Move BasicAA pass out to it's own header file


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5640 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Analysis/BasicAliasAnalysis.cpp b/lib/Analysis/BasicAliasAnalysis.cpp
new file mode 100644
index 0000000..0b3fec4
--- /dev/null
+++ b/lib/Analysis/BasicAliasAnalysis.cpp
@@ -0,0 +1,285 @@
+//===- llvm/Analysis/BasicAliasAnalysis.h - Alias Analysis Impl -*- C++ -*-===//
+//
+// This file defines the default implementation of the Alias Analysis interface
+// that simply implements a few identities (two different globals cannot alias,
+// etc), but otherwise does no analysis.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Pass.h"
+#include "llvm/iMemory.h"
+#include "llvm/iOther.h"
+#include "llvm/ConstantHandling.h"
+#include "llvm/GlobalValue.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Target/TargetData.h"
+
+// Make sure that anything that uses AliasAnalysis pulls in this file...
+void BasicAAStub() {}
+
+class GetElementPtrInst;
+namespace {
+  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
+    
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      AliasAnalysis::getAnalysisUsage(AU);
+    }
+    
+    virtual void initializePass();
+
+    // alias - This is the only method here that does anything interesting...
+    //
+    AliasResult alias(const Value *V1, unsigned V1Size,
+                      const Value *V2, unsigned V2Size);
+  private:
+    // CheckGEPInstructions - Check two GEP instructions of compatible types and
+    // equal number of arguments.  This checks to see if the index expressions
+    // preclude the pointers from aliasing...
+    AliasResult CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1Size,
+                                     GetElementPtrInst *GEP2, unsigned G2Size);
+  };
+ 
+  // Register this pass...
+  RegisterOpt<BasicAliasAnalysis>
+  X("basicaa", "Basic Alias Analysis (default AA impl)");
+
+  // Declare that we implement the AliasAnalysis interface
+  RegisterAnalysisGroup<AliasAnalysis, BasicAliasAnalysis, true> Y;
+}  // End of anonymous namespace
+
+void BasicAliasAnalysis::initializePass() {
+  InitializeAliasAnalysis(this);
+}
+
+
+
+// hasUniqueAddress - Return true if the 
+static inline bool hasUniqueAddress(const Value *V) {
+  return isa<GlobalValue>(V) || isa<MallocInst>(V) || isa<AllocaInst>(V);
+}
+
+static const Value *getUnderlyingObject(const Value *V) {
+  if (!isa<PointerType>(V->getType())) return 0;
+
+  // If we are at some type of object... return it.
+  if (hasUniqueAddress(V)) return V;
+  
+  // Traverse through different addressing mechanisms...
+  if (const Instruction *I = dyn_cast<Instruction>(V)) {
+    if (isa<CastInst>(I) || isa<GetElementPtrInst>(I))
+      return getUnderlyingObject(I->getOperand(0));
+  }
+  return 0;
+}
+
+
+// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
+// as array references.  Note that this function is heavily tail recursive.
+// Hopefully we have a smart C++ compiler.  :)
+//
+AliasAnalysis::AliasResult
+BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
+                          const Value *V2, unsigned V2Size) {
+  // Strip off constant pointer refs if they exist
+  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1))
+    V1 = CPR->getValue();
+  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V2))
+    V2 = CPR->getValue();
+
+  // Are we checking for alias of the same value?
+  if (V1 == V2) return MustAlias;
+
+  if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
+      V1->getType() != Type::LongTy && V2->getType() != Type::LongTy)
+    return NoAlias;  // Scalars cannot alias each other
+
+  // Strip off cast instructions...
+  if (const Instruction *I = dyn_cast<CastInst>(V1))
+    return alias(I->getOperand(0), V1Size, V2, V2Size);
+  if (const Instruction *I = dyn_cast<CastInst>(V2))
+    return alias(V1, V1Size, I->getOperand(0), V2Size);
+
+  // Figure out what objects these things are pointing to if we can...
+  const Value *O1 = getUnderlyingObject(V1);
+  const Value *O2 = getUnderlyingObject(V2);
+
+  // Pointing at a discernable object?
+  if (O1 && O2) {
+    // If they are two different objects, we know that we have no alias...
+    if (O1 != O2) return NoAlias;
+
+    // If they are the same object, they we can look at the indexes.  If they
+    // index off of the object is the same for both pointers, they must alias.
+    // If they are provably different, they must not alias.  Otherwise, we can't
+    // tell anything.
+  } else if (O1 && isa<ConstantPointerNull>(V2)) {
+    return NoAlias;                    // Unique values don't alias null
+  } else if (O2 && isa<ConstantPointerNull>(V1)) {
+    return NoAlias;                    // Unique values don't alias null
+  }
+
+  // If we have two gep instructions with identical indices, return an alias
+  // result equal to the alias result of the original pointer...
+  //
+  if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(V1))
+    if (const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(V2))
+      if (GEP1->getNumOperands() == GEP2->getNumOperands() &&
+          GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType()) {
+        AliasResult GAlias =
+          CheckGEPInstructions((GetElementPtrInst*)GEP1, V1Size,
+                               (GetElementPtrInst*)GEP2, V2Size);
+        if (GAlias != MayAlias)
+          return GAlias;
+      }
+
+  // Check to see if these two pointers are related by a getelementptr
+  // instruction.  If one pointer is a GEP with a non-zero index of the other
+  // pointer, we know they cannot alias.
+  //
+  if (isa<GetElementPtrInst>(V2)) {
+    std::swap(V1, V2);
+    std::swap(V1Size, V2Size);
+  }
+
+  if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V1))
+    if (GEP->getOperand(0) == V2) {
+      // If there is at least one non-zero constant index, we know they cannot
+      // alias.
