specified by VirtReg.  It then updates the RA
+    /// data structures to indicate the fact that PhysReg is now available.
+    ///
+    void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
+                      unsigned VirtReg, unsigned PhysReg);
+
+    void AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
+
+    
+    /// getFreeReg - Find a physical register to hold the specified virtual
+    /// register.  If all compatible physical registers are used, this method
+    /// spills the last used virtual register to the stack, and uses that
+    /// register.
+    ///
+    unsigned getFreeReg(MachineBasicBlock &MBB,
+                        MachineBasicBlock::iterator &I,
+                        unsigned virtualReg);
+
+    /// reloadVirtReg - This method loads the specified virtual register into a
+    /// physical register, returning the physical register chosen.  This updates
+    /// the regalloc data structures to reflect the fact that the virtual reg is
+    /// now alive in a physical register, and the previous one isn't.
+    ///
+    unsigned reloadVirtReg(MachineBasicBlock &MBB,
+                           MachineBasicBlock::iterator &I, unsigned VirtReg);
+  };
+
+}
+
+/// getStackSpaceFor - This allocates space for the specified virtual
+/// register to be held on the stack.
+unsigned RA::getStackSpaceFor(unsigned VirtReg,
+                              const TargetRegisterClass *RegClass) {
+  // Find the location VirtReg would belong...
+  std::map<unsigned, unsigned>::iterator I =
+    VirtReg2OffsetMap.lower_bound(VirtReg);
+
+  if (I != VirtReg2OffsetMap.end() && I->first == VirtReg)
+    return I->second;          // Already has space allocated?
+
+  unsigned RegSize = RegClass->getDataSize();
+
+  // Align NumBytesAllocated.  We should be using TargetData alignment stuff
+  // to determine this, but we don't know the LLVM type associated with the
+  // virtual register.  Instead, just align to a multiple of the size for now.
+  NumBytesAllocated += RegSize-1;
+  NumBytesAllocated = NumBytesAllocated/RegSize*RegSize;
+  
+  // Assign the slot...
+  VirtReg2OffsetMap.insert(I, std::make_pair(VirtReg, NumBytesAllocated));
+  
+  // Reserve the space!
+  NumBytesAllocated += RegSize;
+  return NumBytesAllocated-RegSize;
+}
+
+/// spillVirtReg - This method spills the value specified by PhysReg into the
+/// virtual register slot specified by VirtReg.  It then updates the RA data
+/// structures to indicate the fact that PhysReg is now available.
+///
+void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
+                      unsigned VirtReg, unsigned PhysReg) {
+  // If this is just a marker register, we don't need to spill it.
+  if (VirtReg != 0) {
+    const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg);
+    unsigned stackOffset = getStackSpaceFor(VirtReg, RegClass);
+
+    // Add move instruction(s)
+    I = RegInfo->storeReg2RegOffset(MBB, I, PhysReg, RegInfo->getFramePointer(),
+                                    -stackOffset, RegClass->getDataSize());
+    ++NumSpilled;   // Update statistics
+    Virt2PhysRegMap.erase(VirtReg);   // VirtReg no longer available
+  }
+  PhysRegsUsed.erase(PhysReg);      // PhyReg no longer used
+
+  std::vector<unsigned>::iterator It =
+    std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
+  assert(It != PhysRegsUseOrder.end() &&
+         "Spilled a physical register, but it was not in use list!");
+  PhysRegsUseOrder.erase(It);
+}
+
+/// getFreeReg - Find a physical register to hold the specified virtual
+/// register.  If all compatible physical registers are used, this method spills
+/// the last used virtual register to the stack, and uses that register.
+///
+unsigned RA::getFreeReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
+                        unsigned VirtReg) {
+  const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg);
+  unsigned PhysReg = 0;
+  
+  for (TargetRegisterClass::iterator It = RegClass->begin(),E = RegClass->end();
+       It != E; ++It) {
+    unsigned R = *It;
+    if (PhysRegsUsed.find(R) == PhysRegsUsed.end())   // Is reg unused?
+      /// FIXME: Hack
+      if (R != RegInfo->getFramePointer() && R != RegInfo->getStackPointer() &&
+          R != 13 && R != 14) {
+        // Found an unused register!
+        PhysReg = R;
+        break;
+      }
+  }
+
+  // If we didn't find an unused register, scavange one now!
+  if (PhysReg == 0) {
+    unsigned i = 0;
+    while (PhysRegClasses[PhysRegsUseOrder[i]] != RegClass) {
+      ++i;
+      assert(i != PhysRegsUseOrder.size() &&
+             "Couldn't find a register of the appropriate class!");
+    }
+
+    // At this point PhysRegsUseOrder[i] is the least recently used register of
+    // compatible register class.  Spill it to memory and reap its remains.
+    PhysReg = PhysRegsUseOrder[i];
+    spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
+  }
+
+  // Now that we know which register we need to assign this to, do it now!
