Renaming ISD::BIT_CONVERT to ISD::BITCAST to better reflect the LLVM IR concept.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119990 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/SelectionDAG/DAGCombiner.cpp b/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
index d705704..fe7c41c 100644
--- a/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
+++ b/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
@@ -185,7 +185,7 @@
     SDValue visitANY_EXTEND(SDNode *N);
     SDValue visitSIGN_EXTEND_INREG(SDNode *N);
     SDValue visitTRUNCATE(SDNode *N);
-    SDValue visitBIT_CONVERT(SDNode *N);
+    SDValue visitBITCAST(SDNode *N);
     SDValue visitBUILD_PAIR(SDNode *N);
     SDValue visitFADD(SDNode *N);
     SDValue visitFSUB(SDNode *N);
@@ -229,7 +229,7 @@
     SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
                                          unsigned HiOp);
     SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
-    SDValue ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, EVT);
+    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
     SDValue BuildSDIV(SDNode *N);
     SDValue BuildUDIV(SDNode *N);
     SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
@@ -273,15 +273,15 @@
 
     /// Run - runs the dag combiner on all nodes in the work list
     void Run(CombineLevel AtLevel);
-    
+
     SelectionDAG &getDAG() const { return DAG; }
-    
+
     /// getShiftAmountTy - Returns a type large enough to hold any valid
     /// shift amount - before type legalization these can be huge.
     EVT getShiftAmountTy() {
       return LegalTypes ? TLI.getShiftAmountTy() : TLI.getPointerTy();
     }
-    
+
     /// isTypeLegal - This method returns true if we are running before type
     /// legalization or if the specified VT is legal.
     bool isTypeLegal(const EVT &VT) {
@@ -634,7 +634,7 @@
 
   // Replace the old value with the new one.
   ++NodesCombined;
-  DEBUG(dbgs() << "\nReplacing.2 "; 
+  DEBUG(dbgs() << "\nReplacing.2 ";
         TLO.Old.getNode()->dump(&DAG);
         dbgs() << "\nWith: ";
         TLO.New.getNode()->dump(&DAG);
@@ -694,7 +694,7 @@
     unsigned ExtOpc =
       Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
     return DAG.getNode(ExtOpc, dl, PVT, Op);
-  }    
+  }
   }
 
   if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
@@ -978,7 +978,7 @@
            RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
            "Node was deleted but visit returned new node!");
 
-    DEBUG(dbgs() << "\nReplacing.3 "; 
+    DEBUG(dbgs() << "\nReplacing.3 ";
           N->dump(&DAG);
           dbgs() << "\nWith: ";
           RV.getNode()->dump(&DAG);
@@ -1057,7 +1057,7 @@
   case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
   case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
   case ISD::TRUNCATE:           return visitTRUNCATE(N);
-  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
+  case ISD::BITCAST:            return visitBITCAST(N);
   case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
   case ISD::FADD:               return visitFADD(N);
   case ISD::FSUB:               return visitFSUB(N);
@@ -1228,7 +1228,7 @@
       }
     }
   }
-  
+
   SDValue Result;
 
   // If we've change things around then replace token factor.
@@ -1429,10 +1429,10 @@
 
   if (N1.getOpcode() == ISD::AND) {
     SDValue AndOp0 = N1.getOperand(0);
-    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 
+    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
     unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
     unsigned DestBits = VT.getScalarType().getSizeInBits();
-    
+
     // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
     // and similar xforms where the inner op is either ~0 or 0.
     if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
@@ -2269,8 +2269,8 @@
         if (ExtVT == LoadedVT &&
             (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
           EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
-          
-          SDValue NewLoad = 
+
+          SDValue NewLoad =
             DAG.getExtLoad(ISD::ZEXTLOAD, LoadResultTy, LN0->getDebugLoc(),
                            LN0->getChain(), LN0->getBasePtr(),
                            LN0->getPointerInfo(),
@@ -2280,7 +2280,7 @@
           CombineTo(LN0, NewLoad, NewLoad.getValue(1));
           return SDValue(N, 0);   // Return N so it doesn't get rechecked!
         }
-        
+
         // Do not change the width of a volatile load.
         // Do not generate loads of non-round integer types since these can
         // be expensive (and would be wrong if the type is not byte sized).
@@ -2304,7 +2304,7 @@
           }
 
           AddToWorkList(NewPtr.getNode());
-          
+
           EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
           SDValue Load =
             DAG.getExtLoad(ISD::ZEXTLOAD, LoadResultTy, LN0->getDebugLoc(),
@@ -3086,7 +3086,7 @@
     return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
                        DAG.getConstant(c1 + c2, N1.getValueType()));
   }
-  
+
   // fold (srl (shl x, c), c) -> (and x, cst2)
   if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
       N0.getValueSizeInBits() <= 64) {
@@ -3094,7 +3094,7 @@
     return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
                        DAG.getConstant(~0ULL >> ShAmt, VT));
   }
-  
+
 
   // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
   if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
@@ -3198,7 +3198,7 @@
   //   brcond i32 %c ...
   //
   // into
-  // 
+  //
   //   %a = ...
   //   %b = and %a, 2
   //   %c = setcc eq %b, 0
@@ -3626,7 +3626,7 @@
                                       N0.getOperand(0), N0.getOperand(1),
                                  cast<CondCodeSDNode>(N0.getOperand(2))->get()),
                          NegOne, DAG.getConstant(0, VT));
-  }  
+  }
 
   // fold (sext x) -> (zext x) if the sign bit is known zero.
   if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
@@ -4104,7 +4104,7 @@
         if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
           return SDValue();
       }
-      
+
       // If the shift amount is larger than the input type then we're not
       // accessing any of the loaded bytes.  If the load was a zextload/extload
       // then the result of the shift+trunc is zero/undef (handled elsewhere).
@@ -4112,7 +4112,7 @@
       // of the extended byte.  This is not worth optimizing for.
       if (ShAmt >= VT.getSizeInBits())
         return SDValue();
-      
+
     }
   }
 
@@ -4379,7 +4379,7 @@
   return SDValue();
 }
 
-SDValue DAGCombiner::visitBIT_CONVERT(SDNode *N) {
+SDValue DAGCombiner::visitBITCAST(SDNode *N) {
   SDValue N0 = N->getOperand(0);
   EVT VT = N->getValueType(0);
 
@@ -4403,12 +4403,12 @@
     assert(!DestEltVT.isVector() &&
            "Element type of vector ValueType must not be vector!");
     if (isSimple)
-      return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.getNode(), DestEltVT);
+      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
   }
 
   // If the input is a constant, let getNode fold it.
   if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
-    SDValue Res = DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, N0);
+    SDValue Res = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, N0);
     if (Res.getNode() != N) {
       if (!LegalOperations ||
           TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
@@ -4424,8 +4424,8 @@
   }
 
   // (conv (conv x, t1), t2) -> (conv x, t2)
-  if (N0.getOpcode() == ISD::BIT_CONVERT)
-    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT,
+  if (N0.getOpcode() == ISD::BITCAST)
+    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT,
                        N0.getOperand(0));
 
   // fold (conv (load x)) -> (load (conv*)x)
@@ -4446,7 +4446,7 @@
                                  OrigAlign);
       AddToWorkList(N);
       CombineTo(N0.getNode(),
-                DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
+                DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
                             N0.getValueType(), Load),
                 Load.getValue(1));
       return Load;
@@ -4458,7 +4458,7 @@
   // This often reduces constant pool loads.
   if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) &&
       N0.getNode()->hasOneUse() && VT.isInteger() && !VT.isVector()) {
-    SDValue NewConv = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(), VT,
+    SDValue NewConv = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), VT,
                                   N0.getOperand(0));
     AddToWorkList(NewConv.getNode());
 
@@ -4481,7 +4481,7 @@
     unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
     EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
     if (isTypeLegal(IntXVT)) {
-      SDValue X = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
+      SDValue X = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
                               IntXVT, N0.getOperand(1));
       AddToWorkList(X.getNode());
 
@@ -4506,7 +4506,7 @@
                       X, DAG.getConstant(SignBit, VT));
       AddToWorkList(X.getNode());
 
-      SDValue Cst = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
+      SDValue Cst = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
                                 VT, N0.getOperand(0));
       Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT,
                         Cst, DAG.getConstant(~SignBit, VT));
@@ -4531,11 +4531,11 @@
   return CombineConsecutiveLoads(N, VT);
 }
 
-/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
+/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
 /// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
 /// destination element value type.
 SDValue DAGCombiner::
-ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
+ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
   EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
 
   // If this is already the right type, we're done.
@@ -4553,10 +4553,10 @@
     // Due to the FP element handling below calling this routine recursively,
     // we can end up with a scalar-to-vector node here.
     if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
-      return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT, 
-                         DAG.getNode(ISD::BIT_CONVERT, BV->getDebugLoc(),
+      return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
+                         DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
                                      DstEltVT, BV->getOperand(0)));
-      
+
     SmallVector<SDValue, 8> Ops;
     for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
       SDValue Op = BV->getOperand(i);
@@ -4564,7 +4564,7 @@
       // are promoted and implicitly truncated.  Make that explicit here.
       if (Op.getValueType() != SrcEltVT)
         Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op);
-      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, BV->getDebugLoc(),
+      Ops.push_back(DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
                                 DstEltVT, Op));
       AddToWorkList(Ops.back().getNode());
     }
@@ -4580,7 +4580,7 @@
     // same sizes.
     assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
-    BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).getNode();
+    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
     SrcEltVT = IntVT;
   }
 
@@ -4589,10 +4589,10 @@
   if (DstEltVT.isFloatingPoint()) {
     assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
     EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
-    SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).getNode();
+    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
 
     // Next, convert to FP elements of the same size.
-    return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
+    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
   }
 
   // Okay, we know the src/dst types are both integers of differing types.
@@ -5068,7 +5068,7 @@
 
   // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
   // constant pool values.
-  if (N0.getOpcode() == ISD::BIT_CONVERT && 
+  if (N0.getOpcode() == ISD::BITCAST &&
       !VT.isVector() &&
       N0.getNode()->hasOneUse() &&
       N0.getOperand(0).getValueType().isInteger()) {
@@ -5078,7 +5078,7 @@
       Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
               DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
       AddToWorkList(Int.getNode());
-      return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
+      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
                          VT, Int);
     }
   }
@@ -5104,7 +5104,7 @@
 
   // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
   // constant pool values.
-  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.getNode()->hasOneUse() &&
+  if (N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
       N0.getOperand(0).getValueType().isInteger() &&
       !N0.getOperand(0).getValueType().isVector()) {
     SDValue Int = N0.getOperand(0);
@@ -5113,7 +5113,7 @@
       Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
              DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
       AddToWorkList(Int.getNode());
-      return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
+      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
                          N->getValueType(0), Int);
     }
   }
@@ -5160,7 +5160,7 @@
     //   brcond i32 %c ...
     //
     // into
-    // 
+    //
     //   %a = ...
     //   %b = and i32 %a, 2
     //   %c = setcc eq %b, 0
@@ -5211,7 +5211,7 @@
       // Restore N1 if the above transformation doesn't match.
       N1 = N->getOperand(1);
   }
-  
+
   // Transform br(xor(x, y)) -> br(x != y)
   // Transform br(xor(xor(x,y), 1)) -> br (x == y)
   if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
@@ -5665,10 +5665,10 @@
       // Create token factor to keep old chain connected.
       SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
                                   MVT::Other, Chain, ReplLoad.getValue(1));
-      
+
       // Make sure the new and old chains are cleaned up.
       AddToWorkList(Token.getNode());
-      
+
       // Replace uses with load result and token factor. Don't add users
       // to work list.
       return CombineTo(N, ReplLoad.getValue(0), Token, false);
@@ -5688,17 +5688,17 @@
 static std::pair<unsigned, unsigned>
 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
   std::pair<unsigned, unsigned> Result(0, 0);
-  
+
   // Check for the structure we're looking for.
   if (V->getOpcode() != ISD::AND ||
       !isa<ConstantSDNode>(V->getOperand(1)) ||
       !ISD::isNormalLoad(V->getOperand(0).getNode()))
     return Result;
-  
+
   // Check the chain and pointer.
   LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
   if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
-  
+
   // The store should be chained directly to the load or be an operand of a
   // tokenfactor.
   if (LD == Chain.getNode())
@@ -5714,7 +5714,7 @@
       }
     if (!isOk) return Result;
   }
-  
+
   // This only handles simple types.
   if (V.getValueType() != MVT::i16 &&
       V.getValueType() != MVT::i32 &&
@@ -5730,7 +5730,7 @@
   unsigned NotMaskTZ = CountTrailingZeros_64(NotMask);
   if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
   if (NotMaskLZ == 64) return Result;  // All zero mask.
-  
+
   // See if we have a continuous run of bits.  If so, we have 0*1+0*
   if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
     return Result;
@@ -5738,19 +5738,19 @@
   // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
   if (V.getValueType() != MVT::i64 && NotMaskLZ)
     NotMaskLZ -= 64-V.getValueSizeInBits();
-  
+
   unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
   switch (MaskedBytes) {
-  case 1: 
-  case 2: 
+  case 1:
+  case 2:
   case 4: break;
   default: return Result; // All one mask, or 5-byte mask.
   }
-  
+
   // Verify that the first bit starts at a multiple of mask so that the access
   // is aligned the same as the access width.
   if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
-  
+
   Result.first = MaskedBytes;
   Result.second = NotMaskTZ/8;
   return Result;
@@ -5767,20 +5767,20 @@
   unsigned NumBytes = MaskInfo.first;
   unsigned ByteShift = MaskInfo.second;
   SelectionDAG &DAG = DC->getDAG();
-  
+
   // Check to see if IVal is all zeros in the part being masked in by the 'or'
   // that uses this.  If not, this is not a replacement.
   APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
                                   ByteShift*8, (ByteShift+NumBytes)*8);
   if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
-  
+
   // Check that it is legal on the target to do this.  It is legal if the new
   // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
   // legalization.
   MVT VT = MVT::getIntegerVT(NumBytes*8);
   if (!DC->isTypeLegal(VT))
     return 0;
-  
+
   // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
   // shifted by ByteShift and truncated down to NumBytes.
   if (ByteShift)
@@ -5795,19 +5795,19 @@
     StOffset = ByteShift;
   else
     StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
-  
+
   SDValue Ptr = St->getBasePtr();
   if (StOffset) {
     Ptr = DAG.getNode(ISD::ADD, IVal->getDebugLoc(), Ptr.getValueType(),
                       Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
     NewAlign = MinAlign(NewAlign, StOffset);
   }
-  
+
   // Truncate down to the new size.
   IVal = DAG.getNode(ISD::TRUNCATE, IVal->getDebugLoc(), VT, IVal);
-  
+
   ++OpsNarrowed;
-  return DAG.getStore(St->getChain(), St->getDebugLoc(), IVal, Ptr, 
+  return DAG.getStore(St->getChain(), St->getDebugLoc(), IVal, Ptr,
                       St->getPointerInfo().getWithOffset(StOffset),
                       false, false, NewAlign).getNode();
 }
@@ -5831,7 +5831,7 @@
     return SDValue();
 
   unsigned Opc = Value.getOpcode();
-  
+
   // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
   // is a byte mask indicating a consecutive number of bytes, check to see if
   // Y is known to provide just those bytes.  If so, we try to replace the
@@ -5844,7 +5844,7 @@
       if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
                                                   Value.getOperand(1), ST,this))
         return SDValue(NewST, 0);
-                                           
+
     // Or is commutative, so try swapping X and Y.
     MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
     if (MaskedLoad.first)
@@ -5852,7 +5852,7 @@
                                                   Value.getOperand(0), ST,this))
         return SDValue(NewST, 0);
   }
-  
+
   if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
       Value.getOperand(1).getOpcode() != ISD::Constant)
     return SDValue();
@@ -5944,7 +5944,7 @@
 
