| //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "assembler" |
| #include "llvm/MC/MCAssembler.h" |
| #include "llvm/MC/MCAsmLayout.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCObjectWriter.h" |
| #include "llvm/MC/MCSectionMachO.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/MCValue.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MachO.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Target/TargetRegistry.h" |
| #include "llvm/Target/TargetAsmBackend.h" |
| |
| // FIXME: Gross. |
| #include "../Target/X86/X86FixupKinds.h" |
| |
| #include <vector> |
| using namespace llvm; |
| |
| class MachObjectWriter; |
| |
| STATISTIC(EmittedFragments, "Number of emitted assembler fragments"); |
| |
| // FIXME FIXME FIXME: There are number of places in this file where we convert |
| // what is a 64-bit assembler value used for computation into a value in the |
| // object file, which may truncate it. We should detect that truncation where |
| // invalid and report errors back. |
| |
| static unsigned getFixupKindLog2Size(unsigned Kind) { |
| switch (Kind) { |
| default: llvm_unreachable("invalid fixup kind!"); |
| case X86::reloc_pcrel_1byte: |
| case FK_Data_1: return 0; |
| case FK_Data_2: return 1; |
| case X86::reloc_pcrel_4byte: |
| case X86::reloc_riprel_4byte: |
| case FK_Data_4: return 2; |
| case FK_Data_8: return 3; |
| } |
| } |
| |
| static bool isFixupKindPCRel(unsigned Kind) { |
| switch (Kind) { |
| default: |
| return false; |
| case X86::reloc_pcrel_1byte: |
| case X86::reloc_pcrel_4byte: |
| case X86::reloc_riprel_4byte: |
| return true; |
| } |
| } |
| |
| class MachObjectWriter : public MCObjectWriter { |
| // See <mach-o/loader.h>. |
| enum { |
| Header_Magic32 = 0xFEEDFACE, |
| Header_Magic64 = 0xFEEDFACF |
| }; |
| |
| enum { |
| Header32Size = 28, |
| Header64Size = 32, |
| SegmentLoadCommand32Size = 56, |
| SegmentLoadCommand64Size = 72, |
| Section32Size = 68, |
| Section64Size = 80, |
| SymtabLoadCommandSize = 24, |
| DysymtabLoadCommandSize = 80, |
| Nlist32Size = 12, |
| Nlist64Size = 16, |
| RelocationInfoSize = 8 |
| }; |
| |
| enum HeaderFileType { |
| HFT_Object = 0x1 |
| }; |
| |
| enum HeaderFlags { |
| HF_SubsectionsViaSymbols = 0x2000 |
| }; |
| |
| enum LoadCommandType { |
| LCT_Segment = 0x1, |
| LCT_Symtab = 0x2, |
| LCT_Dysymtab = 0xb, |
| LCT_Segment64 = 0x19 |
| }; |
| |
| // See <mach-o/nlist.h>. |
| enum SymbolTypeType { |
| STT_Undefined = 0x00, |
| STT_Absolute = 0x02, |
| STT_Section = 0x0e |
| }; |
| |
| enum SymbolTypeFlags { |
| // If any of these bits are set, then the entry is a stab entry number (see |
| // <mach-o/stab.h>. Otherwise the other masks apply. |
| STF_StabsEntryMask = 0xe0, |
| |
| STF_TypeMask = 0x0e, |
| STF_External = 0x01, |
| STF_PrivateExtern = 0x10 |
| }; |
| |
| /// IndirectSymbolFlags - Flags for encoding special values in the indirect |
| /// symbol entry. |
| enum IndirectSymbolFlags { |
| ISF_Local = 0x80000000, |
| ISF_Absolute = 0x40000000 |
| }; |
| |
| /// RelocationFlags - Special flags for addresses. |
| enum RelocationFlags { |
| RF_Scattered = 0x80000000 |
| }; |
| |
| enum RelocationInfoType { |
| RIT_Vanilla = 0, |
| RIT_Pair = 1, |
| RIT_Difference = 2, |
| RIT_PreboundLazyPointer = 3, |
| RIT_LocalDifference = 4 |
| }; |
| |
| /// MachSymbolData - Helper struct for containing some precomputed information |
| /// on symbols. |
| struct MachSymbolData { |
| MCSymbolData *SymbolData; |
| uint64_t StringIndex; |
| uint8_t SectionIndex; |
| |
| // Support lexicographic sorting. |
| bool operator<(const MachSymbolData &RHS) const { |
| const std::string &Name = SymbolData->getSymbol().getName(); |
| return Name < RHS.SymbolData->getSymbol().getName(); |
| } |
| }; |
| |
| unsigned Is64Bit : 1; |
| |
| /// @name Relocation Data |
| /// @{ |
| |
| struct MachRelocationEntry { |
| uint32_t Word0; |
| uint32_t Word1; |
| }; |
| |
| llvm::DenseMap<const MCSectionData*, |
| std::vector<MachRelocationEntry> > Relocations; |
| |
| /// @} |
| /// @name Symbol Table Data |
| |
| SmallString<256> StringTable; |
| std::vector<MachSymbolData> LocalSymbolData; |
| std::vector<MachSymbolData> ExternalSymbolData; |
| std::vector<MachSymbolData> UndefinedSymbolData; |
| |
| /// @} |
| |
| public: |
| MachObjectWriter(raw_ostream &_OS, bool _Is64Bit, bool _IsLittleEndian = true) |
| : MCObjectWriter(_OS, _IsLittleEndian), Is64Bit(_Is64Bit) { |
| } |
| |
| void WriteHeader(unsigned NumLoadCommands, unsigned LoadCommandsSize, |
| bool SubsectionsViaSymbols) { |
| uint32_t Flags = 0; |
| |
| if (SubsectionsViaSymbols) |
| Flags |= HF_SubsectionsViaSymbols; |
| |
| // struct mach_header (28 bytes) or |
| // struct mach_header_64 (32 bytes) |
| |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| Write32(Is64Bit ? Header_Magic64 : Header_Magic32); |
| |
| // FIXME: Support cputype. |
| Write32(Is64Bit ? MachO::CPUTypeX86_64 : MachO::CPUTypeI386); |
| // FIXME: Support cpusubtype. |
| Write32(MachO::CPUSubType_I386_ALL); |
| Write32(HFT_Object); |
| Write32(NumLoadCommands); // Object files have a single load command, the |
| // segment. |
| Write32(LoadCommandsSize); |
| Write32(Flags); |
| if (Is64Bit) |
| Write32(0); // reserved |
| |
| assert(OS.tell() - Start == Is64Bit ? Header64Size : Header32Size); |
| } |
| |
| /// WriteSegmentLoadCommand - Write a segment load command. |
| /// |
| /// \arg NumSections - The number of sections in this segment. |
| /// \arg SectionDataSize - The total size of the sections. |
| void WriteSegmentLoadCommand(unsigned NumSections, |
| uint64_t VMSize, |
| uint64_t SectionDataStartOffset, |
| uint64_t SectionDataSize) { |
| // struct segment_command (56 bytes) or |
| // struct segment_command_64 (72 bytes) |
| |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| unsigned SegmentLoadCommandSize = Is64Bit ? SegmentLoadCommand64Size : |
| SegmentLoadCommand32Size; |
| Write32(Is64Bit ? LCT_Segment64 : LCT_Segment); |
| Write32(SegmentLoadCommandSize + |
| NumSections * (Is64Bit ? Section64Size : Section32Size)); |
| |
| WriteBytes("", 16); |
| if (Is64Bit) { |
| Write64(0); // vmaddr |
| Write64(VMSize); // vmsize |
| Write64(SectionDataStartOffset); // file offset |
| Write64(SectionDataSize); // file size |
| } else { |
| Write32(0); // vmaddr |
| Write32(VMSize); // vmsize |
| Write32(SectionDataStartOffset); // file offset |
| Write32(SectionDataSize); // file size |
| } |
| Write32(0x7); // maxprot |
| Write32(0x7); // initprot |
| Write32(NumSections); |
| Write32(0); // flags |
| |
| assert(OS.tell() - Start == SegmentLoadCommandSize); |
| } |
| |
| void WriteSection(const MCAssembler &Asm, const MCSectionData &SD, |
