*** empty log message ***


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3105 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Analysis/PostDominators.cpp b/lib/Analysis/PostDominators.cpp
index caff1f1..777b3c4 100644
--- a/lib/Analysis/PostDominators.cpp
+++ b/lib/Analysis/PostDominators.cpp
@@ -19,22 +19,12 @@
 //===----------------------------------------------------------------------===//
 
 AnalysisID DominatorSet::ID(AnalysisID::create<DominatorSet>(), true);
-AnalysisID DominatorSet::PostDomID(AnalysisID::create<DominatorSet>(), true);
-
-bool DominatorSet::runOnFunction(Function &F) {
-  Doms.clear();   // Reset from the last time we were run...
-
-  if (isPostDominator())
-    calcPostDominatorSet(F);
-  else
-    calcForwardDominatorSet(F);
-  return false;
-}
+AnalysisID PostDominatorSet::ID(AnalysisID::create<PostDominatorSet>(), true);
 
 // dominates - Return true if A dominates B.  This performs the special checks
 // neccesary if A and B are in the same basic block.
 //
-bool DominatorSet::dominates(Instruction *A, Instruction *B) const {
+bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const {
   BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
   if (BBA != BBB) return dominates(BBA, BBB);
   
@@ -46,10 +36,11 @@
   return &*I == A;
 }
 
-// calcForwardDominatorSet - This method calculates the forward dominator sets
-// for the specified function.
+// runOnFunction - This method calculates the forward dominator sets for the
+// specified function.
 //
-void DominatorSet::calcForwardDominatorSet(Function &F) {
+bool DominatorSet::runOnFunction(Function &F) {
+  Doms.clear();   // Reset from the last time we were run...
   Root = &F.getEntryNode();
   assert(pred_begin(Root) == pred_end(Root) &&
 	 "Root node has predecessors in function!");
@@ -87,13 +78,16 @@
       WorkingSet.clear();              // Clear out the set for next iteration
     }
   } while (Changed);
+  return false;
 }
 
-// Postdominator set constructor.  This ctor converts the specified function to
-// only have a single exit node (return stmt), then calculates the post
-// dominance sets for the function.
+
+// Postdominator set construction.  This converts the specified function to only
+// have a single exit node (return stmt), then calculates the post dominance
+// sets for the function.
 //
-void DominatorSet::calcPostDominatorSet(Function &F) {
+bool PostDominatorSet::runOnFunction(Function &F) {
+  Doms.clear();   // Reset from the last time we were run...
   // Since we require that the unify all exit nodes pass has been run, we know
   // that there can be at most one return instruction in the function left.
   // Get it.
@@ -103,7 +97,7 @@
   if (Root == 0) {  // No exit node for the function?  Postdomsets are all empty
     for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
       Doms[FI] = DomSetType();
-    return;
+    return false;
   }
 
   bool Changed;
@@ -140,19 +134,16 @@
       WorkingSet.clear();              // Clear out the set for next iteration
     }
   } while (Changed);
+  return false;
 }
 
-// getAnalysisUsage - This obviously provides a dominator set, but it also
-// uses the UnifyFunctionExitNodes pass if building post-dominators
+// getAnalysisUsage - This obviously provides a post-dominator set, but it also
+// requires the UnifyFunctionExitNodes pass.
 //
-void DominatorSet::getAnalysisUsage(AnalysisUsage &AU) const {
+void PostDominatorSet::getAnalysisUsage(AnalysisUsage &AU) const {
   AU.setPreservesAll();
-  if (isPostDominator()) {
-    AU.addProvided(PostDomID);
-    AU.addRequired(UnifyFunctionExitNodes::ID);
-  } else {
-    AU.addProvided(ID);
-  }
+  AU.addProvided(ID);
+  AU.addRequired(UnifyFunctionExitNodes::ID);
 }
 
 
@@ -161,11 +152,11 @@
 //===----------------------------------------------------------------------===//
 
 AnalysisID ImmediateDominators::ID(AnalysisID::create<ImmediateDominators>(), true);
-AnalysisID ImmediateDominators::PostDomID(AnalysisID::create<ImmediateDominators>(), true);
+AnalysisID ImmediatePostDominators::ID(AnalysisID::create<ImmediatePostDominators>(), true);
 
