| //===- ReadConst.cpp - Code to constants and constant pools -----------------=== |
| // |
| // This file implements functionality to deserialize constants and entire |
| // constant pools. |
| // |
| // Note that this library should be as fast as possible, reentrant, and |
| // threadsafe!! |
| // |
| //===------------------------------------------------------------------------=== |
| |
| #include "llvm/Module.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/ConstPoolVals.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/GlobalVariable.h" |
| #include "ReaderInternals.h" |
| #include <algorithm> |
| |
| |
| |
| const Type *BytecodeParser::parseTypeConstant(const uchar *&Buf, |
| const uchar *EndBuf) { |
| unsigned PrimType; |
| if (read_vbr(Buf, EndBuf, PrimType)) return failure<const Type*>(0); |
| |
| const Type *Val = 0; |
| if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType))) |
| return Val; |
| |
| switch (PrimType) { |
| case Type::MethodTyID: { |
| unsigned Typ; |
| if (read_vbr(Buf, EndBuf, Typ)) return failure(Val); |
| const Type *RetType = getType(Typ); |
| if (RetType == 0) return failure(Val); |
| |
| unsigned NumParams; |
| if (read_vbr(Buf, EndBuf, NumParams)) return failure(Val); |
| |
| vector<const Type*> Params; |
| while (NumParams--) { |
| if (read_vbr(Buf, EndBuf, Typ)) return failure(Val); |
| const Type *Ty = getType(Typ); |
| if (Ty == 0) return failure(Val); |
| Params.push_back(Ty); |
| } |
| |
| bool isVarArg = Params.size() && Params.back() == Type::VoidTy; |
| if (isVarArg) Params.pop_back(); |
| |
| Val = MethodType::get(RetType, Params, isVarArg); |
| break; |
| } |
| case Type::ArrayTyID: { |
| unsigned ElTyp; |
| if (read_vbr(Buf, EndBuf, ElTyp)) return failure(Val); |
| const Type *ElementType = getType(ElTyp); |
| if (ElementType == 0) return failure(Val); |
| |
| int NumElements; |
| if (read_vbr(Buf, EndBuf, NumElements)) return failure(Val); |
| Val = ArrayType::get(ElementType, NumElements); |
| break; |
| } |
| case Type::StructTyID: { |
| unsigned Typ; |
| vector<const Type*> Elements; |
| |
| if (read_vbr(Buf, EndBuf, Typ)) return failure(Val); |
| while (Typ) { // List is terminated by void/0 typeid |
| const Type *Ty = getType(Typ); |
| if (Ty == 0) return failure(Val); |
| Elements.push_back(Ty); |
| |
| if (read_vbr(Buf, EndBuf, Typ)) return failure(Val); |
| } |
| |
| Val = StructType::get(Elements); |
| break; |
| } |
| case Type::PointerTyID: { |
| unsigned ElTyp; |
| if (read_vbr(Buf, EndBuf, ElTyp)) return failure(Val); |
| const Type *ElementType = getType(ElTyp); |
| if (ElementType == 0) return failure(Val); |
| Val = PointerType::get(ElementType); |
| break; |
| } |
| |
| default: |
| cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to deserialize" |
| << " primitive Type " << PrimType << "\n"; |
| return failure(Val); |
| } |
| |
| return Val; |
| } |
| |
| // refineAbstractType - The callback method is invoked when one of the |
| // elements of TypeValues becomes more concrete... |
| // |
| void BytecodeParser::refineAbstractType(const DerivedType *OldType, |
| const Type *NewType) { |
| if (OldType == NewType) return; // Type is modified, but same |
| |
| TypeValuesListTy::iterator I = find(MethodTypeValues.begin(), |
| MethodTypeValues.end(), OldType); |
| if (I == MethodTypeValues.end()) { |
| I = find(ModuleTypeValues.begin(), ModuleTypeValues.end(), OldType); |
| assert(I != ModuleTypeValues.end() && |
| "Can't refine a type I don't know about!"); |
| } |
| |
| *I = NewType; // Update to point to new, more refined type. |
| } |
| |
| |
| |
| // parseTypeConstants - We have to use this wierd code to handle recursive |
| // types. We know that recursive types will only reference the current slab of |
| // values in the type plane, but they can forward reference types before they |
| // have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might |