| uint64_t FileOffset, uint64_t RelocationsStart, |
| unsigned NumRelocations) { |
| // The offset is unused for virtual sections. |
| if (Asm.getBackend().isVirtualSection(SD.getSection())) { |
| assert(SD.getFileSize() == 0 && "Invalid file size!"); |
| FileOffset = 0; |
| } |
| |
| // struct section (68 bytes) or |
| // struct section_64 (80 bytes) |
| |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| // FIXME: cast<> support! |
| const MCSectionMachO &Section = |
| static_cast<const MCSectionMachO&>(SD.getSection()); |
| WriteBytes(Section.getSectionName(), 16); |
| WriteBytes(Section.getSegmentName(), 16); |
| if (Is64Bit) { |
| Write64(SD.getAddress()); // address |
| Write64(SD.getSize()); // size |
| } else { |
| Write32(SD.getAddress()); // address |
| Write32(SD.getSize()); // size |
| } |
| Write32(FileOffset); |
| |
| unsigned Flags = Section.getTypeAndAttributes(); |
| if (SD.hasInstructions()) |
| Flags |= MCSectionMachO::S_ATTR_SOME_INSTRUCTIONS; |
| |
| assert(isPowerOf2_32(SD.getAlignment()) && "Invalid alignment!"); |
| Write32(Log2_32(SD.getAlignment())); |
| Write32(NumRelocations ? RelocationsStart : 0); |
| Write32(NumRelocations); |
| Write32(Flags); |
| Write32(0); // reserved1 |
| Write32(Section.getStubSize()); // reserved2 |
| if (Is64Bit) |
| Write32(0); // reserved3 |
| |
| assert(OS.tell() - Start == Is64Bit ? Section64Size : Section32Size); |
| } |
| |
| void WriteSymtabLoadCommand(uint32_t SymbolOffset, uint32_t NumSymbols, |
| uint32_t StringTableOffset, |
| uint32_t StringTableSize) { |
| // struct symtab_command (24 bytes) |
| |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| Write32(LCT_Symtab); |
| Write32(SymtabLoadCommandSize); |
| Write32(SymbolOffset); |
| Write32(NumSymbols); |
| Write32(StringTableOffset); |
| Write32(StringTableSize); |
| |
| assert(OS.tell() - Start == SymtabLoadCommandSize); |
| } |
| |
| void WriteDysymtabLoadCommand(uint32_t FirstLocalSymbol, |
| uint32_t NumLocalSymbols, |
| uint32_t FirstExternalSymbol, |
| uint32_t NumExternalSymbols, |
| uint32_t FirstUndefinedSymbol, |
| uint32_t NumUndefinedSymbols, |
| uint32_t IndirectSymbolOffset, |
| uint32_t NumIndirectSymbols) { |
| // struct dysymtab_command (80 bytes) |
| |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| Write32(LCT_Dysymtab); |
| Write32(DysymtabLoadCommandSize); |
| Write32(FirstLocalSymbol); |
| Write32(NumLocalSymbols); |
| Write32(FirstExternalSymbol); |
| Write32(NumExternalSymbols); |
| Write32(FirstUndefinedSymbol); |
| Write32(NumUndefinedSymbols); |
| Write32(0); // tocoff |
| Write32(0); // ntoc |
| Write32(0); // modtaboff |
| Write32(0); // nmodtab |
| Write32(0); // extrefsymoff |
| Write32(0); // nextrefsyms |
| Write32(IndirectSymbolOffset); |
| Write32(NumIndirectSymbols); |
| Write32(0); // extreloff |
| Write32(0); // nextrel |
| Write32(0); // locreloff |
| Write32(0); // nlocrel |
| |
| assert(OS.tell() - Start == DysymtabLoadCommandSize); |
| } |
| |
| void WriteNlist(MachSymbolData &MSD) { |
| MCSymbolData &Data = *MSD.SymbolData; |
| const MCSymbol &Symbol = Data.getSymbol(); |
| uint8_t Type = 0; |
| uint16_t Flags = Data.getFlags(); |
| uint32_t Address = 0; |
| |
| // Set the N_TYPE bits. See <mach-o/nlist.h>. |
| // |
| // FIXME: Are the prebound or indirect fields possible here? |
| if (Symbol.isUndefined()) |
| Type = STT_Undefined; |
| else if (Symbol.isAbsolute()) |
| Type = STT_Absolute; |
| else |
| Type = STT_Section; |
| |
| // FIXME: Set STAB bits. |
| |
| if (Data.isPrivateExtern()) |
| Type |= STF_PrivateExtern; |
| |
| // Set external bit. |
| if (Data.isExternal() || Symbol.isUndefined()) |
| Type |= STF_External; |
| |
| // Compute the symbol address. |
| if (Symbol.isDefined()) { |
| if (Symbol.isAbsolute()) { |
| llvm_unreachable("FIXME: Not yet implemented!"); |
| } else { |
| Address = Data.getAddress(); |
| } |
| } else if (Data.isCommon()) { |
| // Common symbols are encoded with the size in the address |
| // field, and their alignment in the flags. |
| Address = Data.getCommonSize(); |
| |
| // Common alignment is packed into the 'desc' bits. |
| if (unsigned Align = Data.getCommonAlignment()) { |
| unsigned Log2Size = Log2_32(Align); |
| assert((1U << Log2Size) == Align && "Invalid 'common' alignment!"); |
| if (Log2Size > 15) |
| llvm_report_error("invalid 'common' alignment '" + |
| Twine(Align) + "'"); |
| // FIXME: Keep this mask with the SymbolFlags enumeration. |
| Flags = (Flags & 0xF0FF) | (Log2Size << 8); |
| } |
| } |
| |
| // struct nlist (12 bytes) |
| |
| Write32(MSD.StringIndex); |
| Write8(Type); |
| Write8(MSD.SectionIndex); |
| |
| // The Mach-O streamer uses the lowest 16-bits of the flags for the 'desc' |
| // value. |
| Write16(Flags); |
| if (Is64Bit) |
| Write64(Address); |
| else |
| Write32(Address); |
| } |
| |
| void RecordScatteredRelocation(const MCAssembler &Asm, |
| const MCFragment &Fragment, |
| const MCAsmFixup &Fixup, MCValue Target, |
| uint64_t &FixedValue) { |
| uint32_t Address = Fragment.getOffset() + Fixup.Offset; |
| unsigned IsPCRel = isFixupKindPCRel(Fixup.Kind); |
| unsigned Log2Size = getFixupKindLog2Size(Fixup.Kind); |
| unsigned Type = RIT_Vanilla; |
| |
| // See <reloc.h>. |
| const MCSymbol *A = &Target.getSymA()->getSymbol(); |
| MCSymbolData *A_SD = &Asm.getSymbolData(*A); |
| |
| if (!A_SD->getFragment()) |
| llvm_report_error("symbol '" + A->getName() + |
| "' can not be undefined in a subtraction expression"); |
| |
| uint32_t Value = A_SD->getAddress(); |
| uint32_t Value2 = 0; |
| |
| if (const MCSymbolRefExpr *B = Target.getSymB()) { |
| MCSymbolData *B_SD = &Asm.getSymbolData(B->getSymbol()); |
| |
| if (!B_SD->getFragment()) |
| llvm_report_error("symbol '" + B->getSymbol().getName() + |
| "' can not be undefined in a subtraction expression"); |
| |
| // Select the appropriate difference relocation type. |
| // |
| // Note that there is no longer any semantic difference between these two |
| // relocation types from the linkers point of view, this is done solely |
| // for pedantic compatibility with 'as'. |
| Type = A_SD->isExternal() ? RIT_Difference : RIT_LocalDifference; |
| Value2 = B_SD->getAddress(); |
| } |
| |
| // Relocations are written out in reverse order, so the PAIR comes first. |
| if (Type == RIT_Difference || Type == RIT_LocalDifference) { |
| MachRelocationEntry MRE; |
| MRE.Word0 = ((0 << 0) | |
| (RIT_Pair << 24) | |
| (Log2Size << 28) | |
| (IsPCRel << 30) | |
| RF_Scattered); |
| MRE.Word1 = Value2; |
| Relocations[Fragment.getParent()].push_back(MRE); |
| } |
| |
| MachRelocationEntry MRE; |