 // calcIDoms - Calculate the immediate dominator mapping, given a set of
 // dominators for every basic block.
-void ImmediateDominators::calcIDoms(const DominatorSet &DS) {
+void ImmediateDominatorsBase::calcIDoms(const DominatorSetBase &DS) {
   // Loop over all of the nodes that have dominators... figuring out the IDOM
   // for each node...
   //
@@ -205,89 +196,67 @@
 //===----------------------------------------------------------------------===//
 
 AnalysisID DominatorTree::ID(AnalysisID::create<DominatorTree>(), true);
-AnalysisID DominatorTree::PostDomID(AnalysisID::create<DominatorTree>(), true);
+AnalysisID PostDominatorTree::ID(AnalysisID::create<PostDominatorTree>(), true);
 
-// DominatorTree::reset - Free all of the tree node memory.
+// DominatorTreeBase::reset - Free all of the tree node memory.
 //
-void DominatorTree::reset() { 
+void DominatorTreeBase::reset() { 
   for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
     delete I->second;
   Nodes.clear();
 }
 
 
-#if 0
-// Given immediate dominators, we can also calculate the dominator tree
-DominatorTree::DominatorTree(const ImmediateDominators &IDoms) 
-  : DominatorBase(IDoms.getRoot()) {
-  const Function *M = Root->getParent();
-
-  Nodes[Root] = new Node(Root, 0);   // Add a node for the root...
-
-  // Iterate over all nodes in depth first order...
-  for (df_iterator<const Function*> I = df_begin(M), E = df_end(M); I!=E; ++I) {
-    const BasicBlock *BB = *I, *IDom = IDoms[*I];
-
-    if (IDom != 0) {   // Ignore the root node and other nasty nodes
-      // We know that the immediate dominator should already have a node, 
-      // because we are traversing the CFG in depth first order!
-      //
-      assert(Nodes[IDom] && "No node for IDOM?");
-      Node *IDomNode = Nodes[IDom];
-
-      // Add a new tree node for this BasicBlock, and link it as a child of
-      // IDomNode
-      Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
-    }
-  }
-}
-#endif
-
 void DominatorTree::calculate(const DominatorSet &DS) {
   Nodes[Root] = new Node(Root, 0);   // Add a node for the root...
 
-  if (!isPostDominator()) {
-    // Iterate over all nodes in depth first order...
-    for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root);
-         I != E; ++I) {
-      BasicBlock *BB = *I;
-      const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
-      unsigned DomSetSize = Dominators.size();
-      if (DomSetSize == 1) continue;  // Root node... IDom = null
+  // Iterate over all nodes in depth first order...
+  for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root);
+       I != E; ++I) {
+    BasicBlock *BB = *I;
+    const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
+    unsigned DomSetSize = Dominators.size();
+    if (DomSetSize == 1) continue;  // Root node... IDom = null
       
-      // Loop over all dominators of this node. This corresponds to looping over
-      // nodes in the dominator chain, looking for a node whose dominator set is
-      // equal to the current nodes, except that the current node does not exist
-      // in it. This means that it is one level higher in the dom chain than the
-      // current node, and it is our idom!  We know that we have already added
-      // a DominatorTree node for our idom, because the idom must be a
-      // predecessor in the depth first order that we are iterating through the
-      // function.
+    // Loop over all dominators of this node. This corresponds to looping over
+    // nodes in the dominator chain, looking for a node whose dominator set is
+    // equal to the current nodes, except that the current node does not exist
+    // in it. This means that it is one level higher in the dom chain than the
+    // current node, and it is our idom!  We know that we have already added
+    // a DominatorTree node for our idom, because the idom must be a
+    // predecessor in the depth first order that we are iterating through the
+    // function.
+    //
+    DominatorSet::DomSetType::const_iterator I = Dominators.begin();
+    DominatorSet::DomSetType::const_iterator End = Dominators.end();
+    for (; I != End; ++I) {   // Iterate over dominators...
+      // All of our dominators should form a chain, where the number of
+      // elements in the dominator set indicates what level the node is at in
+      // the chain.  We want the node immediately above us, so it will have
+      // an identical dominator set, except that BB will not dominate it...
+      // therefore it's dominator set size will be one less than BB's...
       //
-      DominatorSet::DomSetType::const_iterator I = Dominators.begin();
-      DominatorSet::DomSetType::const_iterator End = Dominators.end();
-      for (; I != End; ++I) {   // Iterate over dominators...
-	// All of our dominators should form a chain, where the number of
-	// elements in the dominator set indicates what level the node is at in
-	// the chain.  We want the node immediately above us, so it will have
-	// an identical dominator set, except that BB will not dominate it...
-	// therefore it's dominator set size will be one less than BB's...
-	//
-	if (DS.getDominators(*I).size() == DomSetSize - 1) {
-	  // We know that the immediate dominator should already have a node, 
-	  // because we are traversing the CFG in depth first order!
-	  //
-	  Node *IDomNode = Nodes[*I];
-	  assert(IDomNode && "No node for IDOM?");
-	  
-	  // Add a new tree node for this BasicBlock, and link it as a child of
-	  // IDomNode
-	  Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
-	  break;
-	}
+      if (DS.getDominators(*I).size() == DomSetSize - 1) {
+        // We know that the immediate dominator should already have a node, 
+        // because we are traversing the CFG in depth first order!
+        //
+        Node *IDomNode = Nodes[*I];
+        assert(IDomNode && "No node for IDOM?");
+        
+        // Add a new tree node for this BasicBlock, and link it as a child of
+        // IDomNode
+        Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
+        break;
       }
     }
-  } else if (Root) {
+  }
+}
+
+
+void PostDominatorTree::calculate(const PostDominatorSet &DS) {
+  Nodes[Root] = new Node(Root, 0);   // Add a node for the root...
+
+  if (Root) {
     // Iterate over all nodes in depth first order...
     for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root);
          I != E; ++I) {
@@ -339,11 +308,11 @@
 //===----------------------------------------------------------------------===//
 
