Initial checkin of Datastructure analysis.

Has bugs, but shouldn't crash in theory.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1994 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Analysis/DataStructure/ComputeClosure.cpp b/lib/Analysis/DataStructure/ComputeClosure.cpp
new file mode 100644
index 0000000..93ba1a8
--- /dev/null
+++ b/lib/Analysis/DataStructure/ComputeClosure.cpp
@@ -0,0 +1,265 @@
+//===- ComputeClosure.cpp - Implement interprocedural closing of graphs ---===//
+//
+// Compute the interprocedural closure of a data structure graph
+//
+//===----------------------------------------------------------------------===//
+
+// DEBUG_IP_CLOSURE - Define this to debug the act of linking up graphs
+//#define DEBUG_IP_CLOSURE 1
+
+#include "llvm/Analysis/DataStructure.h"
+#include "llvm/iOther.h"
+#include "Support/STLExtras.h"
+#include <algorithm>
+#ifdef DEBUG_IP_CLOSURE
+#include "llvm/Assembly/Writer.h"
+#endif
+
+// copyEdgesFromTo - Make a copy of all of the edges to Node to also point
+// PV.  If there are edges out of Node, the edges are added to the subgraph
+// starting at PV.
+//
+static void copyEdgesFromTo(DSNode *Node, const PointerValSet &PVS) {
+  // Make all of the pointers that pointed to Node now also point to PV...
+  const vector<PointerValSet*> &PVSToUpdate(Node->getReferrers());
+  for (unsigned i = 0, e = PVSToUpdate.size(); i != e; ++i)
+    for (unsigned pn = 0, pne = PVS.size(); pn != pne; ++pn)
+      PVSToUpdate[i]->add(PVS[pn]);
+}
+
+static void CalculateNodeMapping(ShadowDSNode *Shadow, DSNode *Node,
+                              multimap<ShadowDSNode *, DSNode *> &NodeMapping) {
+#ifdef DEBUG_IP_CLOSURE
+  cerr << "Mapping " << (void*)Shadow << " to " << (void*)Node << "\n";
+  cerr << "Type = '" << Shadow->getType() << "' and '"
+       << Node->getType() << "'\n";
+  cerr << "Shadow Node:\n";
+  Shadow->print(cerr);
+  cerr << "\nMapped Node:\n";
+  Node->print(cerr);
+#endif
+  assert(Shadow->getType() == Node->getType() &&
+         "Shadow and mapped nodes disagree about type!");
+  
+  multimap<ShadowDSNode *, DSNode *>::iterator
+    NI = NodeMapping.lower_bound(Shadow),
+    NE = NodeMapping.upper_bound(Shadow);
+
+  for (; NI != NE; ++NI)
+    if (NI->second == Node) return;       // Already processed node, return.
+
+  NodeMapping.insert(make_pair(Shadow, Node));   // Add a mapping...
+
+  // Loop over all of the outgoing links in the shadow node...
+  //
+  assert(Node->getNumLinks() == Shadow->getNumLinks() &&
+         "Same type, but different number of links?");
+  for (unsigned i = 0, e = Shadow->getNumLinks(); i != e; ++i) {
+    PointerValSet &Link = Shadow->getLink(i);
+
+    // Loop over all of the values coming out of this pointer...
+    for (unsigned l = 0, le = Link.size(); l != le; ++l) {
+      // If the outgoing node points to a shadow node, map the shadow node to
+      // all of the outgoing values in Node.