| MRE.Word0 = ((Address << 0) | |
| (Type << 24) | |
| (Log2Size << 28) | |
| (IsPCRel << 30) | |
| RF_Scattered); |
| MRE.Word1 = Value; |
| Relocations[Fragment.getParent()].push_back(MRE); |
| } |
| |
| virtual void RecordRelocation(const MCAssembler &Asm, |
| const MCDataFragment &Fragment, |
| const MCAsmFixup &Fixup, MCValue Target, |
| uint64_t &FixedValue) { |
| unsigned IsPCRel = isFixupKindPCRel(Fixup.Kind); |
| unsigned Log2Size = getFixupKindLog2Size(Fixup.Kind); |
| |
| // If this is a difference or a defined symbol plus an offset, then we need |
| // a scattered relocation entry. |
| uint32_t Offset = Target.getConstant(); |
| if (IsPCRel) |
| Offset += 1 << Log2Size; |
| if (Target.getSymB() || |
| (Target.getSymA() && !Target.getSymA()->getSymbol().isUndefined() && |
| Offset)) { |
| RecordScatteredRelocation(Asm, Fragment, Fixup, Target, FixedValue); |
| return; |
| } |
| |
| // See <reloc.h>. |
| uint32_t Address = Fragment.getOffset() + Fixup.Offset; |
| uint32_t Value = 0; |
| unsigned Index = 0; |
| unsigned IsExtern = 0; |
| unsigned Type = 0; |
| |
| if (Target.isAbsolute()) { // constant |
| // SymbolNum of 0 indicates the absolute section. |
| // |
| // FIXME: Currently, these are never generated (see code below). I cannot |
| // find a case where they are actually emitted. |
| Type = RIT_Vanilla; |
| Value = 0; |
| } else { |
| const MCSymbol *Symbol = &Target.getSymA()->getSymbol(); |
| MCSymbolData *SD = &Asm.getSymbolData(*Symbol); |
| |
| if (Symbol->isUndefined()) { |
| IsExtern = 1; |
| Index = SD->getIndex(); |
| Value = 0; |
| } else { |
| // The index is the section ordinal. |
| // |
| // FIXME: O(N) |
| Index = 1; |
| MCAssembler::const_iterator it = Asm.begin(), ie = Asm.end(); |
| for (; it != ie; ++it, ++Index) |
| if (&*it == SD->getFragment()->getParent()) |
| break; |
| assert(it != ie && "Unable to find section index!"); |
| Value = SD->getAddress(); |
| } |
| |
| Type = RIT_Vanilla; |
| } |
| |
| // struct relocation_info (8 bytes) |
| MachRelocationEntry MRE; |
| MRE.Word0 = Address; |
| MRE.Word1 = ((Index << 0) | |
| (IsPCRel << 24) | |
| (Log2Size << 25) | |
| (IsExtern << 27) | |
| (Type << 28)); |
| Relocations[Fragment.getParent()].push_back(MRE); |
| } |
| |
| void BindIndirectSymbols(MCAssembler &Asm) { |
| // This is the point where 'as' creates actual symbols for indirect symbols |
| // (in the following two passes). It would be easier for us to do this |
| // sooner when we see the attribute, but that makes getting the order in the |
| // symbol table much more complicated than it is worth. |
| // |
| // FIXME: Revisit this when the dust settles. |
| |
| // Bind non lazy symbol pointers first. |
| for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(), |
| ie = Asm.indirect_symbol_end(); it != ie; ++it) { |
| // FIXME: cast<> support! |
| const MCSectionMachO &Section = |
| static_cast<const MCSectionMachO&>(it->SectionData->getSection()); |
| |
| if (Section.getType() != MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) |
| continue; |
| |
| Asm.getOrCreateSymbolData(*it->Symbol); |
| } |
| |
| // Then lazy symbol pointers and symbol stubs. |
| for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(), |
| ie = Asm.indirect_symbol_end(); it != ie; ++it) { |
| // FIXME: cast<> support! |
| const MCSectionMachO &Section = |
| static_cast<const MCSectionMachO&>(it->SectionData->getSection()); |
| |
| if (Section.getType() != MCSectionMachO::S_LAZY_SYMBOL_POINTERS && |
| Section.getType() != MCSectionMachO::S_SYMBOL_STUBS) |
| continue; |
| |
| // Set the symbol type to undefined lazy, but only on construction. |
| // |
| // FIXME: Do not hardcode. |
| bool Created; |
| MCSymbolData &Entry = Asm.getOrCreateSymbolData(*it->Symbol, &Created); |
| if (Created) |
| Entry.setFlags(Entry.getFlags() | 0x0001); |
| } |
| } |
| |
| /// ComputeSymbolTable - Compute the symbol table data |
| /// |
| /// \param StringTable [out] - The string table data. |
| /// \param StringIndexMap [out] - Map from symbol names to offsets in the |
| /// string table. |
| void ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable, |
| std::vector<MachSymbolData> &LocalSymbolData, |
| std::vector<MachSymbolData> &ExternalSymbolData, |
| std::vector<MachSymbolData> &UndefinedSymbolData) { |
| // Build section lookup table. |
| DenseMap<const MCSection*, uint8_t> SectionIndexMap; |
| unsigned Index = 1; |
| for (MCAssembler::iterator it = Asm.begin(), |
| ie = Asm.end(); it != ie; ++it, ++Index) |
| SectionIndexMap[&it->getSection()] = Index; |
| assert(Index <= 256 && "Too many sections!"); |
| |
| // Index 0 is always the empty string. |
| StringMap<uint64_t> StringIndexMap; |
| StringTable += '\x00'; |
| |
| // Build the symbol arrays and the string table, but only for non-local |
| // symbols. |
| // |
| // The particular order that we collect the symbols and create the string |
| // table, then sort the symbols is chosen to match 'as'. Even though it |
| // doesn't matter for correctness, this is important for letting us diff .o |
| // files. |
| for (MCAssembler::symbol_iterator it = Asm.symbol_begin(), |
| ie = Asm.symbol_end(); it != ie; ++it) { |
| const MCSymbol &Symbol = it->getSymbol(); |
| |
| // Ignore non-linker visible symbols. |
| if (!Asm.isSymbolLinkerVisible(it)) |
| continue; |
| |
| if (!it->isExternal() && !Symbol.isUndefined()) |
| continue; |
| |
| uint64_t &Entry = StringIndexMap[Symbol.getName()]; |
| if (!Entry) { |
| Entry = StringTable.size(); |
| StringTable += Symbol.getName(); |
| StringTable += '\x00'; |
| } |
| |
| MachSymbolData MSD; |
| MSD.SymbolData = it; |
| MSD.StringIndex = Entry; |
| |
| if (Symbol.isUndefined()) { |
| MSD.SectionIndex = 0; |
| UndefinedSymbolData.push_back(MSD); |
| } else if (Symbol.isAbsolute()) { |
| MSD.SectionIndex = 0; |
| ExternalSymbolData.push_back(MSD); |
| } else { |
| MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection()); |
| assert(MSD.SectionIndex && "Invalid section index!"); |
| ExternalSymbolData.push_back(MSD); |
| } |
| } |
| |
| // Now add the data for local symbols. |
| for (MCAssembler::symbol_iterator it = Asm.symbol_begin(), |
| ie = Asm.symbol_end(); it != ie; ++it) { |
| const MCSymbol &Symbol = it->getSymbol(); |
| |
| // Ignore non-linker visible symbols. |
| if (!Asm.isSymbolLinkerVisible(it)) |
| continue; |
| |
| if (it->isExternal() || Symbol.isUndefined()) |
| continue; |
| |
| uint64_t &Entry = StringIndexMap[Symbol.getName()]; |
| if (!Entry) { |
| Entry = StringTable.size(); |
| StringTable += Symbol.getName(); |
| StringTable += '\x00'; |
| } |
| |
| MachSymbolData MSD; |
