| //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the SplitAnalysis class as well as mutator functions for |
| // live range splitting. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "splitter" |
| #include "SplitKit.h" |
| #include "VirtRegMap.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> |
| AllowSplit("spiller-splits-edges", |
| cl::desc("Allow critical edge splitting during spilling")); |
| |
| //===----------------------------------------------------------------------===// |
| // Split Analysis |
| //===----------------------------------------------------------------------===// |
| |
| SplitAnalysis::SplitAnalysis(const MachineFunction &mf, |
| const LiveIntervals &lis, |
| const MachineLoopInfo &mli) |
| : mf_(mf), |
| lis_(lis), |
| loops_(mli), |
| tii_(*mf.getTarget().getInstrInfo()), |
| curli_(0) {} |
| |
| void SplitAnalysis::clear() { |
| usingInstrs_.clear(); |
| usingBlocks_.clear(); |
| usingLoops_.clear(); |
| curli_ = 0; |
| } |
| |
| bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { |
| MachineBasicBlock *T, *F; |
| SmallVector<MachineOperand, 4> Cond; |
| return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); |
| } |
| |
| /// analyzeUses - Count instructions, basic blocks, and loops using curli. |
| void SplitAnalysis::analyzeUses() { |
| const MachineRegisterInfo &MRI = mf_.getRegInfo(); |
| for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); |
| MachineInstr *MI = I.skipInstruction();) { |
| if (MI->isDebugValue() || !usingInstrs_.insert(MI)) |
| continue; |
| MachineBasicBlock *MBB = MI->getParent(); |
| if (usingBlocks_[MBB]++) |
| continue; |
| if (MachineLoop *Loop = loops_.getLoopFor(MBB)) |
| usingLoops_.insert(Loop); |
| } |
| DEBUG(dbgs() << "Counted " |
| << usingInstrs_.size() << " instrs, " |
| << usingBlocks_.size() << " blocks, " |
| << usingLoops_.size() << " loops in " |
| << *curli_ << "\n"); |
| } |
| |
| // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, |
| // predecessor blocks, and exit blocks. |
| void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { |
| Blocks.clear(); |
| |
| // Blocks in the loop. |
| Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); |
| |
| // Predecessor blocks. |
| const MachineBasicBlock *Header = Loop->getHeader(); |
| for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), |
| E = Header->pred_end(); I != E; ++I) |
| if (!Blocks.Loop.count(*I)) |
| Blocks.Preds.insert(*I); |
| |
| // Exit blocks. |
| for (MachineLoop::block_iterator I = Loop->block_begin(), |
| E = Loop->block_end(); I != E; ++I) { |
| const MachineBasicBlock *MBB = *I; |
| for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), |
| SE = MBB->succ_end(); SI != SE; ++SI) |
| if (!Blocks.Loop.count(*SI)) |
| Blocks.Exits.insert(*SI); |
| } |
| } |
| |
| /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in |
| /// and around the Loop. |
| SplitAnalysis::LoopPeripheralUse SplitAnalysis:: |
| analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { |
| LoopPeripheralUse use = ContainedInLoop; |
| for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); |
| I != E; ++I) { |
| const MachineBasicBlock *MBB = I->first; |
| // Is this a peripheral block? |
| if (use < MultiPeripheral && |
| (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { |
| if (I->second > 1) use = MultiPeripheral; |
| else use = SinglePeripheral; |
| continue; |
| } |
| // Is it a loop block? |
| if (Blocks.Loop.count(MBB)) |
| continue; |
| // It must be an unrelated block. |
| return OutsideLoop; |
| } |
| return use; |
| } |
| |
| /// getCriticalExits - It may be necessary to partially break critical edges |
| /// leaving the loop if an exit block has phi uses of curli. Collect the exit |
| /// blocks that need special treatment into CriticalExits. |
| void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, |
| BlockPtrSet &CriticalExits) { |
| CriticalExits.clear(); |
| |
| // A critical exit block contains a phi def of curli, and has a predecessor |
| // that is not in the loop nor a loop predecessor. |