+      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
+        if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i)))
+          if (!C->isNullValue())
+            return NoAlias;
+    }
+
+  return MayAlias;
+}
+
+// CheckGEPInstructions - Check two GEP instructions of compatible types and
+// equal number of arguments.  This checks to see if the index expressions
+// preclude the pointers from aliasing...
+//
+AliasAnalysis::AliasResult
+BasicAliasAnalysis::CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1S, 
+                                         GetElementPtrInst *GEP2, unsigned G2S){
+  // Do the base pointers alias?
+  AliasResult BaseAlias = alias(GEP1->getOperand(0), G1S,
+                                GEP2->getOperand(0), G2S);
+  if (BaseAlias != MustAlias)   // No or May alias: We cannot add anything...
+    return BaseAlias;
+  
+  // Find the (possibly empty) initial sequence of equal values...
+  unsigned NumGEPOperands = GEP1->getNumOperands();
+  unsigned UnequalOper = 1;
+  while (UnequalOper != NumGEPOperands &&
+         GEP1->getOperand(UnequalOper) == GEP2->getOperand(UnequalOper))
+    ++UnequalOper;
+    
+  // If all operands equal each other, then the derived pointers must
+  // alias each other...
+  if (UnequalOper == NumGEPOperands) return MustAlias;
+    
+  // So now we know that the indexes derived from the base pointers,
+  // which are known to alias, are different.  We can still determine a
+  // no-alias result if there are differing constant pairs in the index
+  // chain.  For example:
+  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
+  //
+  unsigned SizeMax = std::max(G1S, G2S);
+  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work...
+      
+  // Scan for the first operand that is constant and unequal in the
+  // two getelemenptrs...
+  unsigned FirstConstantOper = UnequalOper;
+  for (; FirstConstantOper != NumGEPOperands; ++FirstConstantOper) {
+    const Value *G1Oper = GEP1->getOperand(FirstConstantOper);
+    const Value *G2Oper = GEP2->getOperand(FirstConstantOper);
+    if (G1Oper != G2Oper &&   // Found non-equal constant indexes...
+        isa<Constant>(G1Oper) && isa<Constant>(G2Oper)) {
+      // Make sure they are comparable...  and make sure the GEP with
+      // the smaller leading constant is GEP1.
+      ConstantBool *Compare =
+        *cast<Constant>(GEP1->getOperand(FirstConstantOper)) >
+        *cast<Constant>(GEP2->getOperand(FirstConstantOper));
+      if (Compare) {  // If they are comparable...
+        if (Compare->getValue())
+          std::swap(GEP1, GEP2);  // Make GEP1 < GEP2
+        break;
+      }
+    }
+  }
+  
+  // No constant operands, we cannot tell anything...
+  if (FirstConstantOper == NumGEPOperands) return MayAlias;
+
+  // If there are non-equal constants arguments, then we can figure
+  // out a minimum known delta between the two index expressions... at
+  // this point we know that the first constant index of GEP1 is less
+  // than the first constant index of GEP2.
+  //
+  std::vector<Value*> Indices1;
+  Indices1.reserve(NumGEPOperands-1);
+  for (unsigned i = 1; i != FirstConstantOper; ++i)
+    Indices1.push_back(Constant::getNullValue(GEP1->getOperand(i)
+                                              ->getType()));
+  std::vector<Value*> Indices2;
+  Indices2.reserve(NumGEPOperands-1);
+  Indices2 = Indices1;           // Copy the zeros prefix...
+  
+  // Add the two known constant operands...
+  Indices1.push_back((Value*)GEP1->getOperand(FirstConstantOper));
+  Indices2.push_back((Value*)GEP2->getOperand(FirstConstantOper));
+  
+  const Type *GEPPointerTy = GEP1->getOperand(0)->getType();
+  
+  // Loop over the rest of the operands...
+  for (unsigned i = FirstConstantOper+1; i!=NumGEPOperands; ++i){
+    const Value *Op1 = GEP1->getOperand(i);
+    const Value *Op2 = GEP1->getOperand(i);
+    if (Op1 == Op2) {   // If they are equal, use a zero index...
+      Indices1.push_back(Constant::getNullValue(Op1->getType()));
+      Indices2.push_back(Indices1.back());
+    } else {
+      if (isa<Constant>(Op1))
+        Indices1.push_back((Value*)Op1);
+      else {
+        // GEP1 is known to produce a value less than GEP2.  To be
+        // conservatively correct, we must assume the largest
+        // possible constant is used in this position.  This cannot
+        // be the initial index to the GEP instructions (because we
+        // know we have at least one element before this one with
+        // the different constant arguments), so we know that the
+        // current index must be into either a struct or array.
+        // Because of this, we can calculate the maximum value
+        // possible.
+        //
+        const Type *ElTy = GEP1->getIndexedType(GEPPointerTy,
+                                                Indices1, true);
+        if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
+          Indices1.push_back(ConstantUInt::get(Type::UByteTy,
+                                               STy->getNumContainedTypes()));
+        } else {
+          Indices1.push_back(ConstantSInt::get(Type::LongTy,
+                                               cast<ArrayType>(ElTy)->getNumElements()));
+        }
+      }
+      
+      if (isa<Constant>(Op2))
+        Indices2.push_back((Value*)Op2);
+      else // Conservatively assume the minimum value for this index
+        Indices2.push_back(Constant::getNullValue(Op1->getType()));
+    }
+  }
+  
+  unsigned Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, Indices1);
+  unsigned Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, Indices2);
+  assert(Offset1 < Offset2 &&"There is at least one different constant here!");
+
+  if (Offset2-Offset1 >= SizeMax) {
+    //std::cerr << "Determined that these two GEP's don't alias [" 
+    //          << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
+    return NoAlias;
+  }
+  return MayAlias;
+}
+