| MSD.SymbolData = it; |
| MSD.StringIndex = Entry; |
| |
| if (Symbol.isAbsolute()) { |
| MSD.SectionIndex = 0; |
| LocalSymbolData.push_back(MSD); |
| } else { |
| MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection()); |
| assert(MSD.SectionIndex && "Invalid section index!"); |
| LocalSymbolData.push_back(MSD); |
| } |
| } |
| |
| // External and undefined symbols are required to be in lexicographic order. |
| std::sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); |
| std::sort(UndefinedSymbolData.begin(), UndefinedSymbolData.end()); |
| |
| // Set the symbol indices. |
| Index = 0; |
| for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i) |
| LocalSymbolData[i].SymbolData->setIndex(Index++); |
| for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i) |
| ExternalSymbolData[i].SymbolData->setIndex(Index++); |
| for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i) |
| UndefinedSymbolData[i].SymbolData->setIndex(Index++); |
| |
| // The string table is padded to a multiple of 4. |
| while (StringTable.size() % 4) |
| StringTable += '\x00'; |
| } |
| |
| virtual void ExecutePostLayoutBinding(MCAssembler &Asm) { |
| // Create symbol data for any indirect symbols. |
| BindIndirectSymbols(Asm); |
| |
| // Compute symbol table information and bind symbol indices. |
| ComputeSymbolTable(Asm, StringTable, LocalSymbolData, ExternalSymbolData, |
| UndefinedSymbolData); |
| } |
| |
| virtual void WriteObject(const MCAssembler &Asm) { |
| unsigned NumSections = Asm.size(); |
| |
| // The section data starts after the header, the segment load command (and |
| // section headers) and the symbol table. |
| unsigned NumLoadCommands = 1; |
| uint64_t LoadCommandsSize = Is64Bit ? |
| SegmentLoadCommand64Size + NumSections * Section64Size : |
| SegmentLoadCommand32Size + NumSections * Section32Size; |
| |
| // Add the symbol table load command sizes, if used. |
| unsigned NumSymbols = LocalSymbolData.size() + ExternalSymbolData.size() + |
| UndefinedSymbolData.size(); |
| if (NumSymbols) { |
| NumLoadCommands += 2; |
| LoadCommandsSize += SymtabLoadCommandSize + DysymtabLoadCommandSize; |
| } |
| |
| // Compute the total size of the section data, as well as its file size and |
| // vm size. |
| uint64_t SectionDataStart = (Is64Bit ? Header64Size : Header32Size) |
| + LoadCommandsSize; |
| uint64_t SectionDataSize = 0; |
| uint64_t SectionDataFileSize = 0; |
| uint64_t VMSize = 0; |
| for (MCAssembler::const_iterator it = Asm.begin(), |
| ie = Asm.end(); it != ie; ++it) { |
| const MCSectionData &SD = *it; |
| |
| VMSize = std::max(VMSize, SD.getAddress() + SD.getSize()); |
| |
| if (Asm.getBackend().isVirtualSection(SD.getSection())) |
| continue; |
| |
| SectionDataSize = std::max(SectionDataSize, |
| SD.getAddress() + SD.getSize()); |
| SectionDataFileSize = std::max(SectionDataFileSize, |
| SD.getAddress() + SD.getFileSize()); |
| } |
| |
| // The section data is padded to 4 bytes. |
| // |
| // FIXME: Is this machine dependent? |
| unsigned SectionDataPadding = OffsetToAlignment(SectionDataFileSize, 4); |
| SectionDataFileSize += SectionDataPadding; |
| |
| // Write the prolog, starting with the header and load command... |
| WriteHeader(NumLoadCommands, LoadCommandsSize, |
| Asm.getSubsectionsViaSymbols()); |
| WriteSegmentLoadCommand(NumSections, VMSize, |
| SectionDataStart, SectionDataSize); |
| |
| // ... and then the section headers. |
| uint64_t RelocTableEnd = SectionDataStart + SectionDataFileSize; |
| for (MCAssembler::const_iterator it = Asm.begin(), |
| ie = Asm.end(); it != ie; ++it) { |
| std::vector<MachRelocationEntry> &Relocs = Relocations[it]; |
| unsigned NumRelocs = Relocs.size(); |
| uint64_t SectionStart = SectionDataStart + it->getAddress(); |
| WriteSection(Asm, *it, SectionStart, RelocTableEnd, NumRelocs); |
| RelocTableEnd += NumRelocs * RelocationInfoSize; |
| } |
| |
| // Write the symbol table load command, if used. |
| if (NumSymbols) { |
| unsigned FirstLocalSymbol = 0; |
| unsigned NumLocalSymbols = LocalSymbolData.size(); |
| unsigned FirstExternalSymbol = FirstLocalSymbol + NumLocalSymbols; |
| unsigned NumExternalSymbols = ExternalSymbolData.size(); |
| unsigned FirstUndefinedSymbol = FirstExternalSymbol + NumExternalSymbols; |
| unsigned NumUndefinedSymbols = UndefinedSymbolData.size(); |
| unsigned NumIndirectSymbols = Asm.indirect_symbol_size(); |
| unsigned NumSymTabSymbols = |
| NumLocalSymbols + NumExternalSymbols + NumUndefinedSymbols; |
| uint64_t IndirectSymbolSize = NumIndirectSymbols * 4; |
| uint64_t IndirectSymbolOffset = 0; |
| |
| // If used, the indirect symbols are written after the section data. |
| if (NumIndirectSymbols) |
| IndirectSymbolOffset = RelocTableEnd; |
| |
| // The symbol table is written after the indirect symbol data. |
| uint64_t SymbolTableOffset = RelocTableEnd + IndirectSymbolSize; |
| |
| // The string table is written after symbol table. |
| uint64_t StringTableOffset = |
| SymbolTableOffset + NumSymTabSymbols * (Is64Bit ? Nlist64Size : |
| Nlist32Size); |
| WriteSymtabLoadCommand(SymbolTableOffset, NumSymTabSymbols, |
| StringTableOffset, StringTable.size()); |
| |
| WriteDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols, |
| FirstExternalSymbol, NumExternalSymbols, |
| FirstUndefinedSymbol, NumUndefinedSymbols, |
| IndirectSymbolOffset, NumIndirectSymbols); |
| } |
| |
| // Write the actual section data. |
| for (MCAssembler::const_iterator it = Asm.begin(), |
| ie = Asm.end(); it != ie; ++it) |
| Asm.WriteSectionData(it, this); |
| |
| // Write the extra padding. |
| WriteZeros(SectionDataPadding); |
| |
| // Write the relocation entries. |
| for (MCAssembler::const_iterator it = Asm.begin(), |
| ie = Asm.end(); it != ie; ++it) { |
| // Write the section relocation entries, in reverse order to match 'as' |
| // (approximately, the exact algorithm is more complicated than this). |
| std::vector<MachRelocationEntry> &Relocs = Relocations[it]; |
| for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { |
| Write32(Relocs[e - i - 1].Word0); |
| Write32(Relocs[e - i - 1].Word1); |
| } |
| } |
| |
| // Write the symbol table data, if used. |
| if (NumSymbols) { |
| // Write the indirect symbol entries. |
| for (MCAssembler::const_indirect_symbol_iterator |
| it = Asm.indirect_symbol_begin(), |
| ie = Asm.indirect_symbol_end(); it != ie; ++it) { |
| // Indirect symbols in the non lazy symbol pointer section have some |
| // special handling. |
| const MCSectionMachO &Section = |
| static_cast<const MCSectionMachO&>(it->SectionData->getSection()); |
| if (Section.getType() == MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) { |