   // If this is a store of a bit convert, store the input value if the
   // resultant store does not need a higher alignment than the original.
-  if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
+  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
       ST->isUnindexed()) {
     unsigned OrigAlign = ST->getAlignment();
     EVT SVT = Value.getOperand(0).getValueType();
@@ -6146,9 +6146,9 @@
     return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
                        InVec.getValueType(), &Ops[0], Ops.size());
   }
-  // If the invec is an UNDEF and if EltNo is a constant, create a new 
+  // If the invec is an UNDEF and if EltNo is a constant, create a new
   // BUILD_VECTOR with undef elements and the inserted element.
-  if (!LegalOperations && InVec.getOpcode() == ISD::UNDEF && 
+  if (!LegalOperations && InVec.getOpcode() == ISD::UNDEF &&
       isa<ConstantSDNode>(EltNo)) {
     EVT VT = InVec.getValueType();
     EVT EltVT = VT.getVectorElementType();
@@ -6198,7 +6198,7 @@
     EVT ExtVT = VT.getVectorElementType();
     EVT LVT = ExtVT;
 
-    if (InVec.getOpcode() == ISD::BIT_CONVERT) {
+    if (InVec.getOpcode() == ISD::BITCAST) {
       EVT BCVT = InVec.getOperand(0).getValueType();
       if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
         return SDValue();
@@ -6232,7 +6232,7 @@
       int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
       InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
 
-      if (InVec.getOpcode() == ISD::BIT_CONVERT)
+      if (InVec.getOpcode() == ISD::BITCAST)
         InVec = InVec.getOperand(0);
       if (ISD::isNormalLoad(InVec.getNode())) {
         LN0 = cast<LoadSDNode>(InVec);
@@ -6262,7 +6262,7 @@
 
     SDValue NewPtr = LN0->getBasePtr();
     unsigned PtrOff = 0;
-    
+
     if (Elt) {
       PtrOff = LVT.getSizeInBits() * Elt / 8;
       EVT PtrType = NewPtr.getValueType();
@@ -6339,7 +6339,7 @@
         unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
         if (ExtIndex > VT.getVectorNumElements())
           return SDValue();
-        
+
         Mask.push_back(ExtIndex);
         continue;
       }
@@ -6396,7 +6396,7 @@
     // If this is a bit convert that changes the element type of the vector but
     // not the number of vector elements, look through it.  Be careful not to
     // look though conversions that change things like v4f32 to v2f64.
-    if (V->getOpcode() == ISD::BIT_CONVERT) {
+    if (V->getOpcode() == ISD::BITCAST) {
       SDValue ConvInput = V->getOperand(0);
       if (ConvInput.getValueType().isVector() &&
           ConvInput.getValueType().getVectorNumElements() == NumElts)
@@ -6494,7 +6494,7 @@
   SDValue LHS = N->getOperand(0);
   SDValue RHS = N->getOperand(1);
   if (N->getOpcode() == ISD::AND) {
-    if (RHS.getOpcode() == ISD::BIT_CONVERT)
+    if (RHS.getOpcode() == ISD::BITCAST)
       RHS = RHS.getOperand(0);
     if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
       SmallVector<int, 8> Indices;
@@ -6522,9 +6522,9 @@
                                      DAG.getConstant(0, EltVT));
       SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
                                  RVT, &ZeroOps[0], ZeroOps.size());
-      LHS = DAG.getNode(ISD::BIT_CONVERT, dl, RVT, LHS);
+      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
       SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
-      return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Shuf);
+      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
     }
   }
 
@@ -6643,7 +6643,7 @@
   if (LHS.getOpcode() != RHS.getOpcode() ||
       !LHS.hasOneUse() || !RHS.hasOneUse())
     return false;
-  
+
   // If this is a load and the token chain is identical, replace the select
   // of two loads with a load through a select of the address to load from.
   // This triggers in things like "select bool X, 10.0, 123.0" after the FP
@@ -6651,7 +6651,7 @@
   if (LHS.getOpcode() == ISD::LOAD) {
     LoadSDNode *LLD = cast<LoadSDNode>(LHS);
     LoadSDNode *RLD = cast<LoadSDNode>(RHS);
-    
+
     // Token chains must be identical.
     if (LHS.getOperand(0) != RHS.getOperand(0) ||
         // Do not let this transformation reduce the number of volatile loads.
@@ -6671,7 +6671,7 @@
         LLD->getPointerInfo().getAddrSpace() != 0 ||
         RLD->getPointerInfo().getAddrSpace() != 0)
       return false;
-        
+
     // Check that the select condition doesn't reach either load.  If so,
     // folding this will induce a cycle into the DAG.  If not, this is safe to
     // xform, so create a select of the addresses.
@@ -6694,7 +6694,7 @@
           (LLD->hasAnyUseOfValue(1) &&
            (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))))
         return false;
-      
+
       Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
                          LLD->getBasePtr().getValueType(),
                          TheSelect->getOperand(0),
@@ -6742,7 +6742,7 @@
                                       ISD::CondCode CC, bool NotExtCompare) {
   // (x ? y : y) -> y.
   if (N2 == N3) return N2;
-  
+
   EVT VT = N2.getValueType();
   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
@@ -6778,7 +6778,7 @@
         return DAG.getNode(ISD::FABS, DL, VT, N3);
     }
   }
-  
+
   // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
   // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
   // in it.  This is a win when the constant is not otherwise available because
@@ -6801,7 +6801,7 @@
         };
         const Type *FPTy = Elts[0]->getType();
         const TargetData &TD = *TLI.getTargetData();
-        
+
         // Create a ConstantArray of the two constants.
         Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts, 2);
         SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
@@ -6813,7 +6813,7 @@
         SDValue Zero = DAG.getIntPtrConstant(0);
         unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
         SDValue One = DAG.getIntPtrConstant(EltSize);
-        
+
         SDValue Cond = DAG.getSetCC(DL,
                                     TLI.getSetCCResultType(N0.getValueType()),
                                     N0, N1, CC);
@@ -6826,7 +6826,7 @@
                            false, Alignment);
 
       }
-    }  
+    }
 
   // Check to see if we can perform the "gzip trick", transforming
   // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
@@ -6879,7 +6879,7 @@
   // shift-left and shift-right-arith.
   if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
       N0->getValueType(0) == VT &&
-      N1C && N1C->isNullValue() && 
+      N1C && N1C->isNullValue() &&
       N2C && N2C->isNullValue()) {
     SDValue AndLHS = N0->getOperand(0);
     ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
@@ -6889,13 +6889,13 @@
       SDValue ShlAmt =
         DAG.getConstant(AndMask.countLeadingZeros(), getShiftAmountTy());
       SDValue Shl = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT, AndLHS, ShlAmt);
-      
+
       // Now arithmetic right shift it all the way over, so the result is either
       // all-ones, or zero.
       SDValue ShrAmt =
         DAG.getConstant(AndMask.getBitWidth()-1, getShiftAmountTy());
       SDValue Shr = DAG.getNode(ISD::SRA, N0.getDebugLoc(), VT, Shl, ShrAmt);
-      
+
       return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
     }
   }
@@ -7066,7 +7066,7 @@
       Offset += C->getZExtValue();
     }
   }
-  
+
   // Return the underlying GlobalValue, and update the Offset.  Return false
   // for GlobalAddressSDNode since the same GlobalAddress may be represented
   // by multiple nodes with different offsets.
@@ -7125,7 +7125,7 @@
     return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
   }
 
-  // Otherwise, if we know what the bases are, and they aren't identical, then 
+  // Otherwise, if we know what the bases are, and they aren't identical, then
   // we know they cannot alias.
   if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
     return false;
@@ -7139,13 +7139,13 @@
       (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
     int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
     int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
-    
+
     // There is no overlap between these relatively aligned accesses of similar
     // size, return no alias.
     if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
       return false;
   }
-  
+
   if (CombinerGlobalAA) {
     // Use alias analysis information.
     int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
@@ -7166,7 +7166,7 @@
 /// node.  Returns true if the operand was a load.
 bool DAGCombiner::FindAliasInfo(SDNode *N,
                         SDValue &Ptr, int64_t &Size,
-                        const Value *&SrcValue, 
+                        const Value *&SrcValue,
                         int &SrcValueOffset,
                         unsigned &SrcValueAlign,
                         const MDNode *&TBAAInfo) const {
@@ -7206,26 +7206,26 @@
   int SrcValueOffset;
   unsigned SrcValueAlign;
   const MDNode *SrcTBAAInfo;
-  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset, 
+  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
                               SrcValueAlign, SrcTBAAInfo);
 
   // Starting off.
   Chains.push_back(OriginalChain);
   unsigned Depth = 0;
-  
+
   // Look at each chain and determine if it is an alias.  If so, add it to the
   // aliases list.  If not, then continue up the chain looking for the next
   // candidate.
   while (!Chains.empty()) {
     SDValue Chain = Chains.back();
     Chains.pop_back();
-    
-    // For TokenFactor nodes, look at each operand and only continue up the 
-    // chain until we find two aliases.  If we've seen two aliases, assume we'll 
+
+    // For TokenFactor nodes, look at each operand and only continue up the
+    // chain until we find two aliases.  If we've seen two aliases, assume we'll
     // find more and revert to original chain since the xform is unlikely to be
     // profitable.
-    // 
-    // FIXME: The depth check could be made to return the last non-aliasing 
+    //
+    // FIXME: The depth check could be made to return the last non-aliasing
     // chain we found before we hit a tokenfactor rather than the original
     // chain.
     if (Depth > 6 || Aliases.size() == 2) {
@@ -7309,9 +7309,9 @@
     // If a single operand then chain to it.  We don't need to revisit it.
     return Aliases[0];
   }
-  
+
   // Construct a custom tailored token factor.
-  return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other, 
+  return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
                      &Aliases[0], Aliases.size());
 }
 
diff --git a/lib/CodeGen/SelectionDAG/FastISel.cpp b/lib/CodeGen/SelectionDAG/FastISel.cpp
index 8171483..fddd358 100644
--- a/lib/CodeGen/SelectionDAG/FastISel.cpp
+++ b/lib/CodeGen/SelectionDAG/FastISel.cpp
@@ -197,12 +197,12 @@
     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
   }
-  
+
   // If target-independent code couldn't handle the value, give target-specific
   // code a try.
   if (!Reg && isa<Constant>(V))
     Reg = TargetMaterializeConstant(cast<Constant>(V));
-  
+
   // Don't cache constant materializations in the general ValueMap.
   // To do so would require tracking what uses they dominate.
   if (Reg != 0) {
@@ -234,7 +234,7 @@
     LocalValueMap[I] = Reg;
     return Reg;
   }
-  
+
   unsigned &AssignedReg = FuncInfo.ValueMap[I];
   if (AssignedReg == 0)
     // Use the new register.
@@ -414,7 +414,7 @@
       // If this is a constant subscript, handle it quickly.
       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
         if (CI->isZero()) continue;
-        uint64_t Offs = 
+        uint64_t Offs =
           TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
         N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
         if (N == 0)
@@ -423,7 +423,7 @@
         NIsKill = true;
         continue;
       }
-      
+
       // N = N + Idx * ElementSize;
       uint64_t ElementSize = TD.getTypeAllocSize(Ty);
       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
@@ -479,13 +479,13 @@
         Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
         if (Offset)
           Reg = TRI.getFrameRegister(*FuncInfo.MF);
-      } 
+      }
     }
     if (!Reg)
       Reg = getRegForValue(Address);
-    
+
     if (Reg)
-      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
               TII.get(TargetOpcode::DBG_VALUE))
         .addReg(Reg, RegState::Debug).addImm(Offset)
         .addMetadata(DI->getVariable());
@@ -521,7 +521,7 @@
       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
         .addReg(0U).addImm(DI->getOffset())
         .addMetadata(DI->getVariable());
-    }     
+    }
     return true;
   }
   case Intrinsic::eh_exception: {
@@ -594,12 +594,12 @@
 bool FastISel::SelectCast(const User *I, unsigned Opcode) {
   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
   EVT DstVT = TLI.getValueType(I->getType());
-    
+
   if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
       DstVT == MVT::Other || !DstVT.isSimple())
     // Unhandled type. Halt "fast" selection and bail.
     return false;
-    
+
   // Check if the destination type is legal. Or as a special case,
   // it may be i1 if we're doing a truncate because that's
   // easy and somewhat common.
@@ -641,7 +641,7 @@
                                   InputReg, InputRegIsKill);
   if (!ResultReg)
     return false;
-    
+
   UpdateValueMap(I, ResultReg);
   return true;
 }
@@ -656,23 +656,23 @@
     return true;
   }
 
-  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
+  // Bitcasts of other values become reg-reg copies or BITCAST operators.
   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
   EVT DstVT = TLI.getValueType(I->getType());
-  
+
   if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
       DstVT == MVT::Other || !DstVT.isSimple() ||
       !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
     // Unhandled type. Halt "fast" selection and bail.
     return false;
-  
+
   unsigned Op0 = getRegForValue(I->getOperand(0));
   if (Op0 == 0)
     // Unhandled operand. Halt "fast" selection and bail.
     return false;
 
   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
-  
+
   // First, try to perform the bitcast by inserting a reg-reg copy.
   unsigned ResultReg = 0;
   if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
@@ -685,15 +685,15 @@
               ResultReg).addReg(Op0);
     }
   }
-  
-  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
+
+  // If the reg-reg copy failed, select a BITCAST opcode.
   if (!ResultReg)
     ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
-                           ISD::BIT_CONVERT, Op0, Op0IsKill);
-  
+                           ISD::BITCAST, Op0, Op0IsKill);
+
   if (!ResultReg)
     return false;
-  
+
   UpdateValueMap(I, ResultReg);
   return true;
 }
@@ -765,7 +765,7 @@
     return false;
 
   unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
-                               ISD::BIT_CONVERT, OpReg, OpRegIsKill);
+                               ISD::BITCAST, OpReg, OpRegIsKill);
   if (IntReg == 0)
     return false;
 
@@ -777,7 +777,7 @@
     return false;
 
   ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
-                         ISD::BIT_CONVERT, IntResultReg, /*Kill=*/true);
+                         ISD::BITCAST, IntResultReg, /*Kill=*/true);
   if (ResultReg == 0)
     return false;
 