+      //
+      if (ShadowDSNode *ShadOut = dyn_cast<ShadowDSNode>(Link[l].Node)) {
+        PointerValSet &NLink = Node->getLink(i);
+        for (unsigned ol = 0, ole = NLink.size(); ol != ole; ++ol)
+          CalculateNodeMapping(ShadOut, NLink[ol].Node, NodeMapping);
+      }
+    }
+  }
+}
+
+
+static void ResolveNodesTo(const PointerVal &FromPtr,
+                           const PointerValSet &ToVals) {
+  assert(FromPtr.Index == 0 &&
+         "Resolved node return pointer should be index 0!");
+  if (!isa<ShadowDSNode>(FromPtr.Node)) return;
+  
+  ShadowDSNode *Shadow = cast<ShadowDSNode>(FromPtr.Node);
+
+  typedef multimap<ShadowDSNode *, DSNode *> ShadNodeMapTy;
+  ShadNodeMapTy NodeMapping;
+  for (unsigned i = 0, e = ToVals.size(); i != e; ++i)
+    CalculateNodeMapping(Shadow, ToVals[i].Node, NodeMapping);
+
+  copyEdgesFromTo(Shadow, ToVals);
+
+  // Now loop through the shadow node graph, mirroring the edges in the shadow
+  // graph onto the realized graph...
+  //
+  for (ShadNodeMapTy::iterator I = NodeMapping.begin(),
+         E = NodeMapping.end(); I != E; ++I) {
+    DSNode *Node = I->second;
+    ShadowDSNode *ShadNode = I->first;
+
+    // Must loop over edges in the shadow graph, adding edges in the real graph
+    // that correspond to to the edges, but are mapped into real values by the
+    // NodeMapping.
+    //
+    for (unsigned i = 0, e = Node->getNumLinks(); i != e; ++i) {
+      const PointerValSet &ShadLinks = ShadNode->getLink(i);
+      PointerValSet &NewLinks = Node->getLink(i);
+
+      // Add a link to all of the nodes pointed to by the shadow field...
+      for (unsigned l = 0, le = ShadLinks.size(); l != le; ++l) {
+        DSNode *ShadLink = ShadLinks[l].Node;
+
+        if (ShadowDSNode *SL = dyn_cast<ShadowDSNode>(ShadLink)) {
+          // Loop over all of the values in the range 
+          ShadNodeMapTy::iterator St = NodeMapping.lower_bound(SL),
+                                  En = NodeMapping.upper_bound(SL);
+          if (St != En) {
+            for (; St != En; ++St)
+              NewLinks.add(PointerVal(St->second, ShadLinks[l].Index));
+          } else {
+            // We must retain the shadow node...
+            NewLinks.add(ShadLinks[l]);
+          }
+        } else {
+          // Otherwise, add a direct link to the data structure pointed to by
+          // the shadow node...
+          NewLinks.add(ShadLinks[l]);
+        }
+      }
+    }
+  }
+}
+
+
+// ResolveNodeTo - The specified node is now known to point to the set of values
+// in ToVals, instead of the old shadow node subgraph that it was pointing to.
+//
+static void ResolveNodeTo(DSNode *Node, const PointerValSet &ToVals) {
+  assert(Node->getNumLinks() == 1 && "Resolved node can only be a scalar!!");
+
+  PointerValSet PVS = Node->getLink(0);
+
+  for (unsigned i = 0, e = PVS.size(); i != e; ++i)
+    ResolveNodesTo(PVS[i], ToVals);
+}
+
+// isResolvableCallNode - Return true if node is a call node and it is a call
+// node that we can inline...
+//
+static bool isResolvableCallNode(DSNode *N) {
+  // Only operate on call nodes...
+  CallDSNode *CN = dyn_cast<CallDSNode>(N);
+  if (CN == 0) return false;
+
+  // Only operate on call nodes with direct method calls
+  Function *F = CN->getCall()->getCalledFunction();
+  if (F == 0) return false;
+
+  // Only work on call nodes with direct calls to methods with bodies.
+  return !F->isExternal();
+}
+
+
+// computeClosure - Replace all of the resolvable call nodes with the contents
+// of their corresponding method data structure graph...