| // If this symbol is defined and internal, mark it as such. |
| if (it->Symbol->isDefined() && |
| !Asm.getSymbolData(*it->Symbol).isExternal()) { |
| uint32_t Flags = ISF_Local; |
| if (it->Symbol->isAbsolute()) |
| Flags |= ISF_Absolute; |
| Write32(Flags); |
| continue; |
| } |
| } |
| |
| Write32(Asm.getSymbolData(*it->Symbol).getIndex()); |
| } |
| |
| // FIXME: Check that offsets match computed ones. |
| |
| // Write the symbol table entries. |
| for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i) |
| WriteNlist(LocalSymbolData[i]); |
| for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i) |
| WriteNlist(ExternalSymbolData[i]); |
| for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i) |
| WriteNlist(UndefinedSymbolData[i]); |
| |
| // Write the string table. |
| OS << StringTable.str(); |
| } |
| } |
| }; |
| |
| /* *** */ |
| |
| MCFragment::MCFragment() : Kind(FragmentType(~0)) { |
| } |
| |
| MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent) |
| : Kind(_Kind), |
| Parent(_Parent), |
| FileSize(~UINT64_C(0)) |
| { |
| if (Parent) |
| Parent->getFragmentList().push_back(this); |
| } |
| |
| MCFragment::~MCFragment() { |
| } |
| |
| uint64_t MCFragment::getAddress() const { |
| assert(getParent() && "Missing Section!"); |
| return getParent()->getAddress() + Offset; |
| } |
| |
| /* *** */ |
| |
| MCSectionData::MCSectionData() : Section(0) {} |
| |
| MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A) |
| : Section(&_Section), |
| Alignment(1), |
| Address(~UINT64_C(0)), |
| Size(~UINT64_C(0)), |
| FileSize(~UINT64_C(0)), |
| HasInstructions(false) |
| { |
| if (A) |
| A->getSectionList().push_back(this); |
| } |
| |
| /* *** */ |
| |
| MCSymbolData::MCSymbolData() : Symbol(0) {} |
| |
| MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, |
| uint64_t _Offset, MCAssembler *A) |
| : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset), |
| IsExternal(false), IsPrivateExtern(false), |
| CommonSize(0), CommonAlign(0), Flags(0), Index(0) |
| { |
| if (A) |
| A->getSymbolList().push_back(this); |
| } |
| |
| /* *** */ |
| |
| MCAssembler::MCAssembler(MCContext &_Context, TargetAsmBackend &_Backend, |
| raw_ostream &_OS) |
| : Context(_Context), Backend(_Backend), OS(_OS), SubsectionsViaSymbols(false) |
| { |
| } |
| |
| MCAssembler::~MCAssembler() { |
| } |
| |
| static bool isScatteredFixupFullyResolvedSimple(const MCAssembler &Asm, |
| const MCAsmFixup &Fixup, |
| const MCDataFragment *DF, |
| const MCValue Target, |
| const MCSection *BaseSection) { |
| // The effective fixup address is |
| // addr(atom(A)) + offset(A) |
| // - addr(atom(B)) - offset(B) |
| // - addr(<base symbol>) + <fixup offset from base symbol> |
| // and the offsets are not relocatable, so the fixup is fully resolved when |
| // addr(atom(A)) - addr(atom(B)) - addr(<base symbol>)) == 0. |
| // |
| // The simple (Darwin, except on x86_64) way of dealing with this was to |
| // assume that any reference to a temporary symbol *must* be a temporary |
| // symbol in the same atom, unless the sections differ. Therefore, any PCrel |
| // relocation to a temporary symbol (in the same section) is fully |
| // resolved. This also works in conjunction with absolutized .set, which |
| // requires the compiler to use .set to absolutize the differences between |
| // symbols which the compiler knows to be assembly time constants, so we don't |
| // need to worry about consider symbol differences fully resolved. |
| |
| // Non-relative fixups are only resolved if constant. |
| if (!BaseSection) |
| return Target.isAbsolute(); |
| |
| // Otherwise, relative fixups are only resolved if not a difference and the |
| // target is a temporary in the same section. |
| if (Target.isAbsolute() || Target.getSymB()) |
| return false; |
| |
| const MCSymbol *A = &Target.getSymA()->getSymbol(); |
| if (!A->isTemporary() || !A->isInSection() || |
| &A->getSection() != BaseSection) |
| return false; |
| |
| return true; |
| } |
| |
| static bool isScatteredFixupFullyResolved(const MCAssembler &Asm, |
| const MCAsmFixup &Fixup, |
| const MCDataFragment *DF, |
| const MCValue Target, |
| const MCSymbolData *BaseSymbol) { |
| // The effective fixup address is |
| // addr(atom(A)) + offset(A) |
| // - addr(atom(B)) - offset(B) |
| // - addr(BaseSymbol) + <fixup offset from base symbol> |
| // and the offsets are not relocatable, so the fixup is fully resolved when |
| // addr(atom(A)) - addr(atom(B)) - addr(BaseSymbol) == 0. |
| // |
| // Note that "false" is almost always conservatively correct (it means we emit |
| // a relocation which is unnecessary), except when it would force us to emit a |
| // relocation which the target cannot encode. |
| |
| const MCSymbolData *A_Base = 0, *B_Base = 0; |
| if (const MCSymbolRefExpr *A = Target.getSymA()) { |
| // Modified symbol references cannot be resolved. |
| if (A->getKind() != MCSymbolRefExpr::VK_None) |
| return false; |
| |
| A_Base = Asm.getAtom(&Asm.getSymbolData(A->getSymbol())); |
| if (!A_Base) |
| return false; |
| } |
| |
| if (const MCSymbolRefExpr *B = Target.getSymB()) { |
| // Modified symbol references cannot be resolved. |
| if (B->getKind() != MCSymbolRefExpr::VK_None) |
| return false; |
| |
| B_Base = Asm.getAtom(&Asm.getSymbolData(B->getSymbol())); |
| if (!B_Base) |
| return false; |
| } |
| |
| // If there is no base, A and B have to be the same atom for this fixup to be |
| // fully resolved. |
| if (!BaseSymbol) |
| return A_Base == B_Base; |
| |
| // Otherwise, B must be missing and A must be the base. |
| return !B_Base && BaseSymbol == A_Base; |
| } |
| |
| bool MCAssembler::isSymbolLinkerVisible(const MCSymbolData *SD) const { |
| // Non-temporary labels should always be visible to the linker. |
| if (!SD->getSymbol().isTemporary()) |
| return true; |
| |
| // Absolute temporary labels are never visible. |
| if (!SD->getFragment()) |
| return false; |
| |
| // Otherwise, check if the section requires symbols even for temporary labels. |
| return getBackend().doesSectionRequireSymbols( |
| SD->getFragment()->getParent()->getSection()); |
| } |
| |
| const MCSymbolData *MCAssembler::getAtomForAddress(const MCSectionData *Section, |
| uint64_t Address) const { |
| const MCSymbolData *Best = 0; |
| for (MCAssembler::const_symbol_iterator it = symbol_begin(), |
| ie = symbol_end(); it != ie; ++it) { |
| // Ignore non-linker visible symbols. |
| if (!isSymbolLinkerVisible(it)) |
| continue; |
| |
| // Ignore symbols not in the same section. |
| if (!it->getFragment() || it->getFragment()->getParent() != Section) |
| continue; |
| |