@@ -857,10 +857,10 @@
 
     // Dynamic-sized alloca is not handled yet.
     return false;
-    
+
   case Instruction::Call:
     return SelectCall(I);
-  
+
   case Instruction::BitCast:
     return SelectBitCast(I);
 
@@ -923,7 +923,7 @@
   return 0;
 }
 
-unsigned FastISel::FastEmit_rr(MVT, MVT, 
+unsigned FastISel::FastEmit_rr(MVT, MVT,
                                unsigned,
                                unsigned /*Op0*/, bool /*Op0IsKill*/,
                                unsigned /*Op1*/, bool /*Op1IsKill*/) {
@@ -1151,7 +1151,7 @@
                                   uint64_t Imm) {
   unsigned ResultReg = createResultReg(RC);
   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
-  
+
   if (II.getNumDefs() >= 1)
     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
   else {
diff --git a/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp b/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
index cd40f64..6f6dcc0 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
@@ -403,7 +403,7 @@
       // Expand to a bitconvert of the value to the integer type of the
       // same size, then a (misaligned) int store.
       // FIXME: Does not handle truncating floating point stores!
-      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
+      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
       return DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
                           ST->isVolatile(), ST->isNonTemporal(), Alignment);
     } else {
@@ -515,14 +515,14 @@
       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
                                     LD->isVolatile(),
                                     LD->isNonTemporal(), LD->getAlignment());
-      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
+      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
       if (VT.isFloatingPoint() && LoadedVT != VT)
         Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
 
       SDValue Ops[] = { Result, Chain };
       return DAG.getMergeValues(Ops, 2, dl);
     }
-    
+
     // Copy the value to a (aligned) stack slot using (unaligned) integer
     // loads and stores, then do a (aligned) load from the stack slot.
     EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
@@ -733,7 +733,7 @@
       return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
                           isVolatile, isNonTemporal, Alignment);
     }
-    
+
     if (CFP->getValueType(0) == MVT::f64) {
       // If this target supports 64-bit registers, do a single 64-bit store.
       if (getTypeAction(MVT::i64) == Legal) {
@@ -742,7 +742,7 @@
         return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
                             isVolatile, isNonTemporal, Alignment);
       }
-      
+
       if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
         // Otherwise, if the target supports 32-bit registers, use 2 32-bit
         // stores.  If the target supports neither 32- nor 64-bits, this
@@ -1145,7 +1145,7 @@
         Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
                            LD->isVolatile(), LD->isNonTemporal(),
                            LD->getAlignment());
-        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
+        Tmp3 = LegalizeOp(DAG.getNode(ISD::BITCAST, dl, VT, Tmp1));
         Tmp4 = LegalizeOp(Tmp1.getValue(1));
         break;
       }
@@ -1156,7 +1156,7 @@
       AddLegalizedOperand(SDValue(Node, 1), Tmp4);
       return Op.getResNo() ? Tmp4 : Tmp3;
     }
-  
+
     EVT SrcVT = LD->getMemoryVT();
     unsigned SrcWidth = SrcVT.getSizeInBits();
     unsigned Alignment = LD->getAlignment();
@@ -1410,7 +1410,7 @@
           break;
         case TargetLowering::Promote:
           assert(VT.isVector() && "Unknown legal promote case!");
-          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
+          Tmp3 = DAG.getNode(ISD::BITCAST, dl,
                              TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
           Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
                                 ST->getPointerInfo(), isVolatile,
@@ -1629,7 +1629,7 @@
   EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
   if (isTypeLegal(IVT)) {
     // Convert to an integer with the same sign bit.
-    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
+    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
   } else {
     // Store the float to memory, then load the sign part out as an integer.
     MVT LoadTy = TLI.getPointerTy();
@@ -2120,8 +2120,8 @@
                              DAG.getConstant(32, MVT::i64));
     SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
     SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
-    SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr);
-    SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr);
+    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
+    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
                                 TwoP84PlusTwoP52);
     return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
@@ -2134,28 +2134,28 @@
     // algorithm from the x86_64 __floatundidf in compiler_rt.
     if (!isSigned) {
       SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
-          
+
       SDValue ShiftConst = DAG.getConstant(1, TLI.getShiftAmountTy());
       SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
       SDValue AndConst = DAG.getConstant(1, MVT::i64);
       SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
       SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
-      
+
       SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
       SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
-    
+
       // TODO: This really should be implemented using a branch rather than a
-      // select.  We happen to get lucky and machinesink does the right 
-      // thing most of the time.  This would be a good candidate for a 
+      // select.  We happen to get lucky and machinesink does the right
+      // thing most of the time.  This would be a good candidate for a
       //pseudo-op, or, even better, for whole-function isel.
-      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),  
+      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
         Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
       return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
     }
-    
+
     // Otherwise, implement the fully general conversion.
     EVT SHVT = TLI.getShiftAmountTy();
-    
+
     SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
          DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
     SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
@@ -2169,7 +2169,7 @@
                    Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
                    ISD::SETUGE);
     SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
-    
+
     SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
                              DAG.getConstant(32, SHVT));
     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
@@ -2617,7 +2617,7 @@
     break;
   }
   case ISD::FP_ROUND:
-  case ISD::BIT_CONVERT:
+  case ISD::BITCAST:
     Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
                             Node->getValueType(0), dl);
     Results.push_back(Tmp1);
@@ -2739,7 +2739,7 @@
   case ISD::EXTRACT_VECTOR_ELT:
     if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
       // This must be an access of the only element.  Return it.
-      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
+      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
                          Node->getOperand(0));
     else
       Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
@@ -3361,8 +3361,8 @@
   case ISD::XOR: {
     unsigned ExtOp, TruncOp;
     if (OVT.isVector()) {
-      ExtOp   = ISD::BIT_CONVERT;
-      TruncOp = ISD::BIT_CONVERT;
+      ExtOp   = ISD::BITCAST;
+      TruncOp = ISD::BITCAST;
     } else {
       assert(OVT.isInteger() && "Cannot promote logic operation");
       ExtOp   = ISD::ANY_EXTEND;
@@ -3379,8 +3379,8 @@
   case ISD::SELECT: {
     unsigned ExtOp, TruncOp;
     if (Node->getValueType(0).isVector()) {
-      ExtOp   = ISD::BIT_CONVERT;
-      TruncOp = ISD::BIT_CONVERT;
+      ExtOp   = ISD::BITCAST;
+      TruncOp = ISD::BITCAST;
     } else if (Node->getValueType(0).isInteger()) {
       ExtOp   = ISD::ANY_EXTEND;
       TruncOp = ISD::TRUNCATE;
@@ -3407,12 +3407,12 @@
     cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
 
     // Cast the two input vectors.
-    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
-    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
+    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
+    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
 
     // Convert the shuffle mask to the right # elements.
     Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
-    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
+    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
     Results.push_back(Tmp1);
     break;
   }
diff --git a/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
index b150699..28a9389 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
@@ -55,7 +55,7 @@
 #endif
     llvm_unreachable("Do not know how to soften the result of this operator!");
 
-    case ISD::BIT_CONVERT: R = SoftenFloatRes_BIT_CONVERT(N); break;
+    case ISD::BITCAST:     R = SoftenFloatRes_BITCAST(N); break;
     case ISD::BUILD_PAIR:  R = SoftenFloatRes_BUILD_PAIR(N); break;
     case ISD::ConstantFP:
       R = SoftenFloatRes_ConstantFP(cast<ConstantFPSDNode>(N));
@@ -102,7 +102,7 @@
     SetSoftenedFloat(SDValue(N, ResNo), R);
 }
 
-SDValue DAGTypeLegalizer::SoftenFloatRes_BIT_CONVERT(SDNode *N) {
+SDValue DAGTypeLegalizer::SoftenFloatRes_BITCAST(SDNode *N) {
   return BitConvertToInteger(N->getOperand(0));
 }
 
@@ -557,7 +557,7 @@
 #endif
     llvm_unreachable("Do not know how to soften this operator's operand!");
 
-  case ISD::BIT_CONVERT: Res = SoftenFloatOp_BIT_CONVERT(N); break;
+  case ISD::BITCAST:     Res = SoftenFloatOp_BITCAST(N); break;
   case ISD::BR_CC:       Res = SoftenFloatOp_BR_CC(N); break;
   case ISD::FP_ROUND:    Res = SoftenFloatOp_FP_ROUND(N); break;
   case ISD::FP_TO_SINT:  Res = SoftenFloatOp_FP_TO_SINT(N); break;
@@ -669,8 +669,8 @@
   }
 }
 
-SDValue DAGTypeLegalizer::SoftenFloatOp_BIT_CONVERT(SDNode *N) {
-  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), N->getValueType(0),
+SDValue DAGTypeLegalizer::SoftenFloatOp_BITCAST(SDNode *N) {
+  return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), N->getValueType(0),
                      GetSoftenedFloat(N->getOperand(0)));
 }
 
@@ -815,7 +815,7 @@
   case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
   case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
 
-  case ISD::BIT_CONVERT:        ExpandRes_BIT_CONVERT(N, Lo, Hi); break;
+  case ISD::BITCAST:            ExpandRes_BITCAST(N, Lo, Hi); break;
   case ISD::BUILD_PAIR:         ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
   case ISD::EXTRACT_ELEMENT:    ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
   case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
@@ -1220,7 +1220,7 @@
   #endif
       llvm_unreachable("Do not know how to expand this operator's operand!");
 
-    case ISD::BIT_CONVERT:     Res = ExpandOp_BIT_CONVERT(N); break;
+    case ISD::BITCAST:         Res = ExpandOp_BITCAST(N); break;
     case ISD::BUILD_VECTOR:    Res = ExpandOp_BUILD_VECTOR(N); break;
     case ISD::EXTRACT_ELEMENT: Res = ExpandOp_EXTRACT_ELEMENT(N); break;
 
diff --git a/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
index e67ceff..2d73e9b 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
@@ -49,7 +49,7 @@
     llvm_unreachable("Do not know how to promote this operator!");
   case ISD::AssertSext:  Res = PromoteIntRes_AssertSext(N); break;
   case ISD::AssertZext:  Res = PromoteIntRes_AssertZext(N); break;
-  case ISD::BIT_CONVERT: Res = PromoteIntRes_BIT_CONVERT(N); break;
+  case ISD::BITCAST:     Res = PromoteIntRes_BITCAST(N); break;
   case ISD::BSWAP:       Res = PromoteIntRes_BSWAP(N); break;
   case ISD::BUILD_PAIR:  Res = PromoteIntRes_BUILD_PAIR(N); break;
   case ISD::Constant:    Res = PromoteIntRes_Constant(N); break;
@@ -162,7 +162,7 @@
   return Res;
 }
 
-SDValue DAGTypeLegalizer::PromoteIntRes_BIT_CONVERT(SDNode *N) {
+SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) {
   SDValue InOp = N->getOperand(0);
   EVT InVT = InOp.getValueType();
   EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
@@ -179,8 +179,7 @@
   case PromoteInteger:
     if (NOutVT.bitsEq(NInVT))
       // The input promotes to the same size.  Convert the promoted value.
-      return DAG.getNode(ISD::BIT_CONVERT, dl,
-                         NOutVT, GetPromotedInteger(InOp));
+      return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetPromotedInteger(InOp));
     break;
   case SoftenFloat:
     // Promote the integer operand by hand.
@@ -193,7 +192,7 @@
     return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
                        BitConvertToInteger(GetScalarizedVector(InOp)));
   case SplitVector: {
-    // For example, i32 = BIT_CONVERT v2i16 on alpha.  Convert the split
+    // For example, i32 = BITCAST v2i16 on alpha.  Convert the split
     // pieces of the input into integers and reassemble in the final type.
     SDValue Lo, Hi;
     GetSplitVector(N->getOperand(0), Lo, Hi);
@@ -207,12 +206,12 @@
                        EVT::getIntegerVT(*DAG.getContext(),
                                          NOutVT.getSizeInBits()),
                        JoinIntegers(Lo, Hi));
-    return DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, InOp);
+    return DAG.getNode(ISD::BITCAST, dl, NOutVT, InOp);
   }
   case WidenVector:
     if (OutVT.bitsEq(NInVT))
       // The input is widened to the same size.  Convert to the widened value.
-      return DAG.getNode(ISD::BIT_CONVERT, dl, OutVT, GetWidenedVector(InOp));
+      return DAG.getNode(ISD::BITCAST, dl, OutVT, GetWidenedVector(InOp));
   }
 
   return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
@@ -631,7 +630,7 @@
     llvm_unreachable("Do not know how to promote this operator's operand!");
 
   case ISD::ANY_EXTEND:   Res = PromoteIntOp_ANY_EXTEND(N); break;
-  case ISD::BIT_CONVERT:  Res = PromoteIntOp_BIT_CONVERT(N); break;
+  case ISD::BITCAST:      Res = PromoteIntOp_BITCAST(N); break;
   case ISD::BR_CC:        Res = PromoteIntOp_BR_CC(N, OpNo); break;
   case ISD::BRCOND:       Res = PromoteIntOp_BRCOND(N, OpNo); break;
   case ISD::BUILD_PAIR:   Res = PromoteIntOp_BUILD_PAIR(N); break;
@@ -713,7 +712,7 @@
   return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), N->getValueType(0), Op);
 }
 
-SDValue DAGTypeLegalizer::PromoteIntOp_BIT_CONVERT(SDNode *N) {
+SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) {
   // This should only occur in unusual situations like bitcasting to an
   // x86_fp80, so just turn it into a store+load
   return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
@@ -950,7 +949,7 @@
   case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
   case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
 
-  case ISD::BIT_CONVERT:        ExpandRes_BIT_CONVERT(N, Lo, Hi); break;
+  case ISD::BITCAST:            ExpandRes_BITCAST(N, Lo, Hi); break;
   case ISD::BUILD_PAIR:         ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
   case ISD::EXTRACT_ELEMENT:    ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
   case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
@@ -2076,7 +2075,7 @@
   #endif
     llvm_unreachable("Do not know how to expand this operator's operand!");
 
-  case ISD::BIT_CONVERT:       Res = ExpandOp_BIT_CONVERT(N); break;
+  case ISD::BITCAST:           Res = ExpandOp_BITCAST(N); break;
   case ISD::BR_CC:             Res = ExpandIntOp_BR_CC(N); break;
   case ISD::BUILD_VECTOR:      Res = ExpandOp_BUILD_VECTOR(N); break;
   case ISD::EXTRACT_ELEMENT:   Res = ExpandOp_EXTRACT_ELEMENT(N); break;
@@ -2320,7 +2319,7 @@
                              N->getMemoryVT(), isVolatile, isNonTemporal,
                              Alignment);
   }
-  
+
   if (TLI.isLittleEndian()) {
     // Little-endian - low bits are at low addresses.
     GetExpandedInteger(N->getValue(), Lo, Hi);
diff --git a/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
index 40449fb..e2e507e 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
@@ -858,7 +858,7 @@
 /// BitConvertToInteger - Convert to an integer of the same size.
 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
   unsigned BitWidth = Op.getValueType().getSizeInBits();
-  return DAG.getNode(ISD::BIT_CONVERT, Op.getDebugLoc(),
+  return DAG.getNode(ISD::BITCAST, Op.getDebugLoc(),
                      EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
 }
 