+//
+void FunctionDSGraph::computeClosure(const DataStructure &DS) {
+  vector<DSNode*>::iterator NI = std::find_if(Nodes.begin(), Nodes.end(),
+                                              isResolvableCallNode);
+
+  map<Function*, unsigned> InlineCount; // FIXME
+
+  // Loop over the resolvable call nodes...
+  while (NI != Nodes.end()) {
+    CallDSNode *CN = cast<CallDSNode>(*NI);
+    Function *F = CN->getCall()->getCalledFunction();
+    //if (F == Func) return;  // Do not do self inlining
+
+    // FIXME: Gross hack to prevent explosions when inlining a recursive func.
+    if (InlineCount[F]++ > 2) return;
+
+    Nodes.erase(NI);                     // Remove the call node from the graph
+
+    unsigned CallNodeOffset = NI-Nodes.begin();
+
+    // StartNode - The first node of the incorporated graph, last node of the
+    // preexisting data structure graph...
+    //
+    unsigned StartNode = Nodes.size();
+
+    // Hold the set of values that correspond to the incorporated methods
+    // return set.
+    //
+    PointerValSet RetVals;
+
+    if (F != Func) {  // If this is not a recursive call...
+      // Get the datastructure graph for the new method.  Note that we are not
+      // allowed to modify this graph because it will be the cached graph that
+      // is returned by other users that want the local datastructure graph for
+      // a method.
+      //
+      const FunctionDSGraph &NewFunction = DS.getDSGraph(F);
+
+      // Incorporate a copy of the called function graph into the current graph,
+      // allowing us to do local transformations to local graph to link
+      // arguments to call values, and call node to return value...
+      //
+      RetVals = cloneFunctionIntoSelf(NewFunction, false);
+
+    } else {     // We are looking at a recursive function!
+      StartNode = 0;  // Arg nodes start at 0 now...
+      RetVals = RetNode;
+    }
+
+    // If the function returns a pointer value...  Resolve values pointing to
+    // the shadow nodes pointed to by CN to now point the values in RetVals...
+    //
+    if (CN->getNumLinks()) ResolveNodeTo(CN, RetVals);
+
+    // If the call node has arguments, process them now!
+    if (CN->getNumArgs()) {
+      // The ArgNodes of the incorporated graph should be the nodes starting at
+      // StartNode, ordered the same way as the call arguments.  The arg nodes
+      // are seperated by a single shadow node, so we need to be sure to step
+      // over them.
+      //
+      unsigned ArgOffset = StartNode;
+      for (unsigned i = 0, e = CN->getNumArgs(); i != e; ++i) {
+        // Get the arg node of the incorporated method...
+        ArgDSNode *ArgNode = cast<ArgDSNode>(Nodes[ArgOffset]);
+
+        // Now we make all of the nodes inside of the incorporated method point
+        // to the real arguments values, not to the shadow nodes for the
+        // argument.
+        //
+        ResolveNodeTo(ArgNode, CN->getArgValues(i));
+
+        if (StartNode == 0) {  // Self recursion?
+          ArgOffset += 2;      // Skip over the argument & the shadow node...
+        } else {
+          // Remove the argnode from the set of nodes in this method...
+          Nodes.erase(Nodes.begin()+ArgOffset);
+
+          // ArgNode is no longer useful, delete now!
+          delete ArgNode;
+          
+          ArgOffset++;         // Skip over the shadow node for the argument
+        }
+      }
+    }
+
+    // Now the call node is completely destructable.  Eliminate it now.
+    delete CN;
+
+    // Eliminate shadow nodes that are not distinguishable from some other
+    // node in the graph...
+    //
+    UnlinkUndistinguishableShadowNodes();
+
+    // Eliminate shadow nodes that are now extraneous due to linking...
+    RemoveUnreachableShadowNodes();
+
+    //if (F == Func) return;  // Only do one self inlining
+    
+    // Move on to the next call node...
+    NI = std::find_if(Nodes.begin(), Nodes.end(), isResolvableCallNode);
+  }
+}