 AnalysisID DominanceFrontier::ID(AnalysisID::create<DominanceFrontier>(), true);
-AnalysisID DominanceFrontier::PostDomID(AnalysisID::create<DominanceFrontier>(), true);
+AnalysisID PostDominanceFrontier::ID(AnalysisID::create<PostDominanceFrontier>(), true);
 
 const DominanceFrontier::DomSetType &
-DominanceFrontier::calcDomFrontier(const DominatorTree &DT, 
-                                   const DominatorTree::Node *Node) {
+DominanceFrontier::calculate(const DominatorTree &DT, 
+                             const DominatorTree::Node *Node) {
   // Loop over CFG successors to calculate DFlocal[Node]
   BasicBlock *BB = Node->getNode();
   DomSetType &S = Frontiers[BB];       // The new set to fill in...
@@ -362,7 +331,7 @@
   for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
        NI != NE; ++NI) {
     DominatorTree::Node *IDominee = *NI;
-    const DomSetType &ChildDF = calcDomFrontier(DT, IDominee);
+    const DomSetType &ChildDF = calculate(DT, IDominee);
 
     DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
     for (; CDFI != CDFE; ++CDFI) {
@@ -375,8 +344,8 @@
 }
 
 const DominanceFrontier::DomSetType &
-DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT, 
-                                       const DominatorTree::Node *Node) {
+PostDominanceFrontier::calculate(const PostDominatorTree &DT, 
+                                 const DominatorTree::Node *Node) {
   // Loop over CFG successors to calculate DFlocal[Node]
   BasicBlock *BB = Node->getNode();
   DomSetType &S = Frontiers[BB];       // The new set to fill in...
@@ -393,10 +362,10 @@
   // Loop through and visit the nodes that Node immediately dominates (Node's
   // children in the IDomTree)
   //
-  for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
-       NI != NE; ++NI) {
+  for (PostDominatorTree::Node::const_iterator
+         NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
     DominatorTree::Node *IDominee = *NI;
-    const DomSetType &ChildDF = calcPostDomFrontier(DT, IDominee);
+    const DomSetType &ChildDF = calculate(DT, IDominee);
 
     DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
     for (; CDFI != CDFE; ++CDFI) {
diff --git a/lib/Analysis/Writer.cpp b/lib/Analysis/Writer.cpp
index e7eaf44..80a8f91 100644
--- a/lib/Analysis/Writer.cpp
+++ b/lib/Analysis/Writer.cpp
@@ -62,8 +62,9 @@
   return o;
 }
 
-void WriteToOutput(const DominatorSet &DS, ostream &o) {
-  for (DominatorSet::const_iterator I = DS.begin(), E = DS.end(); I != E; ++I) {
+void WriteToOutput(const DominatorSetBase &DS, ostream &o) {
+  for (DominatorSetBase::const_iterator I = DS.begin(), E = DS.end();
+       I != E; ++I) {
     o << "=============================--------------------------------\n"
       << "\nDominator Set For Basic Block\n" << I->first
       << "-------------------------------\n" << I->second << "\n";
@@ -71,8 +72,8 @@
 }
 