@@ -869,7 +869,7 @@
   unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits();
   EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
   unsigned NumElts = Op.getValueType().getVectorNumElements();
-  return DAG.getNode(ISD::BIT_CONVERT, Op.getDebugLoc(),
+  return DAG.getNode(ISD::BITCAST, Op.getDebugLoc(),
                      EVT::getVectorVT(*DAG.getContext(), EltNVT, NumElts), Op);
 }
 
diff --git a/lib/CodeGen/SelectionDAG/LegalizeTypes.h b/lib/CodeGen/SelectionDAG/LegalizeTypes.h
index d560292..ca5b53c 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeTypes.h
+++ b/lib/CodeGen/SelectionDAG/LegalizeTypes.h
@@ -99,7 +99,7 @@
           return SoftenFloat;
         return ExpandFloat;
       }
-        
+
       if (VT.getVectorNumElements() == 1)
         return ScalarizeVector;
       return SplitVector;
@@ -244,7 +244,7 @@
   SDValue PromoteIntRes_AssertZext(SDNode *N);
   SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
   SDValue PromoteIntRes_Atomic2(AtomicSDNode *N);
-  SDValue PromoteIntRes_BIT_CONVERT(SDNode *N);
+  SDValue PromoteIntRes_BITCAST(SDNode *N);
   SDValue PromoteIntRes_BSWAP(SDNode *N);
   SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
   SDValue PromoteIntRes_Constant(SDNode *N);
@@ -278,7 +278,7 @@
   // Integer Operand Promotion.
   bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
   SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
-  SDValue PromoteIntOp_BIT_CONVERT(SDNode *N);
+  SDValue PromoteIntOp_BITCAST(SDNode *N);
   SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
   SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
   SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
@@ -352,7 +352,7 @@
 
   // Integer Operand Expansion.
   bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
-  SDValue ExpandIntOp_BIT_CONVERT(SDNode *N);
+  SDValue ExpandIntOp_BITCAST(SDNode *N);
   SDValue ExpandIntOp_BR_CC(SDNode *N);
   SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
   SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
@@ -387,7 +387,7 @@
 
   // Result Float to Integer Conversion.
   void SoftenFloatResult(SDNode *N, unsigned OpNo);
-  SDValue SoftenFloatRes_BIT_CONVERT(SDNode *N);
+  SDValue SoftenFloatRes_BITCAST(SDNode *N);
   SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
   SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
   SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
@@ -426,7 +426,7 @@
 
   // Operand Float to Integer Conversion.
   bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
-  SDValue SoftenFloatOp_BIT_CONVERT(SDNode *N);
+  SDValue SoftenFloatOp_BITCAST(SDNode *N);
   SDValue SoftenFloatOp_BR_CC(SDNode *N);
   SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
   SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
@@ -515,7 +515,7 @@
   SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
   SDValue ScalarizeVecRes_InregOp(SDNode *N);
 
-  SDValue ScalarizeVecRes_BIT_CONVERT(SDNode *N);
+  SDValue ScalarizeVecRes_BITCAST(SDNode *N);
   SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
   SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
   SDValue ScalarizeVecRes_FPOWI(SDNode *N);
@@ -532,7 +532,7 @@
 
   // Vector Operand Scalarization: <1 x ty> -> ty.
   bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
-  SDValue ScalarizeVecOp_BIT_CONVERT(SDNode *N);
+  SDValue ScalarizeVecOp_BITCAST(SDNode *N);
   SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
   SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
   SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
@@ -557,7 +557,7 @@
   void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
   void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
 
-  void SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo, SDValue &Hi);
+  void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
   void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
   void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
   void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
@@ -577,7 +577,7 @@
   bool SplitVectorOperand(SDNode *N, unsigned OpNo);
   SDValue SplitVecOp_UnaryOp(SDNode *N);
 
-  SDValue SplitVecOp_BIT_CONVERT(SDNode *N);
+  SDValue SplitVecOp_BITCAST(SDNode *N);
   SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
   SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
   SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
@@ -603,7 +603,7 @@
 
   // Widen Vector Result Promotion.
   void WidenVectorResult(SDNode *N, unsigned ResNo);
-  SDValue WidenVecRes_BIT_CONVERT(SDNode* N);
+  SDValue WidenVecRes_BITCAST(SDNode* N);
   SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
   SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
   SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
@@ -628,7 +628,7 @@
 
   // Widen Vector Operand.
   bool WidenVectorOperand(SDNode *N, unsigned ResNo);
-  SDValue WidenVecOp_BIT_CONVERT(SDNode *N);
+  SDValue WidenVecOp_BITCAST(SDNode *N);
   SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
   SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
   SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
@@ -721,7 +721,7 @@
   }
 
   // Generic Result Expansion.
-  void ExpandRes_BIT_CONVERT       (SDNode *N, SDValue &Lo, SDValue &Hi);
+  void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
   void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
   void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
   void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
@@ -729,7 +729,7 @@
   void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
 
   // Generic Operand Expansion.
-  SDValue ExpandOp_BIT_CONVERT      (SDNode *N);
+  SDValue ExpandOp_BITCAST          (SDNode *N);
   SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
   SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
   SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
diff --git a/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp b/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp
index 0c7281b..a75ae87 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp
@@ -32,8 +32,7 @@
 // little/big-endian machines, followed by the Hi/Lo part.  This means that
 // they cannot be used as is on vectors, for which Lo is always stored first.
 
-void DAGTypeLegalizer::ExpandRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
-                                             SDValue &Hi) {
+void DAGTypeLegalizer::ExpandRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi) {
   EVT OutVT = N->getValueType(0);
   EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
   SDValue InOp = N->getOperand(0);
@@ -50,31 +49,31 @@
     case SoftenFloat:
       // Convert the integer operand instead.
       SplitInteger(GetSoftenedFloat(InOp), Lo, Hi);
-      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Lo);
-      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Hi);
+      Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo);
+      Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi);
       return;
     case ExpandInteger:
     case ExpandFloat:
       // Convert the expanded pieces of the input.
       GetExpandedOp(InOp, Lo, Hi);
-      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Lo);
-      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Hi);
+      Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo);
+      Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi);
       return;
     case SplitVector:
       GetSplitVector(InOp, Lo, Hi);
       if (TLI.isBigEndian())
         std::swap(Lo, Hi);
-      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Lo);
-      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Hi);
+      Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo);
+      Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi);
       return;
     case ScalarizeVector:
       // Convert the element instead.
       SplitInteger(BitConvertToInteger(GetScalarizedVector(InOp)), Lo, Hi);
-      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Lo);
-      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Hi);
+      Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo);
+      Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi);
       return;
     case WidenVector: {
-      assert(!(InVT.getVectorNumElements() & 1) && "Unsupported BIT_CONVERT");
+      assert(!(InVT.getVectorNumElements() & 1) && "Unsupported BITCAST");
       InOp = GetWidenedVector(InOp);
       EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
                                    InVT.getVectorNumElements()/2);
@@ -84,19 +83,19 @@
                        DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
       if (TLI.isBigEndian())
         std::swap(Lo, Hi);
-      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Lo);
-      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Hi);
+      Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo);
+      Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi);
       return;
     }
   }
 
   if (InVT.isVector() && OutVT.isInteger()) {
-    // Handle cases like i64 = BIT_CONVERT v1i64 on x86, where the operand
+    // Handle cases like i64 = BITCAST v1i64 on x86, where the operand
     // is legal but the result is not.
     EVT NVT = EVT::getVectorVT(*DAG.getContext(), NOutVT, 2);
 
     if (isTypeLegal(NVT)) {
-      SDValue CastInOp = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, InOp);
+      SDValue CastInOp = DAG.getNode(ISD::BITCAST, dl, NVT, InOp);
       Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NOutVT, CastInOp,
                        DAG.getIntPtrConstant(0));
       Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NOutVT, CastInOp,
@@ -173,7 +172,7 @@
   EVT OldVT = N->getValueType(0);
   EVT NewVT = TLI.getTypeToTransformTo(*DAG.getContext(), OldVT);
 
-  SDValue NewVec = DAG.getNode(ISD::BIT_CONVERT, dl,
+  SDValue NewVec = DAG.getNode(ISD::BITCAST, dl,
                                EVT::getVectorVT(*DAG.getContext(),
                                                 NewVT, 2*OldElts),
                                OldVec);
@@ -262,14 +261,14 @@
 // Generic Operand Expansion.
 //===--------------------------------------------------------------------===//
 
-SDValue DAGTypeLegalizer::ExpandOp_BIT_CONVERT(SDNode *N) {
+SDValue DAGTypeLegalizer::ExpandOp_BITCAST(SDNode *N) {
   DebugLoc dl = N->getDebugLoc();
   if (N->getValueType(0).isVector()) {
     // An illegal expanding type is being converted to a legal vector type.
     // Make a two element vector out of the expanded parts and convert that
     // instead, but only if the new vector type is legal (otherwise there
     // is no point, and it might create expansion loops).  For example, on
-    // x86 this turns v1i64 = BIT_CONVERT i64 into v1i64 = BIT_CONVERT v2i32.
+    // x86 this turns v1i64 = BITCAST i64 into v1i64 = BITCAST v2i32.
     EVT OVT = N->getOperand(0).getValueType();
     EVT NVT = EVT::getVectorVT(*DAG.getContext(),
                                TLI.getTypeToTransformTo(*DAG.getContext(), OVT),
@@ -283,7 +282,7 @@
         std::swap(Parts[0], Parts[1]);
 
       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Parts, 2);
-      return DAG.getNode(ISD::BIT_CONVERT, dl, N->getValueType(0), Vec);
+      return DAG.getNode(ISD::BITCAST, dl, N->getValueType(0), Vec);
     }
   }
 
@@ -322,7 +321,7 @@
                                &NewElts[0], NewElts.size());
 
   // Convert the new vector to the old vector type.
-  return DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, NewVec);
+  return DAG.getNode(ISD::BITCAST, dl, VecVT, NewVec);
 }
 
 SDValue DAGTypeLegalizer::ExpandOp_EXTRACT_ELEMENT(SDNode *N) {
@@ -347,7 +346,7 @@
   // Bitconvert to a vector of twice the length with elements of the expanded
   // type, insert the expanded vector elements, and then convert back.
   EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewEVT, NumElts*2);
-  SDValue NewVec = DAG.getNode(ISD::BIT_CONVERT, dl,
+  SDValue NewVec = DAG.getNode(ISD::BITCAST, dl,
                                NewVecVT, N->getOperand(0));
 
   SDValue Lo, Hi;
@@ -363,7 +362,7 @@
   NewVec =  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, NewVec, Hi, Idx);
 
   // Convert the new vector to the old vector type.
-  return DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, NewVec);
+  return DAG.getNode(ISD::BITCAST, dl, VecVT, NewVec);
 }
 
 SDValue DAGTypeLegalizer::ExpandOp_SCALAR_TO_VECTOR(SDNode *N) {
diff --git a/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp b/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
index 621c087..167dbe0 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
@@ -241,14 +241,14 @@
 
   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
     if (Op.getOperand(j).getValueType().isVector())
-      Operands[j] = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Op.getOperand(j));
+      Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
     else
       Operands[j] = Op.getOperand(j);
   }
 
   Op = DAG.getNode(Op.getOpcode(), dl, NVT, &Operands[0], Operands.size());
 
-  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Op);
+  return DAG.getNode(ISD::BITCAST, dl, VT, Op);
 }
 
 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
diff --git a/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
index 2a85bd7..7871cb4 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
@@ -46,7 +46,7 @@
 #endif
     llvm_unreachable("Do not know how to scalarize the result of this operator!");
 
-  case ISD::BIT_CONVERT:       R = ScalarizeVecRes_BIT_CONVERT(N); break;
+  case ISD::BITCAST:           R = ScalarizeVecRes_BITCAST(N); break;
   case ISD::BUILD_VECTOR:      R = N->getOperand(0); break;
   case ISD::CONVERT_RNDSAT:    R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
   case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
@@ -122,9 +122,9 @@
                      LHS.getValueType(), LHS, RHS);
 }
 
-SDValue DAGTypeLegalizer::ScalarizeVecRes_BIT_CONVERT(SDNode *N) {
+SDValue DAGTypeLegalizer::ScalarizeVecRes_BITCAST(SDNode *N) {
   EVT NewVT = N->getValueType(0).getVectorElementType();
-  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
+  return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
                      NewVT, N->getOperand(0));
 }
 
@@ -296,8 +296,8 @@
       dbgs() << "\n";
 #endif
       llvm_unreachable("Do not know how to scalarize this operator's operand!");
-    case ISD::BIT_CONVERT:
-      Res = ScalarizeVecOp_BIT_CONVERT(N);
+    case ISD::BITCAST:
+      Res = ScalarizeVecOp_BITCAST(N);
       break;
     case ISD::CONCAT_VECTORS:
       Res = ScalarizeVecOp_CONCAT_VECTORS(N);
@@ -326,11 +326,11 @@
   return false;
 }
 
-/// ScalarizeVecOp_BIT_CONVERT - If the value to convert is a vector that needs
+/// ScalarizeVecOp_BITCAST - If the value to convert is a vector that needs
 /// to be scalarized, it must be <1 x ty>.  Convert the element instead.
-SDValue DAGTypeLegalizer::ScalarizeVecOp_BIT_CONVERT(SDNode *N) {
+SDValue DAGTypeLegalizer::ScalarizeVecOp_BITCAST(SDNode *N) {
   SDValue Elt = GetScalarizedVector(N->getOperand(0));
-  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
+  return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
                      N->getValueType(0), Elt);
 }
 
@@ -406,7 +406,7 @@
   case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
   case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
 
-  case ISD::BIT_CONVERT:       SplitVecRes_BIT_CONVERT(N, Lo, Hi); break;
+  case ISD::BITCAST:           SplitVecRes_BITCAST(N, Lo, Hi); break;
   case ISD::BUILD_VECTOR:      SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
   case ISD::CONCAT_VECTORS:    SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
   case ISD::CONVERT_RNDSAT:    SplitVecRes_CONVERT_RNDSAT(N, Lo, Hi); break;
@@ -496,8 +496,8 @@
   Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, RHSHi);
 }
 
-void DAGTypeLegalizer::SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
-                                               SDValue &Hi) {
+void DAGTypeLegalizer::SplitVecRes_BITCAST(SDNode *N, SDValue &Lo,
+                                           SDValue &Hi) {
   // We know the result is a vector.  The input may be either a vector or a
   // scalar value.
   EVT LoVT, HiVT;
@@ -525,8 +525,8 @@
       GetExpandedOp(InOp, Lo, Hi);
       if (TLI.isBigEndian())
         std::swap(Lo, Hi);
-      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
-      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
+      Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
+      Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
       return;
     }
     break;
@@ -534,8 +534,8 @@
     // If the input is a vector that needs to be split, convert each split
     // piece of the input now.
     GetSplitVector(InOp, Lo, Hi);
-    Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
-    Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
+    Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
+    Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
     return;
   }
 