| // For such an exit block, the edges carrying the new variable must be moved |
| // to a new pre-exit block. |
| for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); |
| I != E; ++I) { |
| const MachineBasicBlock *Succ = *I; |
| SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ); |
| VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx); |
| // This exit may not have curli live in at all. No need to split. |
| if (!SuccVNI) |
| continue; |
| // If this is not a PHI def, it is either using a value from before the |
| // loop, or a value defined inside the loop. Both are safe. |
| if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx) |
| continue; |
| // This exit block does have a PHI. Does it also have a predecessor that is |
| // not a loop block or loop predecessor? |
| for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), |
| PE = Succ->pred_end(); PI != PE; ++PI) { |
| const MachineBasicBlock *Pred = *PI; |
| if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) |
| continue; |
| // This is a critical exit block, and we need to split the exit edge. |
| CriticalExits.insert(Succ); |
| break; |
| } |
| } |
| } |
| |
| /// canSplitCriticalExits - Return true if it is possible to insert new exit |
| /// blocks before the blocks in CriticalExits. |
| bool |
| SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, |
| BlockPtrSet &CriticalExits) { |
| // If we don't allow critical edge splitting, require no critical exits. |
| if (!AllowSplit) |
| return CriticalExits.empty(); |
| |
| for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); |
| I != E; ++I) { |
| const MachineBasicBlock *Succ = *I; |
| // We want to insert a new pre-exit MBB before Succ, and change all the |
| // in-loop blocks to branch to the pre-exit instead of Succ. |
| // Check that all the in-loop predecessors can be changed. |
| for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), |
| PE = Succ->pred_end(); PI != PE; ++PI) { |
| const MachineBasicBlock *Pred = *PI; |
| // The external predecessors won't be altered. |
| if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) |
| continue; |
| if (!canAnalyzeBranch(Pred)) |
| return false; |
| } |
| |
| // If Succ's layout predecessor falls through, that too must be analyzable. |
| // We need to insert the pre-exit block in the gap. |
| MachineFunction::const_iterator MFI = Succ; |
| if (MFI == mf_.begin()) |
| continue; |
| if (!canAnalyzeBranch(--MFI)) |
| return false; |
| } |
| // No problems found. |
| return true; |
| } |
| |
| void SplitAnalysis::analyze(const LiveInterval *li) { |
| clear(); |
| curli_ = li; |
| analyzeUses(); |
| } |
| |
| const MachineLoop *SplitAnalysis::getBestSplitLoop() { |
| assert(curli_ && "Call analyze() before getBestSplitLoop"); |
| if (usingLoops_.empty()) |
| return 0; |
| |
| LoopPtrSet Loops, SecondLoops; |
| LoopBlocks Blocks; |
| BlockPtrSet CriticalExits; |
| |
| // Find first-class and second class candidate loops. |
| // We prefer to split around loops where curli is used outside the periphery. |
| for (LoopPtrSet::const_iterator I = usingLoops_.begin(), |
| E = usingLoops_.end(); I != E; ++I) { |
| getLoopBlocks(*I, Blocks); |
| |
| // FIXME: We need an SSA updater to properly handle multiple exit blocks. |
| if (Blocks.Exits.size() > 1) { |
| DEBUG(dbgs() << "MultipleExits: " << **I); |
| continue; |
| } |
| |
| LoopPtrSet *LPS = 0; |
| switch(analyzeLoopPeripheralUse(Blocks)) { |
| case OutsideLoop: |
| LPS = &Loops; |
| break; |
| case MultiPeripheral: |
| LPS = &SecondLoops; |
| break; |
| case ContainedInLoop: |
| DEBUG(dbgs() << "ContainedInLoop: " << **I); |
| continue; |
| case SinglePeripheral: |
| DEBUG(dbgs() << "SinglePeripheral: " << **I); |
| continue; |
| } |
| // Will it be possible to split around this loop? |
| getCriticalExits(Blocks, CriticalExits); |
| DEBUG(dbgs() << CriticalExits.size() << " critical exits: " << **I); |
| if (!canSplitCriticalExits(Blocks, CriticalExits)) |
| continue; |
| // This is a possible split. |
| assert(LPS); |
| LPS->insert(*I); |
| } |
| |