| // Otherwise, find the closest symbol preceding this address (ties are |
| // resolved in favor of the last defined symbol). |
| if (it->getAddress() <= Address && |
| (!Best || it->getAddress() >= Best->getAddress())) |
| Best = it; |
| } |
| |
| return Best; |
| } |
| |
| const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const { |
| // Linker visible symbols define atoms. |
| if (isSymbolLinkerVisible(SD)) |
| return SD; |
| |
| // Absolute and undefined symbols have no defining atom. |
| if (!SD->getFragment()) |
| return 0; |
| |
| // Otherwise, search by address. |
| return getAtomForAddress(SD->getFragment()->getParent(), SD->getAddress()); |
| } |
| |
| bool MCAssembler::EvaluateFixup(const MCAsmLayout &Layout, MCAsmFixup &Fixup, |
| MCDataFragment *DF, |
| MCValue &Target, uint64_t &Value) const { |
| if (!Fixup.Value->EvaluateAsRelocatable(Target, &Layout)) |
| llvm_report_error("expected relocatable expression"); |
| |
| // FIXME: How do non-scattered symbols work in ELF? I presume the linker |
| // doesn't support small relocations, but then under what criteria does the |
| // assembler allow symbol differences? |
| |
| Value = Target.getConstant(); |
| |
| bool IsResolved = true, IsPCRel = isFixupKindPCRel(Fixup.Kind); |
| if (const MCSymbolRefExpr *A = Target.getSymA()) { |
| if (A->getSymbol().isDefined()) |
| Value += getSymbolData(A->getSymbol()).getAddress(); |
| else |
| IsResolved = false; |
| } |
| if (const MCSymbolRefExpr *B = Target.getSymB()) { |
| if (B->getSymbol().isDefined()) |
| Value -= getSymbolData(B->getSymbol()).getAddress(); |
| else |
| IsResolved = false; |
| } |
| |
| // If we are using scattered symbols, determine whether this value is actually |
| // resolved; scattering may cause atoms to move. |
| if (IsResolved && getBackend().hasScatteredSymbols()) { |
| if (getBackend().hasReliableSymbolDifference()) { |
| // If this is a PCrel relocation, find the base atom (identified by its |
| // symbol) that the fixup value is relative to. |
| const MCSymbolData *BaseSymbol = 0; |
| if (IsPCRel) { |
| BaseSymbol = getAtomForAddress( |
| DF->getParent(), DF->getAddress() + Fixup.Offset); |
| if (!BaseSymbol) |
| IsResolved = false; |
| } |
| |
| if (IsResolved) |
| IsResolved = isScatteredFixupFullyResolved(*this, Fixup, DF, Target, |
| BaseSymbol); |
| } else { |
| const MCSection *BaseSection = 0; |
| if (IsPCRel) |
| BaseSection = &DF->getParent()->getSection(); |
| |
| IsResolved = isScatteredFixupFullyResolvedSimple(*this, Fixup, DF, Target, |
| BaseSection); |
| } |
| } |
| |
| if (IsPCRel) |
| Value -= DF->getAddress() + Fixup.Offset; |
| |
| return IsResolved; |
| } |
| |
| void MCAssembler::LayoutSection(MCSectionData &SD) { |
| MCAsmLayout Layout(*this); |
| uint64_t Address = SD.getAddress(); |
| |
| for (MCSectionData::iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) { |
| MCFragment &F = *it; |
| |
| F.setOffset(Address - SD.getAddress()); |
| |
| // Evaluate fragment size. |
| switch (F.getKind()) { |
| case MCFragment::FT_Align: { |
| MCAlignFragment &AF = cast<MCAlignFragment>(F); |
| |
| uint64_t Size = OffsetToAlignment(Address, AF.getAlignment()); |
| if (Size > AF.getMaxBytesToEmit()) |
| AF.setFileSize(0); |
| else |
| AF.setFileSize(Size); |
| break; |
| } |
| |
| case MCFragment::FT_Data: |
| case MCFragment::FT_Fill: |
| F.setFileSize(F.getMaxFileSize()); |
| break; |
| |
| case MCFragment::FT_Org: { |
| MCOrgFragment &OF = cast<MCOrgFragment>(F); |
| |
| int64_t TargetLocation; |
| if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, &Layout)) |
| llvm_report_error("expected assembly-time absolute expression"); |
| |
| // FIXME: We need a way to communicate this error. |
| int64_t Offset = TargetLocation - F.getOffset(); |
| if (Offset < 0) |
| llvm_report_error("invalid .org offset '" + Twine(TargetLocation) + |
| "' (at offset '" + Twine(F.getOffset()) + "'"); |
| |
| F.setFileSize(Offset); |
| break; |
| } |
| |
| case MCFragment::FT_ZeroFill: { |
| MCZeroFillFragment &ZFF = cast<MCZeroFillFragment>(F); |
| |
| // Align the fragment offset; it is safe to adjust the offset freely since |
| // this is only in virtual sections. |
| Address = RoundUpToAlignment(Address, ZFF.getAlignment()); |
| F.setOffset(Address - SD.getAddress()); |
| |
| // FIXME: This is misnamed. |
| F.setFileSize(ZFF.getSize()); |
| break; |
| } |
| } |
| |
| Address += F.getFileSize(); |
| } |
| |
| // Set the section sizes. |
| SD.setSize(Address - SD.getAddress()); |
| if (getBackend().isVirtualSection(SD.getSection())) |
| SD.setFileSize(0); |
| else |
| SD.setFileSize(Address - SD.getAddress()); |
| } |
| |
| /// WriteNopData - Write optimal nops to the output file for the \arg Count |
| /// bytes. This returns the number of bytes written. It may return 0 if |
| /// the \arg Count is more than the maximum optimal nops. |
| /// |
| /// FIXME this is X86 32-bit specific and should move to a better place. |
| static uint64_t WriteNopData(uint64_t Count, MCObjectWriter *OW) { |
| static const uint8_t Nops[16][16] = { |
| // nop |
| {0x90}, |
| // xchg %ax,%ax |
| {0x66, 0x90}, |
| // nopl (%[re]ax) |
| {0x0f, 0x1f, 0x00}, |
| // nopl 0(%[re]ax) |
| {0x0f, 0x1f, 0x40, 0x00}, |
| // nopl 0(%[re]ax,%[re]ax,1) |
| {0x0f, 0x1f, 0x44, 0x00, 0x00}, |
| // nopw 0(%[re]ax,%[re]ax,1) |
| {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, |
| // nopl 0L(%[re]ax) |
| {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00}, |
| // nopl 0L(%[re]ax,%[re]ax,1) |
| {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| // nopw 0L(%[re]ax,%[re]ax,1) |
| {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| // nopw %cs:0L(%[re]ax,%[re]ax,1) |
| {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| // nopl 0(%[re]ax,%[re]ax,1) |
| // nopw 0(%[re]ax,%[re]ax,1) |
| {0x0f, 0x1f, 0x44, 0x00, 0x00, |
| 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, |
| // nopw 0(%[re]ax,%[re]ax,1) |
| // nopw 0(%[re]ax,%[re]ax,1) |
| {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, |
| 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, |
| // nopw 0(%[re]ax,%[re]ax,1) |
| // nopl 0L(%[re]ax) */ |
| {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, |
| 0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00}, |
| // nopl 0L(%[re]ax) |
| // nopl 0L(%[re]ax) |
| {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00, |
| 0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00}, |
| // nopl 0L(%[re]ax) |
| // nopl 0L(%[re]ax,%[re]ax,1) |
| {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00, |
| 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00} |
| }; |
| |