@@ -549,8 +549,8 @@
 
   if (TLI.isBigEndian())
     std::swap(Lo, Hi);
-  Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
-  Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
+  Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
+  Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
 }
 
 void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
@@ -978,7 +978,7 @@
 #endif
       llvm_unreachable("Do not know how to split this operator's operand!");
 
-    case ISD::BIT_CONVERT:       Res = SplitVecOp_BIT_CONVERT(N); break;
+    case ISD::BITCAST:           Res = SplitVecOp_BITCAST(N); break;
     case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
     case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
     case ISD::CONCAT_VECTORS:    Res = SplitVecOp_CONCAT_VECTORS(N); break;
@@ -1034,8 +1034,8 @@
   return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
 }
 
-SDValue DAGTypeLegalizer::SplitVecOp_BIT_CONVERT(SDNode *N) {
-  // For example, i64 = BIT_CONVERT v4i16 on alpha.  Typically the vector will
+SDValue DAGTypeLegalizer::SplitVecOp_BITCAST(SDNode *N) {
+  // For example, i64 = BITCAST v4i16 on alpha.  Typically the vector will
   // end up being split all the way down to individual components.  Convert the
   // split pieces into integers and reassemble.
   SDValue Lo, Hi;
@@ -1046,7 +1046,7 @@
   if (TLI.isBigEndian())
     std::swap(Lo, Hi);
 
-  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), N->getValueType(0),
+  return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), N->getValueType(0),
                      JoinIntegers(Lo, Hi));
 }
 
@@ -1151,7 +1151,7 @@
 
 SDValue DAGTypeLegalizer::SplitVecOp_CONCAT_VECTORS(SDNode *N) {
   DebugLoc DL = N->getDebugLoc();
-  
+
   // The input operands all must have the same type, and we know the result the
   // result type is valid.  Convert this to a buildvector which extracts all the
   // input elements.
@@ -1168,7 +1168,7 @@
 
     }
   }
-  
+
   return DAG.getNode(ISD::BUILD_VECTOR, DL, N->getValueType(0),
                      &Elts[0], Elts.size());
 }
@@ -1197,7 +1197,7 @@
 #endif
     llvm_unreachable("Do not know how to widen the result of this operator!");
 
-  case ISD::BIT_CONVERT:       Res = WidenVecRes_BIT_CONVERT(N); break;
+  case ISD::BITCAST:           Res = WidenVecRes_BITCAST(N); break;
   case ISD::BUILD_VECTOR:      Res = WidenVecRes_BUILD_VECTOR(N); break;
   case ISD::CONCAT_VECTORS:    Res = WidenVecRes_CONCAT_VECTORS(N); break;
   case ISD::CONVERT_RNDSAT:    Res = WidenVecRes_CONVERT_RNDSAT(N); break;
@@ -1304,11 +1304,11 @@
     SDValue InOp2 = GetWidenedVector(N->getOperand(1));
     return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2);
   }
-  
+
   // No legal vector version so unroll the vector operation and then widen.
   if (NumElts == 1)
     return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
-  
+
   // Since the operation can trap, apply operation on the original vector.
   EVT MaxVT = VT;
   SDValue InOp1 = GetWidenedVector(N->getOperand(0));
@@ -1341,9 +1341,9 @@
 
     if (NumElts == 1) {
       for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) {
-        SDValue EOp1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT, 
+        SDValue EOp1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
                                    InOp1, DAG.getIntPtrConstant(Idx));
-        SDValue EOp2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT, 
+        SDValue EOp2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
                                    InOp2, DAG.getIntPtrConstant(Idx));
         ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, WidenEltVT,
                                              EOp1, EOp2);
@@ -1411,7 +1411,7 @@
     if (VT == WidenVT)
       return ConcatOps[0];
   }
-  
+
   // add undefs of size MaxVT until ConcatOps grows to length of WidenVT
   unsigned NumOps = WidenVT.getVectorNumElements()/MaxVT.getVectorNumElements();
   if (NumOps != ConcatEnd ) {
@@ -1532,7 +1532,7 @@
                      WidenVT, WidenLHS, DAG.getValueType(ExtVT));
 }
 
-SDValue DAGTypeLegalizer::WidenVecRes_BIT_CONVERT(SDNode *N) {
+SDValue DAGTypeLegalizer::WidenVecRes_BITCAST(SDNode *N) {
   SDValue InOp = N->getOperand(0);
   EVT InVT = InOp.getValueType();
   EVT VT = N->getValueType(0);
@@ -1551,7 +1551,7 @@
     InOp = GetPromotedInteger(InOp);
     InVT = InOp.getValueType();
     if (WidenVT.bitsEq(InVT))
-      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, InOp);
+      return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
     break;
   case SoftenFloat:
   case ExpandInteger:
@@ -1566,7 +1566,7 @@
     InVT = InOp.getValueType();
     if (WidenVT.bitsEq(InVT))
       // The input widens to the same size. Convert to the widen value.
-      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, InOp);
+      return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
     break;
   }
 
@@ -1606,7 +1606,7 @@
       else
         NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl,
                              NewInVT, &Ops[0], NewNumElts);
-      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, NewVec);
+      return DAG.getNode(ISD::BITCAST, dl, WidenVT, NewVec);
     }
   }
 
@@ -1982,7 +1982,7 @@
 #endif
     llvm_unreachable("Do not know how to widen this operator's operand!");
 
-  case ISD::BIT_CONVERT:        Res = WidenVecOp_BIT_CONVERT(N); break;
+  case ISD::BITCAST:            Res = WidenVecOp_BITCAST(N); break;
   case ISD::CONCAT_VECTORS:     Res = WidenVecOp_CONCAT_VECTORS(N); break;
   case ISD::EXTRACT_SUBVECTOR:  Res = WidenVecOp_EXTRACT_SUBVECTOR(N); break;
   case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
@@ -2041,7 +2041,7 @@
   return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
 }
 
-SDValue DAGTypeLegalizer::WidenVecOp_BIT_CONVERT(SDNode *N) {
+SDValue DAGTypeLegalizer::WidenVecOp_BITCAST(SDNode *N) {
   EVT VT = N->getValueType(0);
   SDValue InOp = GetWidenedVector(N->getOperand(0));
   EVT InWidenVT = InOp.getValueType();
@@ -2055,7 +2055,7 @@
     unsigned NewNumElts = InWidenSize / Size;
     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts);
     if (TLI.isTypeLegal(NewVT)) {
-      SDValue BitOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, InOp);
+      SDValue BitOp = DAG.getNode(ISD::BITCAST, dl, NewVT, InOp);
       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
                          DAG.getIntPtrConstant(0));
     }
@@ -2144,7 +2144,7 @@
   if (Width == WidenEltWidth)
     return RetVT;
 
-  // See if there is larger legal integer than the element type to load/store 
+  // See if there is larger legal integer than the element type to load/store
   unsigned VT;
   for (VT = (unsigned)MVT::LAST_INTEGER_VALUETYPE;
        VT >= (unsigned)MVT::FIRST_INTEGER_VALUETYPE; --VT) {
@@ -2199,7 +2199,7 @@
     if (NewLdTy != LdTy) {
       NumElts = Width / NewLdTy.getSizeInBits();
       NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewLdTy, NumElts);
-      VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, VecOp);
+      VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, VecOp);
       // Readjust position and vector position based on new load type
       Idx = Idx * LdTy.getSizeInBits() / NewLdTy.getSizeInBits();
       LdTy = NewLdTy;
@@ -2207,7 +2207,7 @@
     VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOps[i],
                         DAG.getIntPtrConstant(Idx++));
   }
-  return DAG.getNode(ISD::BIT_CONVERT, dl, VecTy, VecOp);
+  return DAG.getNode(ISD::BITCAST, dl, VecTy, VecOp);
 }
 
 SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVector<SDValue, 16> &LdChain,
@@ -2247,7 +2247,7 @@
       unsigned NumElts = WidenWidth / NewVTWidth;
       EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
       SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
-      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, VecOp);
+      return DAG.getNode(ISD::BITCAST, dl, WidenVT, VecOp);
     }
     if (NewVT == WidenVT)
       return LdOp;
@@ -2297,7 +2297,7 @@
   if (!LdOps[0].getValueType().isVector())
     // All the loads are scalar loads.
     return BuildVectorFromScalar(DAG, WidenVT, LdOps, 0, End);
-  
+
   // If the load contains vectors, build the vector using concat vector.
   // All of the vectors used to loads are power of 2 and the scalars load
   // can be combined to make a power of 2 vector.
@@ -2441,7 +2441,7 @@
       // Cast the vector to the scalar type we can store
       unsigned NumElts = ValWidth / NewVTWidth;
       EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
-      SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, ValOp);
+      SDValue VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, ValOp);
       // Readjust index position based on new vector type
       Idx = Idx * ValEltWidth / NewVTWidth;
       do {
@@ -2474,7 +2474,7 @@
   bool     isNonTemporal = ST->isNonTemporal();
   SDValue  ValOp = GetWidenedVector(ST->getValue());
   DebugLoc dl = ST->getDebugLoc();
-  
+
   EVT StVT = ST->getMemoryVT();
   EVT ValVT = ValOp.getValueType();
 
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
index 7ef8f7c..143f10d 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
@@ -111,7 +111,7 @@
 /// BUILD_VECTOR where all of the elements are ~0 or undef.
 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
   // Look through a bit convert.
-  if (N->getOpcode() == ISD::BIT_CONVERT)
+  if (N->getOpcode() == ISD::BITCAST)
     N = N->getOperand(0).getNode();
 
   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
@@ -152,7 +152,7 @@
 /// BUILD_VECTOR where all of the elements are 0 or undef.
 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
   // Look through a bit convert.
-  if (N->getOpcode() == ISD::BIT_CONVERT)
+  if (N->getOpcode() == ISD::BITCAST)
     N = N->getOperand(0).getNode();
 
   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
@@ -1356,7 +1356,7 @@
   void *IP = 0;
   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
     return SDValue(E, 0);
-  
+
   SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
   CSEMap.InsertNode(N, IP);
   AllNodes.push_back(N);
@@ -1406,11 +1406,11 @@
   FoldingSetNodeID ID;
   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
   ID.AddPointer(MD);
-  
+
   void *IP = 0;
   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
     return SDValue(E, 0);
-  
+
   SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
   CSEMap.InsertNode(N, IP);
   AllNodes.push_back(N);
@@ -2365,7 +2365,7 @@
                                  APFloat::rmNearestTiesToEven);
       return getConstantFP(apf, VT);
     }
-    case ISD::BIT_CONVERT:
+    case ISD::BITCAST:
       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
         return getConstantFP(Val.bitsToFloat(), VT);
       else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
@@ -2416,7 +2416,7 @@
         APInt api(VT.getSizeInBits(), 2, x);
         return getConstant(api, VT);
       }
-      case ISD::BIT_CONVERT:
+      case ISD::BITCAST:
         if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
           return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
         else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
@@ -2518,13 +2518,13 @@
         return Operand.getNode()->getOperand(0);
     }
     break;
-  case ISD::BIT_CONVERT:
+  case ISD::BITCAST:
     // Basic sanity checking.
     assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
-           && "Cannot BIT_CONVERT between types of different sizes!");
+           && "Cannot BITCAST between types of different sizes!");
     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
-    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
-      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
+    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
+      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
     if (OpOpcode == ISD::UNDEF)
       return getUNDEF(VT);
     break;
@@ -3060,7 +3060,7 @@
   case ISD::VECTOR_SHUFFLE:
     llvm_unreachable("should use getVectorShuffle constructor!");
     break;
-  case ISD::BIT_CONVERT:
+  case ISD::BITCAST:
     // Fold bit_convert nodes from a type to themselves.
     if (N1.getValueType() == VT)
       return N1;
@@ -3177,7 +3177,7 @@
     else if (VT.isVector()) {
       unsigned NumElts = VT.getVectorNumElements();
       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
-      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
+      return DAG.getNode(ISD::BITCAST, dl, VT,
                          DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
                                                              EltVT, NumElts)));
     } else
@@ -3274,7 +3274,7 @@
     if (VT.bitsGT(LVT))
       VT = LVT;
   }
-  
+
   // If we're optimizing for size, and there is a limit, bump the maximum number
   // of operations inserted down to 4.  This is a wild guess that approximates
   // the size of a call to memcpy or memset (3 arguments + call).
@@ -3340,7 +3340,7 @@
   bool CopyFromStr = isMemSrcFromString(Src, Str);
   bool isZeroStr = CopyFromStr && Str.empty();
   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy();
-  
+
   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
                                 (DstAlignCanChange ? 0 : Align),
                                 (isZeroStr ? 0 : SrcAlign),
@@ -3682,7 +3682,7 @@
   if (Result.getNode())
     return Result;
 
-  // Emit a library call.  
+  // Emit a library call.
   const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
   TargetLowering::ArgListTy Args;
   TargetLowering::ArgListEntry Entry;
@@ -3912,7 +3912,7 @@
       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
     return MachinePointerInfo();
-  
+
   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
   return MachinePointerInfo::getFixedStack(FI, Offset+
                        cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
@@ -3930,7 +3930,7 @@
     return InferPointerInfo(Ptr);
   return MachinePointerInfo();
 }
-  
+
 
 SDValue
 SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
@@ -3947,12 +3947,12 @@
     Flags |= MachineMemOperand::MOVolatile;
   if (isNonTemporal)
     Flags |= MachineMemOperand::MONonTemporal;
-  
+
   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
   // clients.
   if (PtrInfo.V == 0)
     PtrInfo = InferPointerInfo(Ptr, Offset);
-  
+
   MachineFunction &MF = getMachineFunction();
   MachineMemOperand *MMO =
     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
@@ -3961,7 +3961,7 @@
 }
 
 SDValue
-SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 
+SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
                       EVT VT, DebugLoc dl, SDValue Chain,
                       SDValue Ptr, SDValue Offset, EVT MemVT,
                       MachineMemOperand *MMO) {
@@ -4052,7 +4052,7 @@
     Flags |= MachineMemOperand::MOVolatile;
   if (isNonTemporal)
     Flags |= MachineMemOperand::MONonTemporal;
-  
+
   if (PtrInfo.V == 0)
     PtrInfo = InferPointerInfo(Ptr);
 
@@ -4101,7 +4101,7 @@
     Flags |= MachineMemOperand::MOVolatile;
   if (isNonTemporal)
     Flags |= MachineMemOperand::MONonTemporal;
-  
+
   if (PtrInfo.V == 0)
     PtrInfo = InferPointerInfo(Ptr);
 
@@ -5431,7 +5431,7 @@
 }
 
 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
-                     const SDValue *Ops, unsigned NumOps, EVT memvt, 
+                     const SDValue *Ops, unsigned NumOps, EVT memvt,
                      MachineMemOperand *mmo)
    : SDNode(Opc, dl, VTs, Ops, NumOps),
      MemoryVT(memvt), MMO(mmo) {
@@ -5450,7 +5450,7 @@
 namespace {
   struct EVTArray {
     std::vector<EVT> VTs;
-    
+
     EVTArray() {
       VTs.reserve(MVT::LAST_VALUETYPE);
       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
@@ -5542,8 +5542,8 @@
 