 
-void WriteToOutput(const ImmediateDominators &ID, ostream &o) {
-  for (ImmediateDominators::const_iterator I = ID.begin(), E = ID.end();
+void WriteToOutput(const ImmediateDominatorsBase &ID, ostream &o) {
+  for (ImmediateDominatorsBase::const_iterator I = ID.begin(), E = ID.end();
        I != E; ++I) {
     o << "=============================--------------------------------\n"
       << "\nImmediate Dominator For Basic Block\n" << *I->first
@@ -81,28 +82,28 @@
 }
 
 
-static ostream &operator<<(ostream &o, const DominatorTree::Node *Node) {
+static ostream &operator<<(ostream &o, const DominatorTreeBase::Node *Node) {
   return o << Node->getNode() << "\n------------------------------------------\n";
 	   
 }
 
-static void PrintDomTree(const DominatorTree::Node *N, ostream &o,
+static void PrintDomTree(const DominatorTreeBase::Node *N, ostream &o,
                          unsigned Lev) {
   o << "Level #" << Lev << ":  " << N;
-  for (DominatorTree::Node::const_iterator I = N->begin(), E = N->end(); 
+  for (DominatorTreeBase::Node::const_iterator I = N->begin(), E = N->end(); 
        I != E; ++I) {
     PrintDomTree(*I, o, Lev+1);
   }
 }
 
-void WriteToOutput(const DominatorTree &DT, ostream &o) {
+void WriteToOutput(const DominatorTreeBase &DT, ostream &o) {
   o << "=============================--------------------------------\n"
     << "Inorder Dominator Tree:\n";
   PrintDomTree(DT[DT.getRoot()], o, 1);
 }
 
-void WriteToOutput(const DominanceFrontier &DF, ostream &o) {
-  for (DominanceFrontier::const_iterator I = DF.begin(), E = DF.end();
+void WriteToOutput(const DominanceFrontierBase &DF, ostream &o) {
+  for (DominanceFrontierBase::const_iterator I = DF.begin(), E = DF.end();
        I != E; ++I) {
     o << "=============================--------------------------------\n"
       << "\nDominance Frontier For Basic Block\n";
diff --git a/lib/Bytecode/Writer/InstructionWriter.cpp b/lib/Bytecode/Writer/InstructionWriter.cpp
index 36414be..fdc5c5c 100644
--- a/lib/Bytecode/Writer/InstructionWriter.cpp
+++ b/lib/Bytecode/Writer/InstructionWriter.cpp
@@ -16,8 +16,14 @@
 #include "llvm/DerivedTypes.h"
 #include "llvm/iOther.h"
 #include "llvm/iTerminators.h"
+#include "Support/StatisticReporter.h"
 #include <algorithm>
 
+static Statistic<> 
+NumOversized("bytecodewriter\t- Number of oversized instructions");
+static Statistic<> 
+NumNormal("bytecodewriter\t- Number of normal instructions");
+
 typedef unsigned char uchar;
 
 // outputInstructionFormat0 - Output those wierd instructions that have a large
@@ -48,6 +54,7 @@
   }
 
   align32(Out);    // We must maintain correct alignment!
+  ++NumOversized;
 }
 
 
@@ -97,6 +104,7 @@
     output_vbr((unsigned)Slot, Out);
   }
   align32(Out);    // We must maintain correct alignment!
+  ++NumOversized;
 }
 
 
@@ -118,6 +126,7 @@
   unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20);
   //  cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl;
   output(Bits, Out);
+  ++NumNormal;
 }
 
 
@@ -142,6 +151,7 @@
   //  cerr << "2 " << IType << " " << Type << " " << Slots[0] << " " 
   //       << Slots[1] << endl;
   output(Bits, Out);
+  ++NumNormal;
 }
 