| if (Count > 15) |
| return 0; |
| |
| for (uint64_t i = 0; i < Count; i++) |
| OW->Write8(uint8_t(Nops[Count - 1][i])); |
| |
| return Count; |
| } |
| |
| /// WriteFragmentData - Write the \arg F data to the output file. |
| static void WriteFragmentData(const MCFragment &F, MCObjectWriter *OW) { |
| uint64_t Start = OW->getStream().tell(); |
| (void) Start; |
| |
| ++EmittedFragments; |
| |
| // FIXME: Embed in fragments instead? |
| switch (F.getKind()) { |
| case MCFragment::FT_Align: { |
| MCAlignFragment &AF = cast<MCAlignFragment>(F); |
| uint64_t Count = AF.getFileSize() / AF.getValueSize(); |
| |
| // FIXME: This error shouldn't actually occur (the front end should emit |
| // multiple .align directives to enforce the semantics it wants), but is |
| // severe enough that we want to report it. How to handle this? |
| if (Count * AF.getValueSize() != AF.getFileSize()) |
| llvm_report_error("undefined .align directive, value size '" + |
| Twine(AF.getValueSize()) + |
| "' is not a divisor of padding size '" + |
| Twine(AF.getFileSize()) + "'"); |
| |
| // See if we are aligning with nops, and if so do that first to try to fill |
| // the Count bytes. Then if that did not fill any bytes or there are any |
| // bytes left to fill use the the Value and ValueSize to fill the rest. |
| if (AF.getEmitNops()) { |
| uint64_t NopByteCount = WriteNopData(Count, OW); |
| Count -= NopByteCount; |
| } |
| |
| for (uint64_t i = 0; i != Count; ++i) { |
| switch (AF.getValueSize()) { |
| default: |
| assert(0 && "Invalid size!"); |
| case 1: OW->Write8 (uint8_t (AF.getValue())); break; |
| case 2: OW->Write16(uint16_t(AF.getValue())); break; |
| case 4: OW->Write32(uint32_t(AF.getValue())); break; |
| case 8: OW->Write64(uint64_t(AF.getValue())); break; |
| } |
| } |
| break; |
| } |
| |
| case MCFragment::FT_Data: { |
| OW->WriteBytes(cast<MCDataFragment>(F).getContents().str()); |
| break; |
| } |
| |
| case MCFragment::FT_Fill: { |
| MCFillFragment &FF = cast<MCFillFragment>(F); |
| for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) { |
| switch (FF.getValueSize()) { |
| default: |
| assert(0 && "Invalid size!"); |
| case 1: OW->Write8 (uint8_t (FF.getValue())); break; |
| case 2: OW->Write16(uint16_t(FF.getValue())); break; |
| case 4: OW->Write32(uint32_t(FF.getValue())); break; |
| case 8: OW->Write64(uint64_t(FF.getValue())); break; |
| } |
| } |
| break; |
| } |
| |
| case MCFragment::FT_Org: { |
| MCOrgFragment &OF = cast<MCOrgFragment>(F); |
| |
| for (uint64_t i = 0, e = OF.getFileSize(); i != e; ++i) |
| OW->Write8(uint8_t(OF.getValue())); |
| |
| break; |
| } |
| |
| case MCFragment::FT_ZeroFill: { |
| assert(0 && "Invalid zero fill fragment in concrete section!"); |
| break; |
| } |
| } |
| |
| assert(OW->getStream().tell() - Start == F.getFileSize()); |
| } |
| |
| void MCAssembler::WriteSectionData(const MCSectionData *SD, |
| MCObjectWriter *OW) const { |
| // Ignore virtual sections. |
| if (getBackend().isVirtualSection(SD->getSection())) { |
| assert(SD->getFileSize() == 0); |
| return; |
| } |
| |
| uint64_t Start = OW->getStream().tell(); |
| (void) Start; |
| |
| for (MCSectionData::const_iterator it = SD->begin(), |
| ie = SD->end(); it != ie; ++it) |
| WriteFragmentData(*it, OW); |
| |
| // Add section padding. |
| assert(SD->getFileSize() >= SD->getSize() && "Invalid section sizes!"); |
| OW->WriteZeros(SD->getFileSize() - SD->getSize()); |
| |
| assert(OW->getStream().tell() - Start == SD->getFileSize()); |
| } |
| |
| void MCAssembler::Finish() { |
| DEBUG_WITH_TYPE("mc-dump", { |
| llvm::errs() << "assembler backend - pre-layout\n--\n"; |
| dump(); }); |
| |
| // Layout until everything fits. |
| while (LayoutOnce()) |
| continue; |
| |
| DEBUG_WITH_TYPE("mc-dump", { |
| llvm::errs() << "assembler backend - post-layout\n--\n"; |
| dump(); }); |
| |
| // FIXME: Factor out MCObjectWriter. |
| bool Is64Bit = StringRef(getBackend().getTarget().getName()) == "x86-64"; |
| MachObjectWriter MOW(OS, Is64Bit); |
| |
| // Allow the object writer a chance to perform post-layout binding (for |
| // example, to set the index fields in the symbol data). |
| MOW.ExecutePostLayoutBinding(*this); |
| |
| // Evaluate and apply the fixups, generating relocation entries as necessary. |
| // |
| // FIXME: Share layout object. |
| MCAsmLayout Layout(*this); |
| for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) { |
| for (MCSectionData::iterator it2 = it->begin(), |
| ie2 = it->end(); it2 != ie2; ++it2) { |
| MCDataFragment *DF = dyn_cast<MCDataFragment>(it2); |
| if (!DF) |
| continue; |
| |
| for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(), |
| ie3 = DF->fixup_end(); it3 != ie3; ++it3) { |
| MCAsmFixup &Fixup = *it3; |
| |
| // Evaluate the fixup. |
| MCValue Target; |
| uint64_t FixedValue; |
| if (!EvaluateFixup(Layout, Fixup, DF, Target, FixedValue)) { |
| // The fixup was unresolved, we need a relocation. Inform the object |
| // writer of the relocation, and give it an opportunity to adjust the |
| // fixup value if need be. |
| MOW.RecordRelocation(*this, *DF, Fixup, Target, FixedValue); |
| } |
| |
| getBackend().ApplyFixup(Fixup, *DF, FixedValue); |
| } |
| } |
| } |
| |
| // Write the object file. |
| MOW.WriteObject(*this); |
| |
| OS.flush(); |
| } |
| |
| bool MCAssembler::FixupNeedsRelaxation(MCAsmFixup &Fixup, MCDataFragment *DF) { |
| // FIXME: Share layout object. |
| MCAsmLayout Layout(*this); |
| |
| // Currently we only need to relax X86::reloc_pcrel_1byte. |
| if (unsigned(Fixup.Kind) != X86::reloc_pcrel_1byte) |
| return false; |
| |
| // If we cannot resolve the fixup value, it requires relaxation. |
| MCValue Target; |
| uint64_t Value; |
| if (!EvaluateFixup(Layout, Fixup, DF, Target, Value)) |
| return true; |
| |
| // Otherwise, relax if the value is too big for a (signed) i8. |
| return int64_t(Value) != int64_t(int8_t(Value)); |
| } |
| |
| bool MCAssembler::LayoutOnce() { |
| // Layout the concrete sections and fragments. |
| uint64_t Address = 0; |
| MCSectionData *Prev = 0; |
| for (iterator it = begin(), ie = end(); it != ie; ++it) { |
| MCSectionData &SD = *it; |
| |
| // Skip virtual sections. |
| if (getBackend().isVirtualSection(SD.getSection())) |
| continue; |
| |
| // Align this section if necessary by adding padding bytes to the previous |
| // section. |
| if (uint64_t Pad = OffsetToAlignment(Address, it->getAlignment())) { |
| assert(Prev && "Missing prev section!"); |
| Prev->setFileSize(Prev->getFileSize() + Pad); |
| Address += Pad; |
| } |
| |
| // Layout the section fragments and its size. |
| SD.setAddress(Address); |
| LayoutSection(SD); |