 /// reachesChainWithoutSideEffects - Return true if this operand (which must
 /// be a chain) reaches the specified operand without crossing any
-/// side-effecting instructions on any chain path.  In practice, this looks 
-/// through token factors and non-volatile loads.  In order to remain efficient, 
+/// side-effecting instructions on any chain path.  In practice, this looks
+/// through token factors and non-volatile loads.  In order to remain efficient,
 /// this only looks a couple of nodes in, it does not do an exhaustive search.
 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
                                                unsigned Depth) const {
@@ -5788,7 +5788,7 @@
   case ISD::UINT_TO_FP:  return "uint_to_fp";
   case ISD::FP_TO_SINT:  return "fp_to_sint";
   case ISD::FP_TO_UINT:  return "fp_to_uint";
-  case ISD::BIT_CONVERT: return "bit_convert";
+  case ISD::BITCAST:     return "bit_convert";
   case ISD::FP16_TO_FP32: return "fp16_to_fp32";
   case ISD::FP32_TO_FP16: return "fp32_to_fp16";
 
@@ -6051,7 +6051,7 @@
     const char *AM = getIndexedModeName(ST->getAddressingMode());
     if (*AM)
       OS << ", " << AM;
-    
+
     OS << ">";
   } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
     OS << "<" << *M->getMemOperand() << ">";
@@ -6102,7 +6102,7 @@
 
 static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
                                   const SelectionDAG *G, unsigned depth,
-                                  unsigned indent) 
+                                  unsigned indent)
 {
   if (depth == 0)
     return;
@@ -6123,7 +6123,7 @@
 void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
                             unsigned depth) const {
   printrWithDepthHelper(OS, this, G, depth, 0);
-} 
+}
 
 void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
   // Don't print impossibly deep things.
@@ -6137,7 +6137,7 @@
 void SDNode::dumprFull(const SelectionDAG *G) const {
   // Don't print impossibly deep things.
   dumprWithDepth(G, 100);
-} 
+}
 
 static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
@@ -6221,10 +6221,10 @@
 }
 
 
-/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a 
-/// location that is 'Dist' units away from the location that the 'Base' load 
+/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
+/// location that is 'Dist' units away from the location that the 'Base' load
 /// is loading from.
-bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base, 
+bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
                                      unsigned Bytes, int Dist) const {
   if (LD->getChain() != Base->getChain())
     return false;
@@ -6477,7 +6477,7 @@
   // If this node has already been checked, don't check it again.
   if (Checked.count(N))
     return;
-  
+
   // If a node has already been visited on this depth-first walk, reject it as
   // a cycle.
   if (!Visited.insert(N)) {
@@ -6486,10 +6486,10 @@
     errs() << "Detected cycle in SelectionDAG\n";
     abort();
   }
-  
+
   for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
     checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
-  
+
   Checked.insert(N);
   Visited.erase(N);
 }
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
index ff6fe9d..d00643f 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
@@ -131,8 +131,8 @@
         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
                               RoundParts / 2, PartVT, HalfVT);
       } else {
-        Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]);
-        Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]);
+        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
+        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
       }
 
       if (TLI.isBigEndian())
@@ -164,8 +164,8 @@
       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
              "Unexpected split");
       SDValue Lo, Hi;
-      Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]);
-      Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]);
+      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
+      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
       if (TLI.isBigEndian())
         std::swap(Lo, Hi);
       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
@@ -207,7 +207,7 @@
   }
 
   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
-    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
+    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
 
   llvm_unreachable("Unknown mismatch!");
   return SDValue();
@@ -284,7 +284,7 @@
     }
 
     // Vector/Vector bitcast.
-    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
+    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
   }
 
   assert(ValueVT.getVectorElementType() == PartVT &&
@@ -342,7 +342,7 @@
   } else if (PartBits == ValueVT.getSizeInBits()) {
     // Different types of the same size.
     assert(NumParts == 1 && PartVT != ValueVT);
-    Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
+    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
     // If the parts cover less bits than value has, truncate the value.
     assert(PartVT.isInteger() && ValueVT.isInteger() &&
@@ -385,7 +385,7 @@
 
   // The number of parts is a power of 2.  Repeatedly bisect the value using
   // EXTRACT_ELEMENT.
-  Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL,
+  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
                          EVT::getIntegerVT(*DAG.getContext(),
                                            ValueVT.getSizeInBits()),
                          Val);
@@ -403,8 +403,8 @@
                           ThisVT, Part0, DAG.getIntPtrConstant(0));
 
       if (ThisBits == PartBits && ThisVT != PartVT) {
-        Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0);
-        Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1);
+        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
+        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
       }
     }
   }
@@ -428,7 +428,7 @@
       // Nothing to do.
     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
       // Bitconvert vector->vector case.
-      Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
+      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
     } else if (PartVT.isVector() &&
                PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
                PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
@@ -2579,9 +2579,9 @@
   EVT DestVT = TLI.getValueType(I.getType());
 
   // BitCast assures us that source and destination are the same size so this is
-  // either a BIT_CONVERT or a no-op.
+  // either a BITCAST or a no-op.
   if (DestVT != N.getValueType())
-    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
+    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
                              DestVT, N)); // convert types.
   else
     setValue(&I, N);            // noop cast.
@@ -3021,7 +3021,7 @@
     // Do not serialize non-volatile loads against each other.
     Root = DAG.getRoot();
   }
-  
+
   SmallVector<SDValue, 4> Values(NumValues);
   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
                                           NumValues));
@@ -3198,7 +3198,7 @@
   if (!I.getType()->isVoidTy()) {
     if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
       EVT VT = TLI.getValueType(PTy);
-      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
+      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
     }
 
     setValue(&I, Result);
@@ -3217,7 +3217,7 @@
                            DAG.getConstant(0x007fffff, MVT::i32));
   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
                            DAG.getConstant(0x3f800000, MVT::i32));
-  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
+  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
 }
 
 /// GetExponent - Get the exponent:
@@ -3316,13 +3316,13 @@
       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
                                getF32Constant(DAG, 0x3f7f5e7e));
-      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
+      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
 
       // Add the exponent into the result in integer domain.
       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
                                TwoToFracPartOfX, IntegerPartOfX);
 
-      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
+      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
       // For floating-point precision of 12:
       //
@@ -3342,13 +3342,13 @@
       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
                                getF32Constant(DAG, 0x3f7ff8fd));
-      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
+      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
 
       // Add the exponent into the result in integer domain.
       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
                                TwoToFracPartOfX, IntegerPartOfX);
 
-      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
+      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
       // For floating-point precision of 18:
       //
@@ -3380,14 +3380,14 @@
       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
                                 getF32Constant(DAG, 0x3f800000));
-      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
+      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
                                              MVT::i32, t13);
 
       // Add the exponent into the result in integer domain.
       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
                                 TwoToFracPartOfX, IntegerPartOfX);
 
-      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
+      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
     }
   } else {
     // No special expansion.
@@ -3409,7 +3409,7 @@
   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
     SDValue Op = getValue(I.getArgOperand(0));
-    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
+    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
 
     // Scale the exponent by log(2) [0.69314718f].
     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
@@ -3519,7 +3519,7 @@
   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
     SDValue Op = getValue(I.getArgOperand(0));
-    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
+    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
 
     // Get the exponent.
     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
@@ -3628,7 +3628,7 @@
   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
     SDValue Op = getValue(I.getArgOperand(0));
-    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
+    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
 
     // Scale the exponent by log10(2) [0.30102999f].
     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
@@ -3756,11 +3756,11 @@
       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
                                getF32Constant(DAG, 0x3f7f5e7e));
-      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
+      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
       SDValue TwoToFractionalPartOfX =
         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
 
-      result = DAG.getNode(ISD::BIT_CONVERT, dl,
+      result = DAG.getNode(ISD::BITCAST, dl,
                            MVT::f32, TwoToFractionalPartOfX);
     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
       // For floating-point precision of 12:
@@ -3781,11 +3781,11 @@
       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
                                getF32Constant(DAG, 0x3f7ff8fd));
-      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
+      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
       SDValue TwoToFractionalPartOfX =
         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
 
-      result = DAG.getNode(ISD::BIT_CONVERT, dl,
+      result = DAG.getNode(ISD::BITCAST, dl,
                            MVT::f32, TwoToFractionalPartOfX);
     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
       // For floating-point precision of 18:
@@ -3817,11 +3817,11 @@
       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
                                 getF32Constant(DAG, 0x3f800000));
-      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
+      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
       SDValue TwoToFractionalPartOfX =
         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
 
-      result = DAG.getNode(ISD::BIT_CONVERT, dl,
+      result = DAG.getNode(ISD::BITCAST, dl,
                            MVT::f32, TwoToFractionalPartOfX);
     }
   } else {
@@ -3889,11 +3889,11 @@
       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
                                getF32Constant(DAG, 0x3f7f5e7e));
-      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
+      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
       SDValue TwoToFractionalPartOfX =
         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
 
-      result = DAG.getNode(ISD::BIT_CONVERT, dl,
+      result = DAG.getNode(ISD::BITCAST, dl,
                            MVT::f32, TwoToFractionalPartOfX);
     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
       // For floating-point precision of 12:
@@ -3914,11 +3914,11 @@
       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
                                getF32Constant(DAG, 0x3f7ff8fd));
-      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
+      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
       SDValue TwoToFractionalPartOfX =
         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
 
-      result = DAG.getNode(ISD::BIT_CONVERT, dl,
+      result = DAG.getNode(ISD::BITCAST, dl,
                            MVT::f32, TwoToFractionalPartOfX);
     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
       // For floating-point precision of 18:
@@ -3950,11 +3950,11 @@
       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
                                 getF32Constant(DAG, 0x3f800000));
-      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
+      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
       SDValue TwoToFractionalPartOfX =
         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
 
-      result = DAG.getNode(ISD::BIT_CONVERT, dl,
+      result = DAG.getNode(ISD::BITCAST, dl,
                            MVT::f32, TwoToFractionalPartOfX);
     }
   } else {
@@ -4072,11 +4072,11 @@
     if (VMI != FuncInfo.ValueMap.end())
       Reg = VMI->second;
   }
-  
+
   if (!Reg && N.getNode()) {
     // Check if frame index is available.
     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
-      if (FrameIndexSDNode *FINode = 
+      if (FrameIndexSDNode *FINode =
           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
         Reg = TRI->getFrameRegister(MF);
         Offset = FINode->getIndex();
@@ -4476,7 +4476,7 @@
     ShOps[1] = DAG.getConstant(0, MVT::i32);
     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
     EVT DestVT = TLI.getValueType(I.getType());
-    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, DestVT, ShAmt);
+    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
                        DAG.getConstant(NewIntrinsic, MVT::i32),
                        getValue(I.getArgOperand(0)), ShAmt);
@@ -4713,7 +4713,7 @@
     Ops[3] = getValue(I.getArgOperand(2));
     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
                                         DAG.getVTList(MVT::Other),
-                                        &Ops[0], 4, 
+                                        &Ops[0], 4,
                                         EVT::getIntegerVT(*Context, 8),
                                         MachinePointerInfo(I.getArgOperand(0)),
                                         0, /* align */
@@ -5119,7 +5119,7 @@
       !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
       const Type* T = I.getArgOperand(i)->getType();
-      for (po_iterator<const Type*> i = po_begin(T), e = po_end(T); 
+      for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
            i != e; ++i) {
         if (!i->isFloatingPointTy()) continue;
         MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
@@ -5419,7 +5419,7 @@
       // vector types).
       EVT RegVT = *PhysReg.second->vt_begin();
       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
-        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
+        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
                                          RegVT, OpInfo.CallOperand);
         OpInfo.ConstraintVT = RegVT;
       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
@@ -5429,7 +5429,7 @@
         // machine.
         RegVT = EVT::getIntegerVT(Context,
                                   OpInfo.ConstraintVT.getSizeInBits());
-        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
+        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
                                          RegVT, OpInfo.CallOperand);
         OpInfo.ConstraintVT = RegVT;
       }
@@ -5945,7 +5945,7 @@
       // not have the same VT as was expected.  Convert it to the right type
       // with bit_convert.
       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
-        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
+        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
                           ResultType, Val);
 
       } else if (ResultType != Val.getValueType() &&
diff --git a/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
index 603e7e4..12ca9291 100644
--- a/lib/CodeGen/SelectionDAG/TargetLowering.cpp
+++ b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
@@ -530,7 +530,7 @@
       setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
       setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
     }
-    
+
     // These operations default to expand.
     setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
     setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
@@ -538,8 +538,8 @@
 
   // Most targets ignore the @llvm.prefetch intrinsic.
   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
-  
-  // ConstantFP nodes default to expand.  Targets can either change this to 
+
+  // ConstantFP nodes default to expand.  Targets can either change this to
   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
   // to optimize expansions for certain constants.
   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
@@ -560,7 +560,7 @@
 
   // Default ISD::TRAP to expand (which turns it into abort).
   setOperationAction(ISD::TRAP, MVT::Other, Expand);
-    
+
   IsLittleEndian = TD->isLittleEndian();
   ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
@@ -617,16 +617,16 @@
   // Figure out the right, legal destination reg to copy into.
   unsigned NumElts = VT.getVectorNumElements();
   MVT EltTy = VT.getVectorElementType();
-  
+
   unsigned NumVectorRegs = 1;
-  
-  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we 
+
+  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
   // could break down into LHS/RHS like LegalizeDAG does.
   if (!isPowerOf2_32(NumElts)) {
     NumVectorRegs = NumElts;
     NumElts = 1;
   }
-  
+
   // Divide the input until we get to a supported size.  This will always
   // end with a scalar if the target doesn't support vectors.
   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
@@ -635,7 +635,7 @@
   }
 
   NumIntermediates = NumVectorRegs;
-  
+
   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
   if (!TLI->isTypeLegal(NewVT))
     NewVT = EltTy;
@@ -645,7 +645,7 @@
   RegisterVT = DestVT;
   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
     return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
-  
+
   // Otherwise, promotion or legal types use the same number of registers as
   // the vector decimated to the appropriate level.
   return NumVectorRegs;
@@ -750,7 +750,7 @@
     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
     TransformToType[MVT::ppcf128] = MVT::f64;
     ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
-  }    
+  }
 