 
@@ -167,6 +177,7 @@
   //cerr << "3 " << IType << " " << Type << " " << Slots[0] << " " 
   //     << Slots[1] << " " << Slots[2] << endl;
   output(Bits, Out);
+  ++NumNormal;
 }
 
 void BytecodeWriter::processInstruction(const Instruction &I) {
diff --git a/lib/Bytecode/Writer/Writer.cpp b/lib/Bytecode/Writer/Writer.cpp
index f7219ea..4eade88 100644
--- a/lib/Bytecode/Writer/Writer.cpp
+++ b/lib/Bytecode/Writer/Writer.cpp
@@ -25,11 +25,14 @@
 #include "llvm/SymbolTable.h"
 #include "llvm/DerivedTypes.h"
 #include "Support/STLExtras.h"
+#include "Support/StatisticReporter.h"
 #include <string.h>
 #include <algorithm>
 
 static RegisterPass<WriteBytecodePass> X("emitbytecode", "Bytecode Writer");
 
+static Statistic<> 
+BytesWritten("bytecodewriter\t- Number of bytecode bytes written");
 
 
 BytecodeWriter::BytecodeWriter(std::deque<unsigned char> &o, const Module *M) 
@@ -234,6 +237,9 @@
   // This object populates buffer for us...
   BytecodeWriter BCW(Buffer, C);
 
+  // Keep track of how much we've written...
+  BytesWritten += Buffer.size();
+
   // Okay, write the deque out to the ostream now... the deque is not
   // sequential in memory, however, so write out as much as possible in big
   // chunks, until we're done.
diff --git a/lib/Transforms/Scalar/ADCE.cpp b/lib/Transforms/Scalar/ADCE.cpp
index d70980e..058ef1b 100644
--- a/lib/Transforms/Scalar/ADCE.cpp
+++ b/lib/Transforms/Scalar/ADCE.cpp
@@ -55,8 +55,8 @@
   // getAnalysisUsage - We require post dominance frontiers (aka Control
   // Dependence Graph)
   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
-    AU.addRequired(DominatorTree::PostDomID);
-    AU.addRequired(DominanceFrontier::PostDomID);
+    AU.addRequired(PostDominatorTree::ID);
+    AU.addRequired(PostDominanceFrontier::ID);
   }
 
 
@@ -93,13 +93,12 @@
   // Mark the basic block as being newly ALIVE... and mark all branches that
   // this block is control dependant on as being alive also...
   //
-  DominanceFrontier &CDG =
-    getAnalysis<DominanceFrontier>(DominanceFrontier::PostDomID);
+  PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>();
 
-  DominanceFrontier::const_iterator It = CDG.find(BB);
+  PostDominanceFrontier::const_iterator It = CDG.find(BB);
   if (It != CDG.end()) {
     // Get the blocks that this node is control dependant on...
-    const DominanceFrontier::DomSetType &CDB = It->second;
+    const PostDominanceFrontier::DomSetType &CDB = It->second;
     for_each(CDB.begin(), CDB.end(),   // Mark all their terminators as live
              bind_obj(this, &ADCE::markTerminatorLive));
   }
@@ -191,7 +190,7 @@
   // Find the first postdominator of the entry node that is alive.  Make it the
   // new entry node...
   //
-  DominatorTree &DT = getAnalysis<DominatorTree>(DominatorTree::PostDomID);
+  PostDominatorTree &DT = getAnalysis<PostDominatorTree>();
 
   // If there are some blocks dead...
   if (AliveBlocks.size() != Func->size()) {
@@ -218,8 +217,8 @@
             // postdominator that is alive, and the last postdominator that is
             // dead...
             //
-            DominatorTree::Node *LastNode = DT[TI->getSuccessor(i)];
-            DominatorTree::Node *NextNode = LastNode->getIDom();
+            PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)];
+            PostDominatorTree::Node *NextNode = LastNode->getIDom();
             while (!AliveBlocks.count(NextNode->getNode())) {
               LastNode = NextNode;
               NextNode = NextNode->getIDom();
diff --git a/lib/VMCore/Dominators.cpp b/lib/VMCore/Dominators.cpp
index caff1f1..777b3c4 100644
--- a/lib/VMCore/Dominators.cpp
+++ b/lib/VMCore/Dominators.cpp
@@ -19,22 +19,12 @@
 //===----------------------------------------------------------------------===//
 
 AnalysisID DominatorSet::ID(AnalysisID::create<DominatorSet>(), true);
-AnalysisID DominatorSet::PostDomID(AnalysisID::create<DominatorSet>(), true);
-
-bool DominatorSet::runOnFunction(Function &F) {
-  Doms.clear();   // Reset from the last time we were run...
-
-  if (isPostDominator())
-    calcPostDominatorSet(F);
-  else
-    calcForwardDominatorSet(F);
-  return false;
-}
+AnalysisID PostDominatorSet::ID(AnalysisID::create<PostDominatorSet>(), true);
 