| // be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix |
| // this ugly problem, we pesimistically insert an opaque type for each type we |
| // are about to read. This means that forward references will resolve to |
| // something and when we reread the type later, we can replace the opaque type |
| // with a new resolved concrete type. |
| // |
| bool BytecodeParser::parseTypeConstants(const uchar *&Buf, const uchar *EndBuf, |
| TypeValuesListTy &Tab, |
| unsigned NumEntries) { |
| assert(Tab.size() == 0 && "should not have read type constants in before!"); |
| |
| // Insert a bunch of opaque types to be resolved later... |
| for (unsigned i = 0; i < NumEntries; i++) |
| Tab.push_back(PATypeHandle<Type>(OpaqueType::get(), this)); |
| |
| // Loop through reading all of the types. Forward types will make use of the |
| // opaque types just inserted. |
| // |
| for (unsigned i = 0; i < NumEntries; i++) { |
| const Type *NewTy = parseTypeConstant(Buf, EndBuf), *OldTy = Tab[i].get(); |
| if (NewTy == 0) return failure(true); |
| BCR_TRACE(4, "Read Type Constant: '" << NewTy << "'\n"); |
| |
| // Don't insertValue the new type... instead we want to replace the opaque |
| // type with the new concrete value... |
| // |
| |
| // Refine the abstract type to the new type. This causes all uses of the |
| // abstract type to use the newty. This also will cause the opaque type |
| // to be deleted... |
| // |
| cast<DerivedType>(Tab[i].get())->refineAbstractTypeTo(NewTy); |
| |
| // This should have replace the old opaque type with the new type in the |
| // value table... or with a preexisting type that was already in the system |
| assert(Tab[i] != OldTy && "refineAbstractType didn't work!"); |
| } |
| |
| BCR_TRACE(5, "Resulting types:\n"); |
| for (unsigned i = 0; i < NumEntries; i++) { |
| BCR_TRACE(5, cast<const Type>(Tab[i]) << "\n"); |
| } |
| return false; |
| } |
| |
| |
| bool BytecodeParser::parseConstPoolValue(const uchar *&Buf, |
| const uchar *EndBuf, |
| const Type *Ty, ConstPoolVal *&V) { |
| switch (Ty->getPrimitiveID()) { |
| case Type::BoolTyID: { |
| unsigned Val; |
| if (read_vbr(Buf, EndBuf, Val)) return failure(true); |
| if (Val != 0 && Val != 1) return failure(true); |
| V = ConstPoolBool::get(Val == 1); |
| break; |
| } |
| |
| case Type::UByteTyID: // Unsigned integer types... |
| case Type::UShortTyID: |
| case Type::UIntTyID: { |
| unsigned Val; |
| if (read_vbr(Buf, EndBuf, Val)) return failure(true); |
| if (!ConstPoolUInt::isValueValidForType(Ty, Val)) return failure(true); |
| V = ConstPoolUInt::get(Ty, Val); |
| break; |
| } |
| |
| case Type::ULongTyID: { |
| uint64_t Val; |
| if (read_vbr(Buf, EndBuf, Val)) return failure(true); |
| V = ConstPoolUInt::get(Ty, Val); |
| break; |
| } |
| |
| case Type::SByteTyID: // Unsigned integer types... |
| case Type::ShortTyID: |
| case Type::IntTyID: { |
| int Val; |
| if (read_vbr(Buf, EndBuf, Val)) return failure(true); |
| if (!ConstPoolSInt::isValueValidForType(Ty, Val)) return failure(true); |
| V = ConstPoolSInt::get(Ty, Val); |
| break; |
| } |
| |
| case Type::LongTyID: { |
| int64_t Val; |
| if (read_vbr(Buf, EndBuf, Val)) return failure(true); |
| V = ConstPoolSInt::get(Ty, Val); |
| break; |
| } |
| |
| case Type::FloatTyID: { |
| float F; |
| if (input_data(Buf, EndBuf, &F, &F+1)) return failure(true); |
| V = ConstPoolFP::get(Ty, F); |
| break; |
| } |
| |
| case Type::DoubleTyID: { |
| double Val; |
| if (input_data(Buf, EndBuf, &Val, &Val+1)) return failure(true); |
| V = ConstPoolFP::get(Ty, Val); |
| break; |
| } |
| |
| case Type::TypeTyID: |
| assert(0 && "Type constants should be handled seperately!!!"); |
| abort(); |
| |
| case Type::ArrayTyID: { |
| const ArrayType *AT = cast<const ArrayType>(Ty); |
| unsigned NumElements; |
| if (AT->isSized()) // Sized array, # elements stored in type! |