+  AssignVirtToPhysReg(VirtReg, PhysReg);
+  return PhysReg;
+}
+
+void RA::AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
+  assert(PhysRegsUsed.find(PhysReg) == PhysRegsUsed.end() &&
+         "Phys reg already assigned!");
+  // Update information to note the fact that this register was just used, and
+  // it holds VirtReg.
+  PhysRegsUsed[PhysReg] = VirtReg;
+  Virt2PhysRegMap[VirtReg] = PhysReg;
+  PhysRegsUseOrder.push_back(PhysReg);   // New use of PhysReg
+}
+
+
+/// reloadVirtReg - This method loads the specified virtual register into a
+/// physical register, returning the physical register chosen.  This updates the
+/// regalloc data structures to reflect the fact that the virtual reg is now
+/// alive in a physical register, and the previous one isn't.
+///
+unsigned RA::reloadVirtReg(MachineBasicBlock &MBB,
+                           MachineBasicBlock::iterator &I,
+                           unsigned VirtReg) {
+  std::map<unsigned, unsigned>::iterator It = Virt2PhysRegMap.find(VirtReg);
+  if (It != Virt2PhysRegMap.end()) {
+    MarkPhysRegRecentlyUsed(It->second);
+    return It->second;               // Already have this value available!
+  }
+
+  unsigned PhysReg = getFreeReg(MBB, I, VirtReg);
+
+  const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg);
+  unsigned StackOffset = getStackSpaceFor(VirtReg, RegClass);
+
+  // Add move instruction(s)
+  I = RegInfo->loadRegOffset2Reg(MBB, I, PhysReg, RegInfo->getFramePointer(),
+                                 -StackOffset, RegClass->getDataSize());
+  ++NumReloaded;    // Update statistics
+  return PhysReg;
+}
+
+/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
+/// predecessor basic blocks.
+///
+void RA::EliminatePHINodes(MachineBasicBlock &MBB) {
+  const MachineInstrInfo &MII = TM.getInstrInfo();
+
+  while (MBB.front()->getOpcode() == MachineInstrInfo::PHI) {
+    MachineInstr *MI = MBB.front();
+    // Unlink the PHI node from the basic block... but don't delete the PHI yet
+    MBB.erase(MBB.begin());
+    
+    DEBUG(std::cerr << "num ops: " << MI->getNumOperands() << "\n");
+    assert(MI->getOperand(0).isVirtualRegister() &&
+           "PHI node doesn't write virt reg?");
+
+    unsigned virtualReg = MI->getOperand(0).getAllocatedRegNum();
+    
+    for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) {
+      MachineOperand &opVal = MI->getOperand(i-1);
+      
+      // Get the MachineBasicBlock equivalent of the BasicBlock that is the
+      // source path the phi
+      MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock();
+
+      // Check to make sure we haven't already emitted the copy for this block.
+      // This can happen because PHI nodes may have multiple entries for the
+      // same basic block.  It doesn't matter which entry we use though, because
+      // all incoming values are guaranteed to be the same for a particular bb.
+      //
+      // Note that this is N^2 in the number of phi node entries, but since the
+      // # of entries is tiny, this is not a problem.
+      //
+      bool HaveNotEmitted = true;
+      for (int op = MI->getNumOperands() - 1; op != i; op -= 2)
+        if (&opBlock == MI->getOperand(op).getMachineBasicBlock()) {
+          HaveNotEmitted = false;
+          break;
+        }
+
+      if (HaveNotEmitted) {
+        MachineBasicBlock::iterator opI = opBlock.end();
+        MachineInstr *opMI = *--opI;
+        
+        // must backtrack over ALL the branches in the previous block
+        while (MII.isBranch(opMI->getOpcode()) && opI != opBlock.begin())
+          opMI = *--opI;
+        
+        // move back to the first branch instruction so new instructions
+        // are inserted right in front of it and not in front of a non-branch
+        if (!MII.isBranch(opMI->getOpcode()))
+          ++opI;
+
+        unsigned dataSize = MF->getRegClass(virtualReg)->getDataSize();
+
+        // Retrieve the constant value from this op, move it to target
+        // register of the phi
+        if (opVal.isImmediate()) {
+          opI = RegInfo->moveImm2Reg(opBlock, opI, virtualReg,
+                                     (unsigned) opVal.getImmedValue(),
+                                     dataSize);
+        } else {
+          opI = RegInfo->moveReg2Reg(opBlock, opI, virtualReg,
+                                     opVal.getAllocatedRegNum(), dataSize);
+        }
+      }
+    }
+    
+    // really delete the PHI instruction now!
+    delete MI;
+  }
+}
+
+void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
+  // loop over each instruction
+  MachineBasicBlock::iterator I = MBB.begin();
+  for (; I != MBB.end(); ++I) {
+    MachineInstr *MI = *I;
+
+    // Loop over all of the operands of the instruction, spilling registers that
+    // are defined, and marking explicit destinations in the PhysRegsUsed map.
+    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
+      if (MI->getOperand(i).opIsDef() &&
+          MI->getOperand(i).isPhysicalRegister()) {
+        unsigned Reg  = MI->getOperand(i).getAllocatedRegNum();
+        unsigned VMap = PhysRegsUsed[Reg];
+        if (VMap) {  // Spill the value in this register...