 // dominates - Return true if A dominates B.  This performs the special checks
 // neccesary if A and B are in the same basic block.
 //
-bool DominatorSet::dominates(Instruction *A, Instruction *B) const {
+bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const {
   BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
   if (BBA != BBB) return dominates(BBA, BBB);
   
@@ -46,10 +36,11 @@
   return &*I == A;
 }
 
-// calcForwardDominatorSet - This method calculates the forward dominator sets
-// for the specified function.
+// runOnFunction - This method calculates the forward dominator sets for the
+// specified function.
 //
-void DominatorSet::calcForwardDominatorSet(Function &F) {
+bool DominatorSet::runOnFunction(Function &F) {
+  Doms.clear();   // Reset from the last time we were run...
   Root = &F.getEntryNode();
   assert(pred_begin(Root) == pred_end(Root) &&
 	 "Root node has predecessors in function!");
@@ -87,13 +78,16 @@
       WorkingSet.clear();              // Clear out the set for next iteration
     }
   } while (Changed);
+  return false;
 }
 
-// Postdominator set constructor.  This ctor converts the specified function to
-// only have a single exit node (return stmt), then calculates the post
-// dominance sets for the function.
+
+// Postdominator set construction.  This converts the specified function to only
+// have a single exit node (return stmt), then calculates the post dominance
+// sets for the function.
 //
-void DominatorSet::calcPostDominatorSet(Function &F) {
+bool PostDominatorSet::runOnFunction(Function &F) {
+  Doms.clear();   // Reset from the last time we were run...
   // Since we require that the unify all exit nodes pass has been run, we know
   // that there can be at most one return instruction in the function left.
   // Get it.
@@ -103,7 +97,7 @@
   if (Root == 0) {  // No exit node for the function?  Postdomsets are all empty
     for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
       Doms[FI] = DomSetType();
-    return;
+    return false;
   }
 
   bool Changed;
@@ -140,19 +134,16 @@
       WorkingSet.clear();              // Clear out the set for next iteration
     }
   } while (Changed);
+  return false;
 }
 
-// getAnalysisUsage - This obviously provides a dominator set, but it also
-// uses the UnifyFunctionExitNodes pass if building post-dominators
+// getAnalysisUsage - This obviously provides a post-dominator set, but it also
+// requires the UnifyFunctionExitNodes pass.
 //
-void DominatorSet::getAnalysisUsage(AnalysisUsage &AU) const {
+void PostDominatorSet::getAnalysisUsage(AnalysisUsage &AU) const {
   AU.setPreservesAll();
-  if (isPostDominator()) {
-    AU.addProvided(PostDomID);
-    AU.addRequired(UnifyFunctionExitNodes::ID);
-  } else {
-    AU.addProvided(ID);
-  }
+  AU.addProvided(ID);
+  AU.addRequired(UnifyFunctionExitNodes::ID);
 }
 
 
@@ -161,11 +152,11 @@
 //===----------------------------------------------------------------------===//
 
 AnalysisID ImmediateDominators::ID(AnalysisID::create<ImmediateDominators>(), true);
-AnalysisID ImmediateDominators::PostDomID(AnalysisID::create<ImmediateDominators>(), true);
+AnalysisID ImmediatePostDominators::ID(AnalysisID::create<ImmediatePostDominators>(), true);
 
 // calcIDoms - Calculate the immediate dominator mapping, given a set of
 // dominators for every basic block.
-void ImmediateDominators::calcIDoms(const DominatorSet &DS) {
+void ImmediateDominatorsBase::calcIDoms(const DominatorSetBase &DS) {
   // Loop over all of the nodes that have dominators... figuring out the IDOM
   // for each node...
   //
@@ -205,89 +196,67 @@
 //===----------------------------------------------------------------------===//
 
 AnalysisID DominatorTree::ID(AnalysisID::create<DominatorTree>(), true);
-AnalysisID DominatorTree::PostDomID(AnalysisID::create<DominatorTree>(), true);
+AnalysisID PostDominatorTree::ID(AnalysisID::create<PostDominatorTree>(), true);
 
-// DominatorTree::reset - Free all of the tree node memory.
+// DominatorTreeBase::reset - Free all of the tree node memory.
 //
-void DominatorTree::reset() { 
+void DominatorTreeBase::reset() { 
   for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
     delete I->second;
   Nodes.clear();
 }
 