| NumElements = (unsigned)AT->getNumElements(); |
| else // Unsized array, # elements stored in stream! |
| if (read_vbr(Buf, EndBuf, NumElements)) return failure(true); |
| |
| vector<ConstPoolVal *> Elements; |
| while (NumElements--) { // Read all of the elements of the constant. |
| unsigned Slot; |
| if (read_vbr(Buf, EndBuf, Slot)) return failure(true); |
| Value *V = getValue(AT->getElementType(), Slot, false); |
| if (!V || !isa<ConstPoolVal>(V)) return failure(true); |
| Elements.push_back(cast<ConstPoolVal>(V)); |
| } |
| V = ConstPoolArray::get(AT, Elements); |
| break; |
| } |
| |
| case Type::StructTyID: { |
| const StructType *ST = cast<StructType>(Ty); |
| const StructType::ElementTypes &ET = ST->getElementTypes(); |
| |
| vector<ConstPoolVal *> Elements; |
| for (unsigned i = 0; i < ET.size(); ++i) { |
| unsigned Slot; |
| if (read_vbr(Buf, EndBuf, Slot)) return failure(true); |
| Value *V = getValue(ET[i], Slot, false); |
| if (!V || !isa<ConstPoolVal>(V)) |
| return failure(true); |
| Elements.push_back(cast<ConstPoolVal>(V)); |
| } |
| |
| V = ConstPoolStruct::get(ST, Elements); |
| break; |
| } |
| |
| case Type::PointerTyID: { |
| const PointerType *PT = cast<const PointerType>(Ty); |
| unsigned SubClass; |
| if (read_vbr(Buf, EndBuf, SubClass)) return failure(true); |
| switch (SubClass) { |
| case 0: // ConstPoolPointerNull value... |
| V = ConstPoolPointerNull::get(PT); |
| break; |
| |
| case 1: { // ConstPoolPointerRef value... |
| unsigned Slot; |
| if (read_vbr(Buf, EndBuf, Slot)) return failure(true); |
| BCR_TRACE(4, "CPPR: Type: '" << Ty << "' slot: " << Slot << "\n"); |
| |
| // Check to see if we have already read this global variable yet... |
| Value *Val = getValue(PT, Slot, false); |
| GlobalValue *GV; |
| if (Val) { |
| if (!(GV = dyn_cast<GlobalValue>(Val))) return failure(true); |
| BCR_TRACE(5, "Value Found in ValueTable!\n"); |
| } else { // Nope... see if we have previously forward ref'd it |
| GlobalRefsType::iterator I = GlobalRefs.find(make_pair(PT, Slot)); |
| if (I != GlobalRefs.end()) { |
| BCR_TRACE(5, "Previous forward ref found!\n"); |
| GV = I->second; |
| } else { |
| BCR_TRACE(5, "Creating new forward ref variable!\n"); |
| |
| // Create a placeholder for the global variable reference... |
| GlobalVariable *GVar = new GlobalVariable(PT->getValueType(), false); |
| |
| // Keep track of the fact that we have a forward ref to recycle it |
| GlobalRefs.insert(make_pair(make_pair(PT, Slot), GVar)); |
| |
| // Must temporarily push this value into the module table... |
| TheModule->getGlobalList().push_back(GVar); |
| GV = GVar; |
| } |
| } |
| |
| V = ConstPoolPointerRef::get(GV); |
| break; |
| } |
| default: |
| return failure(true); |
| } |
| break; |
| } |
| |
| default: |
| cerr << __FILE__ << ":" << __LINE__ |
| << ": Don't know how to deserialize constant value of type '" |
| << Ty->getName() << "'\n"; |
| return failure(true); |
| } |
| |
| return false; |
| } |
| |
| bool BytecodeParser::ParseConstantPool(const uchar *&Buf, const uchar *EndBuf, |
| ValueTable &Tab, |
| TypeValuesListTy &TypeTab) { |
| while (Buf < EndBuf) { |
| unsigned NumEntries, Typ; |
| |
| if (read_vbr(Buf, EndBuf, NumEntries) || |
| read_vbr(Buf, EndBuf, Typ)) return failure(true); |
| const Type *Ty = getType(Typ); |
| if (Ty == 0) return failure(true); |
| BCR_TRACE(3, "Type: '" << Ty << "' NumEntries: " << NumEntries << "\n"); |
| |
| if (Typ == Type::TypeTyID) { |
| if (parseTypeConstants(Buf, EndBuf, TypeTab, NumEntries)) return true; |
| } else { |
| for (unsigned i = 0; i < NumEntries; i++) { |
| ConstPoolVal *I; |
| if (parseConstPoolValue(Buf, EndBuf, Ty, I)) return failure(true); |
| BCR_TRACE(4, "Read Constant: '" << I << "'\n"); |
| if (insertValue(I, Tab) == -1) return failure(true); |
| } |
| } |
| } |
| |
| if (Buf > EndBuf) return failure(true); |
| return false; |
| } |