For PR950:
This patch replaces signed integer types with signless ones:
1. [US]Byte -> Int8
2. [U]Short -> Int16
3. [U]Int -> Int32
4. [U]Long -> Int64.
5. Removal of isSigned, isUnsigned, getSignedVersion, getUnsignedVersion
and other methods related to signedness. In a few places this warranted
identifying the signedness information from other sources.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32785 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index fcfab9e..a43b585 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -123,7 +123,6 @@
ConstantRange SCEV::getValueRange() const {
const Type *Ty = getType();
assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
- Ty = Ty->getUnsignedVersion();
// Default to a full range if no better information is available.
return ConstantRange(getType());
}
@@ -172,14 +171,6 @@
}
SCEVHandle SCEVConstant::get(ConstantInt *V) {
- // Make sure that SCEVConstant instances are all unsigned.
- // FIXME:Signless. This entire if statement can be removed when integer types
- // are signless. There won't be a need to bitcast then.
- if (V->getType()->isSigned()) {
- const Type *NewTy = V->getType()->getUnsignedVersion();
- V = cast<ConstantInt>(ConstantExpr::getBitCast(V, NewTy));
- }
-
SCEVConstant *&R = (*SCEVConstants)[V];
if (R == 0) R = new SCEVConstant(V);
return R;
@@ -310,9 +301,7 @@
}
const Type *SCEVSDivExpr::getType() const {
- const Type *Ty = LHS->getType();
- if (Ty->isUnsigned()) Ty = Ty->getSignedVersion();
- return Ty;
+ return LHS->getType();
}
// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
@@ -505,7 +494,7 @@
uint64_t Result = 1;
for (; NumSteps; --NumSteps)
Result *= Val-(NumSteps-1);
- Constant *Res = ConstantInt::get(Type::ULongTy, Result);
+ Constant *Res = ConstantInt::get(Type::Int64Ty, Result);
return SCEVUnknown::get(ConstantExpr::getTruncOrBitCast(Res, V->getType()));
}
@@ -1427,15 +1416,13 @@
case Instruction::Trunc:
// We don't handle trunc to bool yet.
if (I->getType()->isInteger())
- return SCEVTruncateExpr::get(getSCEV(I->getOperand(0)),
- I->getType()->getUnsignedVersion());
+ return SCEVTruncateExpr::get(getSCEV(I->getOperand(0)), I->getType());
break;
case Instruction::ZExt:
// We don't handle zext from bool yet.
if (I->getOperand(0)->getType()->isInteger())
- return SCEVZeroExtendExpr::get(getSCEV(I->getOperand(0)),
- I->getType()->getUnsignedVersion());
+ return SCEVZeroExtendExpr::get(getSCEV(I->getOperand(0)), I->getType());
break;
case Instruction::BitCast:
@@ -1572,21 +1559,8 @@
// Form the constant range.
ConstantRange CompRange(Cond, CompVal);
- // Now that we have it, if it's signed, convert it to an unsigned
- // range.
- // FIXME:Signless. This entire if statement can go away when
- // integers are signless. ConstantRange is already signless.
- if (CompRange.getLower()->getType()->isSigned()) {
- const Type *NewTy = RHSC->getValue()->getType();
- Constant *NewL = ConstantExpr::getBitCast(CompRange.getLower(),
- NewTy);
- Constant *NewU = ConstantExpr::getBitCast(CompRange.getUpper(),
- NewTy);
- CompRange = ConstantRange(NewL, NewU);
- }
-
SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange,
- ICmpInst::isSignedPredicate(Cond));
+ false /*Always treat as unsigned range*/);
if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
}
}
@@ -1723,7 +1697,7 @@
unsigned MaxSteps = MaxBruteForceIterations;
for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
ConstantInt *ItCst =
- ConstantInt::get(IdxExpr->getType()->getUnsignedVersion(), IterationNum);
+ ConstantInt::get(IdxExpr->getType(), IterationNum);
ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
// Form the GEP offset.
@@ -1946,7 +1920,7 @@
if (CondVal->getValue() == ExitWhen) {
ConstantEvolutionLoopExitValue[PN] = PHIVal;
++NumBruteForceTripCountsComputed;
- return SCEVConstant::get(ConstantInt::get(Type::UIntTy, IterationNum));
+ return SCEVConstant::get(ConstantInt::get(Type::Int32Ty, IterationNum));
}
// Compute the value of the PHI node for the next iteration.
@@ -2129,10 +2103,7 @@
SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
// Compute floor(sqrt(B^2-4ac))
- ConstantInt *SqrtVal =
- cast<ConstantInt>(ConstantExpr::getBitCast(SqrtTerm,
- SqrtTerm->getType()->getUnsignedVersion()));
- uint64_t SqrtValV = SqrtVal->getZExtValue();
+ uint64_t SqrtValV = cast<ConstantInt>(SqrtTerm)->getZExtValue();
uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
// The square root might not be precise for arbitrary 64-bit integer
// values. Do some sanity checks to ensure it's correct.
@@ -2142,20 +2113,13 @@
return std::make_pair(CNC, CNC);
}
- SqrtVal = ConstantInt::get(Type::ULongTy, SqrtValV2);
+ ConstantInt *SqrtVal = ConstantInt::get(Type::Int64Ty, SqrtValV2);
SqrtTerm = ConstantExpr::getTruncOrBitCast(SqrtVal, SqrtTerm->getType());
Constant *NegB = ConstantExpr::getNeg(B);
Constant *TwoA = ConstantExpr::getMul(A, Two);
// The divisions must be performed as signed divisions.
- // FIXME:Signedness. These casts can all go away once integer types are
- // signless.
- const Type *SignedTy = NegB->getType()->getSignedVersion();
- NegB = ConstantExpr::getBitCast(NegB, SignedTy);
- TwoA = ConstantExpr::getBitCast(TwoA, SignedTy);
- SqrtTerm = ConstantExpr::getBitCast(SqrtTerm, SignedTy);
-
Constant *Solution1 =
ConstantExpr::getSDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
Constant *Solution2 =
@@ -2222,7 +2186,6 @@
<< " sol#2: " << *R2 << "\n";
#endif
// Pick the smallest positive root value.
- assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
if (ConstantBool *CB =
dyn_cast<ConstantBool>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
R1->getValue(), R2->getValue()))) {
@@ -2448,7 +2411,6 @@
SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
if (R1) {
// Pick the smallest positive root value.
- assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
if (ConstantBool *CB =
dyn_cast<ConstantBool>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
R1->getValue(), R2->getValue()))) {