 
-#if 0
-// Given immediate dominators, we can also calculate the dominator tree
-DominatorTree::DominatorTree(const ImmediateDominators &IDoms) 
-  : DominatorBase(IDoms.getRoot()) {
-  const Function *M = Root->getParent();
-
-  Nodes[Root] = new Node(Root, 0);   // Add a node for the root...
-
-  // Iterate over all nodes in depth first order...
-  for (df_iterator<const Function*> I = df_begin(M), E = df_end(M); I!=E; ++I) {
-    const BasicBlock *BB = *I, *IDom = IDoms[*I];
-
-    if (IDom != 0) {   // Ignore the root node and other nasty nodes
-      // We know that the immediate dominator should already have a node, 
-      // because we are traversing the CFG in depth first order!
-      //
-      assert(Nodes[IDom] && "No node for IDOM?");
-      Node *IDomNode = Nodes[IDom];
-
-      // Add a new tree node for this BasicBlock, and link it as a child of
-      // IDomNode
-      Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
-    }
-  }
-}
-#endif
-
 void DominatorTree::calculate(const DominatorSet &DS) {
   Nodes[Root] = new Node(Root, 0);   // Add a node for the root...
 
-  if (!isPostDominator()) {
-    // Iterate over all nodes in depth first order...
-    for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root);
-         I != E; ++I) {
-      BasicBlock *BB = *I;
-      const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
-      unsigned DomSetSize = Dominators.size();
-      if (DomSetSize == 1) continue;  // Root node... IDom = null
+  // Iterate over all nodes in depth first order...
+  for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root);
+       I != E; ++I) {
+    BasicBlock *BB = *I;
+    const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
+    unsigned DomSetSize = Dominators.size();
+    if (DomSetSize == 1) continue;  // Root node... IDom = null
       
-      // Loop over all dominators of this node. This corresponds to looping over
-      // nodes in the dominator chain, looking for a node whose dominator set is
-      // equal to the current nodes, except that the current node does not exist
-      // in it. This means that it is one level higher in the dom chain than the
-      // current node, and it is our idom!  We know that we have already added
-      // a DominatorTree node for our idom, because the idom must be a
-      // predecessor in the depth first order that we are iterating through the
-      // function.
+    // Loop over all dominators of this node. This corresponds to looping over
+    // nodes in the dominator chain, looking for a node whose dominator set is
+    // equal to the current nodes, except that the current node does not exist
+    // in it. This means that it is one level higher in the dom chain than the
+    // current node, and it is our idom!  We know that we have already added
+    // a DominatorTree node for our idom, because the idom must be a
+    // predecessor in the depth first order that we are iterating through the
+    // function.
+    //
+    DominatorSet::DomSetType::const_iterator I = Dominators.begin();
+    DominatorSet::DomSetType::const_iterator End = Dominators.end();
+    for (; I != End; ++I) {   // Iterate over dominators...
+      // All of our dominators should form a chain, where the number of
+      // elements in the dominator set indicates what level the node is at in
+      // the chain.  We want the node immediately above us, so it will have
+      // an identical dominator set, except that BB will not dominate it...
+      // therefore it's dominator set size will be one less than BB's...
       //
-      DominatorSet::DomSetType::const_iterator I = Dominators.begin();
-      DominatorSet::DomSetType::const_iterator End = Dominators.end();
-      for (; I != End; ++I) {   // Iterate over dominators...
-	// All of our dominators should form a chain, where the number of
-	// elements in the dominator set indicates what level the node is at in
-	// the chain.  We want the node immediately above us, so it will have
-	// an identical dominator set, except that BB will not dominate it...
-	// therefore it's dominator set size will be one less than BB's...
-	//
-	if (DS.getDominators(*I).size() == DomSetSize - 1) {
-	  // We know that the immediate dominator should already have a node, 
-	  // because we are traversing the CFG in depth first order!
-	  //
-	  Node *IDomNode = Nodes[*I];
-	  assert(IDomNode && "No node for IDOM?");
-	  
-	  // Add a new tree node for this BasicBlock, and link it as a child of
-	  // IDomNode
-	  Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
-	  break;
-	}
+      if (DS.getDominators(*I).size() == DomSetSize - 1) {
+        // We know that the immediate dominator should already have a node, 
+        // because we are traversing the CFG in depth first order!
+        //
+        Node *IDomNode = Nodes[*I];
+        assert(IDomNode && "No node for IDOM?");
+        
+        // Add a new tree node for this BasicBlock, and link it as a child of
+        // IDomNode
+        Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
+        break;
       }
     }
-  } else if (Root) {
+  }
+}
+
+
+void PostDominatorTree::calculate(const PostDominatorSet &DS) {
+  Nodes[Root] = new Node(Root, 0);   // Add a node for the root...
+
+  if (Root) {
     // Iterate over all nodes in depth first order...
     for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root);
          I != E; ++I) {
@@ -339,11 +308,11 @@
 //===----------------------------------------------------------------------===//
 