+          spillVirtReg(MBB, I, VMap, Reg);
+          PhysRegsUsed[Reg] = 0;  // It's free now, and it's reserved
+        }
+        PhysRegsUseOrder.push_back(Reg);
+      }
+
+    // FIXME: Loop over the implicit defs, spilling them, as above.
+
+
+    // FIXME: Loop over the implicit uses, making sure that they are at the head
+    // of the use order list, so they don't get reallocated.
+
+    // Loop over all of the operands again, getting the used operands into
+    // registers.  This has the potiential to spill incoming values because we
+    // are out of registers.
+    //
+    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
+      if (MI->getOperand(i).opIsUse() &&
+          MI->getOperand(i).isVirtualRegister()) {
+        unsigned VirtSrcReg = MI->getOperand(i).getAllocatedRegNum();
+        unsigned PhysSrcReg = reloadVirtReg(MBB, I, VirtSrcReg);
+        MI->SetMachineOperandReg(i, PhysSrcReg);  // Assign the input register
+      }
+    
+    // Okay, we have allocated all of the source operands and spilled any values
+    // that would be destroyed by defs of this instruction.  Loop over the
+    // implicit defs and assign them to a register, spilling the incoming value
+    // if we need to scavange a register.
+
+    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
+      if (MI->getOperand(i).opIsDef() &&
+          !MI->getOperand(i).isPhysicalRegister()) {
+        unsigned DestVirtReg = MI->getOperand(i).getAllocatedRegNum();
+        unsigned DestPhysReg;
+
+        if (TM.getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) {
+          // must be same register number as the first operand
+          // This maps a = b + c into b += c, and saves b into a's spot
+          assert(MI->getOperand(1).isRegister()  &&
+                 MI->getOperand(1).getAllocatedRegNum() &&
+                 MI->getOperand(1).opIsUse() &&
+                 "Two address instruction invalid!");
+          DestPhysReg = MI->getOperand(1).getAllocatedRegNum();
+
+          // Spill the incoming value, because we are about to change the
+          // register contents.
+          spillVirtReg(MBB, I, PhysRegsUsed[DestPhysReg], DestPhysReg);
+          AssignVirtToPhysReg(DestVirtReg, DestPhysReg);
+        } else {
+          DestPhysReg = getFreeReg(MBB, I, DestVirtReg);
+        }
+        MI->SetMachineOperandReg(i, DestPhysReg);  // Assign the output register
+      }
+  }
+
+  // Rewind the iterator to point to the first flow control instruction...
+  const MachineInstrInfo &MII = TM.getInstrInfo();
+  I = MBB.end();
+  do {
+    --I;
+  } while ((MII.isReturn((*I)->getOpcode()) ||
+            MII.isBranch((*I)->getOpcode())) && I != MBB.begin());
+           
+  if (!MII.isReturn((*I)->getOpcode()) && !MII.isBranch((*I)->getOpcode()))
+    ++I;
+
+  // Spill all physical registers holding virtual registers now.
+  while (!PhysRegsUsed.empty())
+    spillVirtReg(MBB, I, PhysRegsUsed.begin()->second,
+                 PhysRegsUsed.begin()->first);
+
+  assert(Virt2PhysRegMap.empty() && "Virtual registers still in phys regs?");
+  assert(PhysRegsUseOrder.empty() && "Physical regs still allocated?");
+}
+
+/// runOnMachineFunction - Register allocate the whole function
+///
+bool RA::runOnMachineFunction(MachineFunction &Fn) {
+  DEBUG(std::cerr << "Machine Function " << "\n");
+  MF = &Fn;
+
+  // First pass: eliminate PHI instructions by inserting copies into predecessor
+  // blocks.
+  // FIXME: In this pass, count how many uses of each VReg exist!
+  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
+       MBB != MBBe; ++MBB)
+    EliminatePHINodes(*MBB);
+
+  // Loop over all of the basic blocks, eliminating virtual register references
+  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
+       MBB != MBBe; ++MBB)
+    AllocateBasicBlock(*MBB);
+
+  // Round stack allocation up to a nice alignment to keep the stack aligned
+  // FIXME: This is X86 specific!  Move to frame manager
+  NumBytesAllocated = (NumBytesAllocated + 3) & ~3;
+
+  // Add prologue to the function...
+  RegInfo->emitPrologue(Fn, NumBytesAllocated);
+
+  const MachineInstrInfo &MII = TM.getInstrInfo();
+
+  // Add epilogue to restore the callee-save registers in each exiting block
+  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
+       MBB != MBBe; ++MBB) {
+    // If last instruction is a return instruction, add an epilogue
+    if (MII.isReturn(MBB->back()->getOpcode()))
+      RegInfo->emitEpilogue(*MBB, NumBytesAllocated);
+  }
+
+  cleanupAfterFunction();
+  return true;
+}
+
+Pass *createLocalRegisterAllocator(TargetMachine &TM) {
+  return new RA(TM);
+}