| Address += SD.getFileSize(); |
| |
| Prev = &SD; |
| } |
| |
| // Layout the virtual sections. |
| for (iterator it = begin(), ie = end(); it != ie; ++it) { |
| MCSectionData &SD = *it; |
| |
| if (!getBackend().isVirtualSection(SD.getSection())) |
| continue; |
| |
| // Align this section if necessary by adding padding bytes to the previous |
| // section. |
| if (uint64_t Pad = OffsetToAlignment(Address, it->getAlignment())) |
| Address += Pad; |
| |
| SD.setAddress(Address); |
| LayoutSection(SD); |
| Address += SD.getSize(); |
| } |
| |
| // Scan the fixups in order and relax any that don't fit. |
| for (iterator it = begin(), ie = end(); it != ie; ++it) { |
| MCSectionData &SD = *it; |
| |
| for (MCSectionData::iterator it2 = SD.begin(), |
| ie2 = SD.end(); it2 != ie2; ++it2) { |
| MCDataFragment *DF = dyn_cast<MCDataFragment>(it2); |
| if (!DF) |
| continue; |
| |
| for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(), |
| ie3 = DF->fixup_end(); it3 != ie3; ++it3) { |
| MCAsmFixup &Fixup = *it3; |
| |
| // Check whether we need to relax this fixup. |
| if (!FixupNeedsRelaxation(Fixup, DF)) |
| continue; |
| |
| // Relax the instruction. |
| // |
| // FIXME: This is a huge temporary hack which just looks for x86 |
| // branches; the only thing we need to relax on x86 is |
| // 'X86::reloc_pcrel_1byte'. Once we have MCInst fragments, this will be |
| // replaced by a TargetAsmBackend hook (most likely tblgen'd) to relax |
| // an individual MCInst. |
| SmallVectorImpl<char> &C = DF->getContents(); |
| uint64_t PrevOffset = Fixup.Offset; |
| unsigned Amt = 0; |
| |
| // jcc instructions |
| if (unsigned(C[Fixup.Offset-1]) >= 0x70 && |
| unsigned(C[Fixup.Offset-1]) <= 0x7f) { |
| C[Fixup.Offset] = C[Fixup.Offset-1] + 0x10; |
| C[Fixup.Offset-1] = char(0x0f); |
| ++Fixup.Offset; |
| Amt = 4; |
| |
| // jmp rel8 |
| } else if (C[Fixup.Offset-1] == char(0xeb)) { |
| C[Fixup.Offset-1] = char(0xe9); |
| Amt = 3; |
| |
| } else |
| llvm_unreachable("unknown 1 byte pcrel instruction!"); |
| |
| Fixup.Value = MCBinaryExpr::Create( |
| MCBinaryExpr::Sub, Fixup.Value, |
| MCConstantExpr::Create(3, getContext()), |
| getContext()); |
| C.insert(C.begin() + Fixup.Offset, Amt, char(0)); |
| Fixup.Kind = MCFixupKind(X86::reloc_pcrel_4byte); |
| |
| // Update the remaining fixups, which have slid. |
| // |
| // FIXME: This is bad for performance, but will be eliminated by the |
| // move to MCInst specific fragments. |
| ++it3; |
| for (; it3 != ie3; ++it3) |
| it3->Offset += Amt; |
| |
| // Update all the symbols for this fragment, which may have slid. |
| // |
| // FIXME: This is really really bad for performance, but will be |
| // eliminated by the move to MCInst specific fragments. |
| for (MCAssembler::symbol_iterator it = symbol_begin(), |
| ie = symbol_end(); it != ie; ++it) { |
| MCSymbolData &SD = *it; |
| |
| if (it->getFragment() != DF) |
| continue; |
| |
| if (SD.getOffset() > PrevOffset) |
| SD.setOffset(SD.getOffset() + Amt); |
| } |
| |
| // Restart layout. |
| // |
| // FIXME: This is O(N^2), but will be eliminated once we have a smart |
| // MCAsmLayout object. |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| // Debugging methods |
| |
| namespace llvm { |
| |
| raw_ostream &operator<<(raw_ostream &OS, const MCAsmFixup &AF) { |
| OS << "<MCAsmFixup" << " Offset:" << AF.Offset << " Value:" << *AF.Value |
| << " Kind:" << AF.Kind << ">"; |
| return OS; |
| } |
| |
| } |
| |
| void MCFragment::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCFragment " << (void*) this << " Offset:" << Offset |
| << " FileSize:" << FileSize; |
| |
| OS << ">"; |
| } |
| |
| void MCAlignFragment::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCAlignFragment "; |
| this->MCFragment::dump(); |
| OS << "\n "; |
| OS << " Alignment:" << getAlignment() |
| << " Value:" << getValue() << " ValueSize:" << getValueSize() |
| << " MaxBytesToEmit:" << getMaxBytesToEmit() << ">"; |
| } |
| |
| void MCDataFragment::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCDataFragment "; |
| this->MCFragment::dump(); |
| OS << "\n "; |
| OS << " Contents:["; |
| for (unsigned i = 0, e = getContents().size(); i != e; ++i) { |
| if (i) OS << ","; |
| OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF); |
| } |
| OS << "] (" << getContents().size() << " bytes)"; |
| |
| if (!getFixups().empty()) { |
| OS << ",\n "; |
| OS << " Fixups:["; |
| for (fixup_iterator it = fixup_begin(), ie = fixup_end(); it != ie; ++it) { |
| if (it != fixup_begin()) OS << ",\n "; |
| OS << *it; |
| } |
| OS << "]"; |
| } |
| |
| OS << ">"; |
| } |
| |
| void MCFillFragment::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCFillFragment "; |
| this->MCFragment::dump(); |
| OS << "\n "; |
| OS << " Value:" << getValue() << " ValueSize:" << getValueSize() |
| << " Count:" << getCount() << ">"; |
| } |
| |
| void MCOrgFragment::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCOrgFragment "; |
| this->MCFragment::dump(); |
| OS << "\n "; |
| OS << " Offset:" << getOffset() << " Value:" << getValue() << ">"; |
| } |
| |
| void MCZeroFillFragment::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCZeroFillFragment "; |
| this->MCFragment::dump(); |
| OS << "\n "; |
| OS << " Size:" << getSize() << " Alignment:" << getAlignment() << ">"; |
| } |
| |
| void MCSectionData::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCSectionData"; |
| OS << " Alignment:" << getAlignment() << " Address:" << Address |
| << " Size:" << Size << " FileSize:" << FileSize |
| << " Fragments:[\n "; |
| for (iterator it = begin(), ie = end(); it != ie; ++it) { |
| if (it != begin()) OS << ",\n "; |
| it->dump(); |
| } |
| OS << "]>"; |
| } |
| |
| void MCSymbolData::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCSymbolData Symbol:" << getSymbol() |
| << " Fragment:" << getFragment() << " Offset:" << getOffset() |
| << " Flags:" << getFlags() << " Index:" << getIndex(); |
| if (isCommon()) |
| OS << " (common, size:" << getCommonSize() |
| << " align: " << getCommonAlignment() << ")"; |
| if (isExternal()) |
| OS << " (external)"; |
| if (isPrivateExtern()) |
| OS << " (private extern)"; |
| OS << ">"; |
| } |
| |
| void MCAssembler::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCAssembler\n"; |
| OS << " Sections:[\n "; |
| for (iterator it = begin(), ie = end(); it != ie; ++it) { |
| if (it != begin()) OS << ",\n "; |
| it->dump(); |
| } |
| OS << "],\n"; |
| OS << " Symbols:["; |
| |
| for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) { |
| if (it != symbol_begin()) OS << ",\n "; |
| it->dump(); |
| } |
| OS << "]>\n"; |
| } |