 AnalysisID DominanceFrontier::ID(AnalysisID::create<DominanceFrontier>(), true);
-AnalysisID DominanceFrontier::PostDomID(AnalysisID::create<DominanceFrontier>(), true);
+AnalysisID PostDominanceFrontier::ID(AnalysisID::create<PostDominanceFrontier>(), true);
 
 const DominanceFrontier::DomSetType &
-DominanceFrontier::calcDomFrontier(const DominatorTree &DT, 
-                                   const DominatorTree::Node *Node) {
+DominanceFrontier::calculate(const DominatorTree &DT, 
+                             const DominatorTree::Node *Node) {
   // Loop over CFG successors to calculate DFlocal[Node]
   BasicBlock *BB = Node->getNode();
   DomSetType &S = Frontiers[BB];       // The new set to fill in...
@@ -362,7 +331,7 @@
   for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
        NI != NE; ++NI) {
     DominatorTree::Node *IDominee = *NI;
-    const DomSetType &ChildDF = calcDomFrontier(DT, IDominee);
+    const DomSetType &ChildDF = calculate(DT, IDominee);
 
     DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
     for (; CDFI != CDFE; ++CDFI) {
@@ -375,8 +344,8 @@
 }
 
 const DominanceFrontier::DomSetType &
-DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT, 
-                                       const DominatorTree::Node *Node) {
+PostDominanceFrontier::calculate(const PostDominatorTree &DT, 
+                                 const DominatorTree::Node *Node) {
   // Loop over CFG successors to calculate DFlocal[Node]
   BasicBlock *BB = Node->getNode();
   DomSetType &S = Frontiers[BB];       // The new set to fill in...
@@ -393,10 +362,10 @@
   // Loop through and visit the nodes that Node immediately dominates (Node's
   // children in the IDomTree)
   //
-  for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
-       NI != NE; ++NI) {
+  for (PostDominatorTree::Node::const_iterator
+         NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
     DominatorTree::Node *IDominee = *NI;
-    const DomSetType &ChildDF = calcPostDomFrontier(DT, IDominee);
+    const DomSetType &ChildDF = calculate(DT, IDominee);
 
     DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
     for (; CDFI != CDFE; ++CDFI) {
diff --git a/tools/analyze/analyze.cpp b/tools/analyze/analyze.cpp
index 7373741..7a8c36a 100644
--- a/tools/analyze/analyze.cpp
+++ b/tools/analyze/analyze.cpp
@@ -116,10 +116,6 @@
 
 
 
-template <class PassType, class PassName, AnalysisID &ID>
-Pass *New() {
-  return new PassPrinter<PassType, PassName>(ID);
-}
 template <class PassType, class PassName>
 Pass *New() {
   return new PassPrinter<PassType, PassName>(PassName::ID);
@@ -295,10 +291,10 @@
   { domtree           , New<FunctionPass, DominatorTree>       },
   { domfrontier       , New<FunctionPass, DominanceFrontier>   },
 
-  { postdomset        , New<FunctionPass, DominatorSet, DominatorSet::PostDomID> },
-  { postidom          , New<FunctionPass, ImmediateDominators, ImmediateDominators::PostDomID> },
-  { postdomtree       , New<FunctionPass, DominatorTree, DominatorTree::PostDomID> },
-  { postdomfrontier   , New<FunctionPass, DominanceFrontier, DominanceFrontier::PostDomID> },
+  { postdomset        , New<FunctionPass, PostDominatorSet>        },
+  { postidom          , New<FunctionPass, ImmediatePostDominators> },
+  { postdomtree       , New<FunctionPass, PostDominatorTree>       },
+  { postdomfrontier   , New<FunctionPass, PostDominanceFrontier>   },
 };
 
 int main(int argc, char **argv) {