   // Decide how to handle f64. If the target does not have native f64 support,
   // expand it to i64 and we will be generating soft float library calls.
@@ -776,13 +776,13 @@
       ValueTypeActions.setTypeAction(MVT::f32, Expand);
     }
   }
-  
+
   // Loop over all of the vector value types to see which need transformations.
   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
     MVT VT = (MVT::SimpleValueType)i;
     if (isTypeLegal(VT)) continue;
-    
+
     // Determine if there is a legal wider type.  If so, we should promote to
     // that wider vector type.
     EVT EltVT = VT.getVectorElementType();
@@ -792,7 +792,7 @@
       for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
         EVT SVT = (MVT::SimpleValueType)nVT;
         if (SVT.getVectorElementType() == EltVT &&
-            SVT.getVectorNumElements() > NElts && 
+            SVT.getVectorNumElements() > NElts &&
             isTypeLegal(SVT)) {
           TransformToType[i] = SVT;
           RegisterTypeForVT[i] = SVT;
@@ -804,7 +804,7 @@
       }
       if (IsLegalWiderType) continue;
     }
-    
+
     MVT IntermediateVT;
     EVT RegisterVT;
     unsigned NumIntermediates;
@@ -812,7 +812,7 @@
       getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
                                 RegisterVT, this);
     RegisterTypeForVT[i] = RegisterVT;
-    
+
     EVT NVT = VT.getPow2VectorType();
     if (NVT == VT) {
       // Type is already a power of 2.  The default action is to split.
@@ -865,7 +865,7 @@
                                                 unsigned &NumIntermediates,
                                                 EVT &RegisterVT) const {
   unsigned NumElts = VT.getVectorNumElements();
-  
+
   // If there is a wider vector type with the same element type as this one,
   // we should widen to that legal vector type.  This handles things like
   // <2 x float> -> <4 x float>.
@@ -877,19 +877,19 @@
       return 1;
     }
   }
-  
+
   // Figure out the right, legal destination reg to copy into.
   EVT EltTy = VT.getVectorElementType();
-  
+
   unsigned NumVectorRegs = 1;
-  
-  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we 
+
+  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
   // could break down into LHS/RHS like LegalizeDAG does.
   if (!isPowerOf2_32(NumElts)) {
     NumVectorRegs = NumElts;
     NumElts = 1;
   }
-  
+
   // Divide the input until we get to a supported size.  This will always
   // end with a scalar if the target doesn't support vectors.
   while (NumElts > 1 && !isTypeLegal(
@@ -899,7 +899,7 @@
   }
 
   NumIntermediates = NumVectorRegs;
-  
+
   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
   if (!isTypeLegal(NewVT))
     NewVT = EltTy;
@@ -909,13 +909,13 @@
   RegisterVT = DestVT;
   if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
     return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
-  
+
   // Otherwise, promotion or legal types use the same number of registers as
   // the vector decimated to the appropriate level.
   return NumVectorRegs;
 }
 
-/// Get the EVTs and ArgFlags collections that represent the legalized return 
+/// Get the EVTs and ArgFlags collections that represent the legalized return
 /// type of the given function.  This does not require a DAG or a return value,
 /// and is suitable for use before any DAGs for the function are constructed.
 /// TODO: Move this out of TargetLowering.cpp.
@@ -988,11 +988,11 @@
   // In non-pic modes, just use the address of a block.
   if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
     return MachineJumpTableInfo::EK_BlockAddress;
-  
+
   // In PIC mode, if the target supports a GPRel32 directive, use it.
   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
-  
+
   // Otherwise, use a label difference.
   return MachineJumpTableInfo::EK_LabelDifference32;
 }
@@ -1036,11 +1036,11 @@
 //  Optimization Methods
 //===----------------------------------------------------------------------===//
 
-/// ShrinkDemandedConstant - Check to see if the specified operand of the 
+/// ShrinkDemandedConstant - Check to see if the specified operand of the
 /// specified instruction is a constant integer.  If so, check to see if there
 /// are any bits set in the constant that are not demanded.  If so, shrink the
 /// constant and return true.
-bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 
+bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
                                                         const APInt &Demanded) {
   DebugLoc dl = Op.getDebugLoc();
 
@@ -1062,7 +1062,7 @@
       EVT VT = Op.getValueType();
       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
                                 DAG.getConstant(Demanded &
-                                                C->getAPIntValue(), 
+                                                C->getAPIntValue(),
                                                 VT));
       return CombineTo(Op, New);
     }
@@ -1139,9 +1139,9 @@
   KnownZero = KnownOne = APInt(BitWidth, 0);
 
   // Other users may use these bits.
-  if (!Op.getNode()->hasOneUse()) { 
+  if (!Op.getNode()->hasOneUse()) {
     if (Depth != 0) {
-      // If not at the root, Just compute the KnownZero/KnownOne bits to 
+      // If not at the root, Just compute the KnownZero/KnownOne bits to
       // simplify things downstream.
       TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
       return false;
@@ -1149,7 +1149,7 @@
     // If this is the root being simplified, allow it to have multiple uses,
     // just set the NewMask to all bits.
     NewMask = APInt::getAllOnesValue(BitWidth);
-  } else if (DemandedMask == 0) {   
+  } else if (DemandedMask == 0) {
     // Not demanding any bits from Op.
     if (Op.getOpcode() != ISD::UNDEF)
       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
@@ -1182,16 +1182,16 @@
       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
         return true;
     }
-    
+
     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
                              KnownOne, TLO, Depth+1))
       return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
                              KnownZero2, KnownOne2, TLO, Depth+1))
       return true;
-    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
-      
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
     // If all of the demanded bits are known one on one side, return the other.
     // These bits cannot contribute to the result of the 'and'.
     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
@@ -1214,15 +1214,15 @@
     KnownZero |= KnownZero2;
     break;
   case ISD::OR:
-    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 
+    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
                              KnownOne, TLO, Depth+1))
       return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
                              KnownZero2, KnownOne2, TLO, Depth+1))
       return true;
-    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
-    
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
     // If all of the demanded bits are known zero on one side, return the other.
     // These bits cannot contribute to the result of the 'or'.
     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
@@ -1248,15 +1248,15 @@
     KnownOne |= KnownOne2;
     break;
   case ISD::XOR:
-    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 
+    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
                              KnownOne, TLO, Depth+1))
       return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
                              KnownOne2, TLO, Depth+1))
       return true;
-    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
-    
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
     // If all of the demanded bits are known zero on one side, return the other.
     // These bits cannot contribute to the result of the 'xor'.
     if ((KnownZero & NewMask) == NewMask)
@@ -1274,12 +1274,12 @@
       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
                                                Op.getOperand(0),
                                                Op.getOperand(1)));
-    
+
     // Output known-0 bits are known if clear or set in both the LHS & RHS.
     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
     // Output known-1 are known to be set if set in only one of the LHS, RHS.
     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
-    
+
     // If all of the demanded bits on one side are known, and all of the set
     // bits on that side are also known to be set on the other side, turn this
     // into an AND, as we know the bits will be cleared.
@@ -1288,11 +1288,11 @@
       if ((KnownOne & KnownOne2) == KnownOne) {
         EVT VT = Op.getValueType();
         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
-        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 
+        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
                                                  Op.getOperand(0), ANDC));
       }
     }
-    
+
     // If the RHS is a constant, see if we can simplify it.
     // for XOR, we prefer to force bits to 1 if they will make a -1.
     // if we can't force bits, try to shrink constant
@@ -1317,37 +1317,37 @@
     KnownOne  = KnownOneOut;
     break;
   case ISD::SELECT:
-    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 
+    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
                              KnownOne, TLO, Depth+1))
       return true;
     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
                              KnownOne2, TLO, Depth+1))
       return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
-    
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
     // If the operands are constants, see if we can simplify them.
     if (TLO.ShrinkDemandedConstant(Op, NewMask))
       return true;
-    
+
     // Only known if known in both the LHS and RHS.
     KnownOne &= KnownOne2;
     KnownZero &= KnownZero2;
     break;
   case ISD::SELECT_CC:
-    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 
+    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
                              KnownOne, TLO, Depth+1))
       return true;
     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
                              KnownOne2, TLO, Depth+1))
       return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
-    
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
     // If the operands are constants, see if we can simplify them.
     if (TLO.ShrinkDemandedConstant(Op, NewMask))
       return true;
-      
+
     // Only known if known in both the LHS and RHS.
     KnownOne &= KnownOne2;
     KnownZero &= KnownZero2;
@@ -1373,16 +1373,16 @@
           if (Diff < 0) {
             Diff = -Diff;
             Opc = ISD::SRL;
-          }          
-          
-          SDValue NewSA = 
+          }
+
+          SDValue NewSA =
             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
           EVT VT = Op.getValueType();
           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
                                                    InOp.getOperand(0), NewSA));
         }
-      }      
-      
+      }
+
       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
                                KnownZero, KnownOne, TLO, Depth+1))
         return true;
@@ -1421,7 +1421,7 @@
       unsigned ShAmt = SA->getZExtValue();
       unsigned VTSize = VT.getSizeInBits();
       SDValue InOp = Op.getOperand(0);
-      
+
       // If the shift count is an invalid immediate, don't do anything.
       if (ShAmt >= BitWidth)
         break;
@@ -1438,20 +1438,20 @@
           if (Diff < 0) {
             Diff = -Diff;
             Opc = ISD::SHL;
-          }          
-          
+          }
+
           SDValue NewSA =
             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
                                                    InOp.getOperand(0), NewSA));
         }
-      }      
-      
+      }
+
       // Compute the new bits that are at the top now.
       if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
                                KnownZero, KnownOne, TLO, Depth+1))
         return true;
-      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
       KnownZero = KnownZero.lshr(ShAmt);
       KnownOne  = KnownOne.lshr(ShAmt);
 
@@ -1472,7 +1472,7 @@
     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
       EVT VT = Op.getValueType();
       unsigned ShAmt = SA->getZExtValue();
-      
+
       // If the shift count is an invalid immediate, don't do anything.
       if (ShAmt >= BitWidth)
         break;
@@ -1484,21 +1484,21 @@
       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
       if (HighBits.intersects(NewMask))
         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
-      
+
       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
                                KnownZero, KnownOne, TLO, Depth+1))
         return true;
-      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
       KnownZero = KnownZero.lshr(ShAmt);
       KnownOne  = KnownOne.lshr(ShAmt);
-      
+
       // Handle the sign bit, adjusted to where it is now in the mask.
       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
-      
+
       // If the input sign bit is known to be zero, or if none of the top bits
       // are demanded, turn this into an unsigned shift right.
       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
-        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 
+        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
                                                  Op.getOperand(0),
                                                  Op.getOperand(1)));
       } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
@@ -1509,12 +1509,12 @@
   case ISD::SIGN_EXTEND_INREG: {
     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 
-    // Sign extension.  Compute the demanded bits in the result that are not 
+    // Sign extension.  Compute the demanded bits in the result that are not
     // present in the input.
     APInt NewBits =
       APInt::getHighBitsSet(BitWidth,
                             BitWidth - EVT.getScalarType().getSizeInBits());
-    
+
     // If none of the extended bits are demanded, eliminate the sextinreg.
     if ((NewBits & NewMask) == 0)
       return TLO.CombineTo(Op, Op.getOperand(0));
@@ -1525,7 +1525,7 @@
       APInt::getLowBitsSet(BitWidth,
                            EVT.getScalarType().getSizeInBits()) &
       NewMask;
-    
+
     // Since the sign extended bits are demanded, we know that the sign
     // bit is demanded.
     InputDemandedBits |= InSignBit;
@@ -1533,16 +1533,16 @@
     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
                              KnownZero, KnownOne, TLO, Depth+1))
       return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 
     // If the sign bit of the input is known set or clear, then we know the
     // top bits of the result.
-    
+
     // If the input sign bit is known zero, convert this into a zero extension.
     if (KnownZero.intersects(InSignBit))
-      return TLO.CombineTo(Op, 
+      return TLO.CombineTo(Op,
                            TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
-    
+
     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
       KnownOne |= NewBits;
       KnownZero &= ~NewBits;
@@ -1557,19 +1557,19 @@
       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
     APInt InMask = NewMask;
     InMask.trunc(OperandBitWidth);
-    
+
     // If none of the top bits are demanded, convert this into an any_extend.
     APInt NewBits =
       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
     if (!NewBits.intersects(NewMask))
       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
-                                               Op.getValueType(), 
+                                               Op.getValueType(),
                                                Op.getOperand(0)));
-    
+
     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
                              KnownZero, KnownOne, TLO, Depth+1))
       return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
     KnownZero.zext(BitWidth);
     KnownOne.zext(BitWidth);
     KnownZero |= NewBits;
@@ -1581,31 +1581,31 @@
     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
     APInt NewBits   = ~InMask & NewMask;
-    
+
     // If none of the top bits are demanded, convert this into an any_extend.
     if (NewBits == 0)
       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
                                               Op.getValueType(),
                                               Op.getOperand(0)));
-    
+
     // Since some of the sign extended bits are demanded, we know that the sign
     // bit is demanded.
     APInt InDemandedBits = InMask & NewMask;
     InDemandedBits |= InSignBit;
     InDemandedBits.trunc(InBits);
-    
-    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 
+
+    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
                              KnownOne, TLO, Depth+1))
       return true;
     KnownZero.zext(BitWidth);
     KnownOne.zext(BitWidth);
-    
+
     // If the sign bit is known zero, convert this to a zero extend.
     if (KnownZero.intersects(InSignBit))
       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
-                                               Op.getValueType(), 
+                                               Op.getValueType(),
                                                Op.getOperand(0)));
-    
+
     // If the sign bit is known one, the top bits match.
     if (KnownOne.intersects(InSignBit)) {
       KnownOne  |= NewBits;
@@ -1624,7 +1624,7 @@
     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
                              KnownZero, KnownOne, TLO, Depth+1))
       return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
     KnownZero.zext(BitWidth);
     KnownOne.zext(BitWidth);
     break;
@@ -1641,7 +1641,7 @@
       return true;
     KnownZero.trunc(BitWidth);
     KnownOne.trunc(BitWidth);
-    
+
     // If the input is only used by this truncate, see if we can shrink it based
     // on the known demanded bits.
     if (Op.getOperand(0).getNode()->hasOneUse()) {
@@ -1668,18 +1668,18 @@
           // None of the shifted in bits are needed.  Add a truncate of the
           // shift input, then shift it.
           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
-                                             Op.getValueType(), 
+                                             Op.getValueType(),
                                              In.getOperand(0));
           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
                                                    Op.getValueType(),
-                                                   NewTrunc, 
+                                                   NewTrunc,
                                                    In.getOperand(1)));
         }
         break;
       }
     }
-    
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
     break;
   }
   case ISD::AssertZext: {
@@ -1689,7 +1689,7 @@
     if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
                              KnownZero, KnownOne, TLO, Depth+1))
       return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 
     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
     APInt InMask = APInt::getLowBitsSet(BitWidth,
@@ -1697,7 +1697,7 @@
     KnownZero |= ~InMask & NewMask;
     break;
   }
-  case ISD::BIT_CONVERT:
+  case ISD::BITCAST:
 #if 0
     // If this is an FP->Int bitcast and if the sign bit is the only thing that
     // is demanded, turn this into a FGETSIGN.
@@ -1709,7 +1709,7 @@
           isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
         // place.  We expect the SHL to be eliminated by other optimizations.
-        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(), 
+        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
                                          Op.getOperand(0));
         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
         SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
@@ -1742,21 +1742,21 @@
     TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
     break;
   }
-  
+
   // If we know the value of all of the demanded bits, return this as a
   // constant.
   if ((NewMask & (KnownZero|KnownOne)) == NewMask)
     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
-  
+
   return false;
 }
 
-/// computeMaskedBitsForTargetNode - Determine which of the bits specified 
-/// in Mask are known to be either zero or one and return them in the 
+/// computeMaskedBitsForTargetNode - Determine which of the bits specified
+/// in Mask are known to be either zero or one and return them in the
 /// KnownZero/KnownOne bitsets.
-void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 
+void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
                                                     const APInt &Mask,
-                                                    APInt &KnownZero, 
+                                                    APInt &KnownZero,
                                                     APInt &KnownOne,
                                                     const SelectionDAG &DAG,
                                                     unsigned Depth) const {
@@ -1817,7 +1817,7 @@
          (KnownOne.countPopulation() == 1);
 }
 
-/// SimplifySetCC - Try to simplify a setcc built with the specified operands 
+/// SimplifySetCC - Try to simplify a setcc built with the specified operands
 /// and cc. If it is unable to simplify it, return a null SDValue.
 SDValue
 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
@@ -1884,7 +1884,7 @@
       if (!Lod->isVolatile() && Lod->isUnindexed()) {
         unsigned origWidth = N0.getValueType().getSizeInBits();
         unsigned maskWidth = origWidth;
-        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 
+        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
         // 8 bits, but have to be careful...
         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
           origWidth = Lod->getMemoryVT().getSizeInBits();
@@ -1918,7 +1918,7 @@
           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
                                 Lod->getPointerInfo().getWithOffset(bestOffset),
                                         false, false, NewAlign);
-          return DAG.getSetCC(dl, VT, 
+          return DAG.getSetCC(dl, VT,
                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
                                       DAG.getConstant(bestMask.trunc(bestWidth),
                                                       newVT)),
@@ -1986,7 +1986,7 @@
       // the sign extension, it is impossible for both sides to be equal.
       if (C1.getMinSignedBits() > ExtSrcTyBits)
         return DAG.getConstant(Cond == ISD::SETNE, VT);
-      
+
       SDValue ZextOp;
       EVT Op0Ty = N0.getOperand(0).getValueType();
       if (Op0Ty == ExtSrcTy) {
@@ -1999,10 +1999,10 @@
       if (!DCI.isCalledByLegalizer())
         DCI.AddToWorklist(ZextOp.getNode());
       // Otherwise, make this a use of a zext.
-      return DAG.getSetCC(dl, VT, ZextOp, 
+      return DAG.getSetCC(dl, VT, ZextOp,
                           DAG.getConstant(C1 & APInt::getLowBitsSet(
                                                               ExtDstTyBits,
-                                                              ExtSrcTyBits), 
+                                                              ExtSrcTyBits),
                                           ExtDstTy),
                           Cond);
     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
@@ -2012,16 +2012,16 @@
           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
         if (TrueWhenTrue)
-          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);        
+          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
         // Invert the condition.
         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
-        CC = ISD::getSetCCInverse(CC, 
+        CC = ISD::getSetCCInverse(CC,
                                   N0.getOperand(0).getValueType().isInteger());
         return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
       }
 
       if ((N0.getOpcode() == ISD::XOR ||
-           (N0.getOpcode() == ISD::AND && 
+           (N0.getOpcode() == ISD::AND &&
             N0.getOperand(0).getOpcode() == ISD::XOR &&
             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
           isa<ConstantSDNode>(N0.getOperand(1)) &&
@@ -2037,7 +2037,7 @@
           if (N0.getOpcode() == ISD::XOR)
             Val = N0.getOperand(0);
           else {
-            assert(N0.getOpcode() == ISD::AND && 
+            assert(N0.getOpcode() == ISD::AND &&
                     N0.getOperand(0).getOpcode() == ISD::XOR);
             // ((X^1)&1)^1 -> X & 1
             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
@@ -2081,7 +2081,7 @@
         }
       }
     }
-    
+
     APInt MinVal, MaxVal;
     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
     if (ISD::isSignedIntSetCC(Cond)) {
@@ -2096,7 +2096,7 @@
     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
       if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
       // X >= C0 --> X > (C0-1)
-      return DAG.getSetCC(dl, VT, N0, 
+      return DAG.getSetCC(dl, VT, N0,
                           DAG.getConstant(C1-1, N1.getValueType()),
                           (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
     }
@@ -2104,7 +2104,7 @@
     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
       if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
       // X <= C0 --> X < (C0+1)
-      return DAG.getSetCC(dl, VT, N0, 
+      return DAG.getSetCC(dl, VT, N0,
                           DAG.getConstant(C1+1, N1.getValueType()),
                           (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
     }
@@ -2127,12 +2127,12 @@
 
     // If we have setult X, 1, turn it into seteq X, 0
     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
-      return DAG.getSetCC(dl, VT, N0, 
-                          DAG.getConstant(MinVal, N0.getValueType()), 
+      return DAG.getSetCC(dl, VT, N0,
+                          DAG.getConstant(MinVal, N0.getValueType()),
                           ISD::SETEQ);
     // If we have setugt X, Max-1, turn it into seteq X, Max
     else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
-      return DAG.getSetCC(dl, VT, N0, 
+      return DAG.getSetCC(dl, VT, N0,
                           DAG.getConstant(MaxVal, N0.getValueType()),
                           ISD::SETEQ);
 
@@ -2140,9 +2140,9 @@
     // by changing cc.
 
     // SETUGT X, SINTMAX  -> SETLT X, 0
-    if (Cond == ISD::SETUGT && 
+    if (Cond == ISD::SETUGT &&
         C1 == APInt::getSignedMaxValue(OperandBitSize))
-      return DAG.getSetCC(dl, VT, N0, 
+      return DAG.getSetCC(dl, VT, N0,
                           DAG.getConstant(0, N1.getValueType()),
                           ISD::SETLT);
 
@@ -2202,7 +2202,7 @@
         return DAG.getUNDEF(VT);
       }
     }
-    
+
     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
     // constant if knowing that the operand is non-nan is enough.  We prefer to
     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
@@ -2277,14 +2277,14 @@
         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
           // If X op Y == Y op X, try other combinations.
           if (N0.getOperand(0) == N1.getOperand(1))
-            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 
+            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
                                 Cond);
           if (N0.getOperand(1) == N1.getOperand(0))
-            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 
+            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
                                 Cond);
         }
       }
-      
+
       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
           // Turn (X+C1) == C2 --> X == C2-C1
@@ -2294,7 +2294,7 @@
                                                 LHSR->getAPIntValue(),
                                 N0.getValueType()), Cond);
           }
-          
+
           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
           if (N0.getOpcode() == ISD::XOR)
             // If we know that all of the inverted bits are zero, don't bother
@@ -2307,7 +2307,7 @@
                                              N0.getValueType()),
                              Cond);
         }
-        
+
         // Turn (C1-X) == C2 --> X == C1-C2
         if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
@@ -2318,7 +2318,7 @@
                                            N0.getValueType()),
                            Cond);
           }
-        }          
+        }
       }
 
       // Simplify (X+Z) == X -->  Z == 0
@@ -2333,7 +2333,7 @@
           assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
           // (Z-X) == X  --> Z == X<<1
           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
-                                     N1, 
+                                     N1,
                                      DAG.getConstant(1, getShiftAmountTy()));
           if (!DCI.isCalledByLegalizer())
             DCI.AddToWorklist(SH.getNode());
@@ -2355,7 +2355,7 @@
         } else if (N1.getNode()->hasOneUse()) {
           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
           // X == (Z-X)  --> X<<1 == Z
-          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, 
+          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
                                      DAG.getConstant(1, getShiftAmountTy()));
           if (!DCI.isCalledByLegalizer())
             DCI.AddToWorklist(SH.getNode());
@@ -2514,8 +2514,8 @@
       return C_Other;
     }
   }
-  
-  if (Constraint.size() > 1 && Constraint[0] == '{' && 
+
+  if (Constraint.size() > 1 && Constraint[0] == '{' &&
       Constraint[Constraint.size()-1] == '}')
     return C_Register;
   return C_Unknown;
@@ -2554,7 +2554,7 @@
     // is possible and fine if either GV or C are missing.
     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
-    
+
     // If we have "(add GV, C)", pull out GV/C
     if (Op.getOpcode() == ISD::ADD) {
       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
@@ -2566,14 +2566,14 @@
       if (C == 0 || GA == 0)
         C = 0, GA = 0;
     }
-    
+
     // If we find a valid operand, map to the TargetXXX version so that the
     // value itself doesn't get selected.
     if (GA) {   // Either &GV   or   &GV+C
       if (ConstraintLetter != 'n') {
         int64_t Offs = GA->getOffset();
         if (C) Offs += C->getZExtValue();
-        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 
+        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
                                                  C ? C->getDebugLoc() : DebugLoc(),
                                                  Op.getValueType(), Offs));
         return;
@@ -2617,8 +2617,8 @@
   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
        E = RI->regclass_end(); RCI != E; ++RCI) {
     const TargetRegisterClass *RC = *RCI;
-    
-    // If none of the value types for this register class are valid, we 
+
+    // If none of the value types for this register class are valid, we
     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
     bool isLegal = false;
     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
@@ -2628,16 +2628,16 @@
         break;
       }
     }
-    
+
     if (!isLegal) continue;
-    
-    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 
+
+    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
          I != E; ++I) {
       if (RegName.equals_lower(RI->getName(*I)))
         return std::make_pair(*I, RC);
     }
   }
-  
+
   return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
 }
 
@@ -2658,7 +2658,7 @@
   return atoi(ConstraintCode.c_str());
 }
 
-  
+
 /// ParseConstraints - Split up the constraint string from the inline
 /// assembly value into the specific constraints and their prefixes,
 /// and also tie in the associated operand values.
@@ -2675,7 +2675,7 @@
   // ConstraintOperands list.
   InlineAsm::ConstraintInfoVector
     ConstraintInfos = IA->ParseConstraints();
-    
+
   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
   unsigned ResNo = 0;   // ResNo - The result number of the next output.
 
@@ -2717,7 +2717,7 @@
       // Nothing to do.
       break;
     }
-    
+
     if (OpInfo.CallOperandVal) {
       const llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
       if (OpInfo.isIndirect) {
@@ -2813,7 +2813,7 @@
   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
       cIndex != eIndex; ++cIndex) {
     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
-    
+
     // If this is an output operand with a matching input operand, look up the
     // matching input. If their types mismatch, e.g. one is an integer, the
     // other is floating point, or their sizes are different, flag it as an
@@ -2978,12 +2978,12 @@
         break;
       }
     }
-    
+
     // Things with matching constraints can only be registers, per gcc
     // documentation.  This mainly affects "g" constraints.
     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
       continue;
-    
+
     // This constraint letter is more general than the previous one, use it.
     int Generality = getConstraintGenerality(CType);
     if (Generality > BestGenerality) {
@@ -2992,7 +2992,7 @@
       BestGenerality = Generality;
     }
   }
-  
+
   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
   OpInfo.ConstraintType = BestType;
 }
@@ -3001,10 +3001,10 @@
 /// type to use for the specific AsmOperandInfo, setting
 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
-                                            SDValue Op, 
+                                            SDValue Op,
                                             SelectionDAG *DAG) const {
   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
-  
+
   // Single-letter constraints ('r') are very common.
   if (OpInfo.Codes.size() == 1) {
     OpInfo.ConstraintCode = OpInfo.Codes[0];
@@ -3012,7 +3012,7 @@
   } else {
     ChooseConstraint(OpInfo, *this, Op, DAG);
   }
-  
+
   // 'X' matches anything.
   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
     // Labels and constants are handled elsewhere ('X' is the only thing
@@ -3023,7 +3023,7 @@
       OpInfo.CallOperandVal = v;
       return;
     }
-    
+
     // Otherwise, try to resolve it to something we know about by looking at
     // the actual operand type.
     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
@@ -3039,7 +3039,7 @@
 
 /// isLegalAddressingMode - Return true if the addressing mode represented
 /// by AM is legal for this target, for a load/store of the specified type.
-bool TargetLowering::isLegalAddressingMode(const AddrMode &AM, 
+bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
                                            const Type *Ty) const {
   // The default implementation of this implements a conservative RISCy, r+r and
   // r+i addr mode.
@@ -3047,12 +3047,12 @@
   // Allows a sign-extended 16-bit immediate field.
   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
     return false;
-  
+
   // No global is ever allowed as a base.
   if (AM.BaseGV)
     return false;
-  
-  // Only support r+r, 
+
+  // Only support r+r,
   switch (AM.Scale) {
   case 0:  // "r+i" or just "i", depending on HasBaseReg.
     break;
@@ -3067,7 +3067,7 @@
     // Allow 2*r as r+r.
     break;
   }
-  
+
   return true;
 }
 
@@ -3075,19 +3075,19 @@
 /// return a DAG expression to select that will generate the same value by
 /// multiplying by a magic number.  See:
 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
-SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 
+SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
                                   std::vector<SDNode*>* Created) const {
   EVT VT = N->getValueType(0);
   DebugLoc dl= N->getDebugLoc();
-  
+
   // Check to see if we can do this.
   // FIXME: We should be more aggressive here.
   if (!isTypeLegal(VT))
     return SDValue();
-  
+
   APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
   APInt::ms magics = d.magic();
-  
+
   // Multiply the numerator (operand 0) by the magic value
   // FIXME: We should support doing a MUL in a wider type
   SDValue Q;
@@ -3101,7 +3101,7 @@
   else
     return SDValue();       // No mulhs or equvialent
   // If d > 0 and m < 0, add the numerator
-  if (d.isStrictlyPositive() && magics.m.isNegative()) { 
+  if (d.isStrictlyPositive() && magics.m.isNegative()) {
     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
     if (Created)
       Created->push_back(Q.getNode());
@@ -3114,7 +3114,7 @@
   }
   // Shift right algebraic if shift value is nonzero
   if (magics.s > 0) {
-    Q = DAG.getNode(ISD::SRA, dl, VT, Q, 
+    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
                     DAG.getConstant(magics.s, getShiftAmountTy()));
     if (Created)
       Created->push_back(Q.getNode());
@@ -3165,20 +3165,20 @@
   if (magics.a == 0) {
     assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
            "We shouldn't generate an undefined shift!");
-    return DAG.getNode(ISD::SRL, dl, VT, Q, 
+    return DAG.getNode(ISD::SRL, dl, VT, Q,
                        DAG.getConstant(magics.s, getShiftAmountTy()));
   } else {
     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
     if (Created)
       Created->push_back(NPQ.getNode());
-    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, 
+    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
                       DAG.getConstant(1, getShiftAmountTy()));
     if (Created)
       Created->push_back(NPQ.getNode());
     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
     if (Created)
       Created->push_back(NPQ.getNode());
-    return DAG.getNode(ISD::SRL, dl, VT, NPQ, 
+    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
                        DAG.getConstant(magics.s-1, getShiftAmountTy()));
   }
 }