| DEBUG(dbgs() << "Got " << Loops.size() << " + " << SecondLoops.size() |
| << " candidate loops\n"); |
| |
| // If there are no first class loops available, look at second class loops. |
| if (Loops.empty()) |
| Loops = SecondLoops; |
| |
| if (Loops.empty()) |
| return 0; |
| |
| // Pick the earliest loop. |
| // FIXME: Are there other heuristics to consider? |
| const MachineLoop *Best = 0; |
| SlotIndex BestIdx; |
| for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; |
| ++I) { |
| SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); |
| if (!Best || Idx < BestIdx) |
| Best = *I, BestIdx = Idx; |
| } |
| DEBUG(dbgs() << "Best: " << *Best); |
| return Best; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Split Editor |
| //===----------------------------------------------------------------------===// |
| |
| /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. |
| SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, |
| std::vector<LiveInterval*> &intervals) |
| : sa_(sa), lis_(lis), vrm_(vrm), |
| mri_(vrm.getMachineFunction().getRegInfo()), |
| tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), |
| curli_(sa_.getCurLI()), |
| dupli_(0), openli_(0), |
| intervals_(intervals), |
| firstInterval(intervals_.size()) |
| { |
| assert(curli_ && "SplitEditor created from empty SplitAnalysis"); |
| |
| // Make sure curli_ is assigned a stack slot, so all our intervals get the |
| // same slot as curli_. |
| if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT) |
| vrm_.assignVirt2StackSlot(curli_->reg); |
| |
| } |
| |
| LiveInterval *SplitEditor::createInterval() { |
| unsigned curli = sa_.getCurLI()->reg; |
| unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli)); |
| LiveInterval &Intv = lis_.getOrCreateInterval(Reg); |
| vrm_.grow(); |
| vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli)); |
| return &Intv; |
| } |
| |
| LiveInterval *SplitEditor::getDupLI() { |
| if (!dupli_) { |
| // Create an interval for dupli that is a copy of curli. |
| dupli_ = createInterval(); |
| dupli_->Copy(*curli_, &mri_, lis_.getVNInfoAllocator()); |
| DEBUG(dbgs() << "SplitEditor DupLI: " << *dupli_ << '\n'); |
| } |
| return dupli_; |
| } |
| |
| VNInfo *SplitEditor::mapValue(const VNInfo *curliVNI) { |
| VNInfo *&VNI = valueMap_[curliVNI]; |
| if (!VNI) |
| VNI = openli_->createValueCopy(curliVNI, lis_.getVNInfoAllocator()); |
| return VNI; |
| } |
| |
| /// Insert a COPY instruction curli -> li. Allocate a new value from li |
| /// defined by the COPY. Note that rewrite() will deal with the curli |
| /// register, so this function can be used to copy from any interval - openli, |
| /// curli, or dupli. |
| VNInfo *SplitEditor::insertCopy(LiveInterval &LI, |
| MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I) { |
| MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), tii_.get(TargetOpcode::COPY), |
| LI.reg).addReg(curli_->reg); |
| SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); |
| return LI.getNextValue(DefIdx, MI, true, lis_.getVNInfoAllocator()); |
| } |
| |
| /// Create a new virtual register and live interval. |
| void SplitEditor::openIntv() { |
| assert(!openli_ && "Previous LI not closed before openIntv"); |
| openli_ = createInterval(); |
| intervals_.push_back(openli_); |
| liveThrough_ = false; |
| } |
| |
| /// enterIntvAtEnd - Enter openli at the end of MBB. |
| /// PhiMBB is a successor inside openli where a PHI value is created. |
| /// Currently, all entries must share the same PhiMBB. |
| void SplitEditor::enterIntvAtEnd(MachineBasicBlock &A, MachineBasicBlock &B) { |
| assert(openli_ && "openIntv not called before enterIntvAtEnd"); |
| |
| SlotIndex EndA = lis_.getMBBEndIdx(&A); |
| VNInfo *CurVNIA = curli_->getVNInfoAt(EndA.getPrevIndex()); |
| if (!CurVNIA) { |
| DEBUG(dbgs() << " ignoring enterIntvAtEnd, curli not live out of BB#" |
| << A.getNumber() << ".\n"); |
| return; |
| } |
| |
| // Add a phi kill value and live range out of A. |
| VNInfo *VNIA = insertCopy(*openli_, A, A.getFirstTerminator()); |
| openli_->addRange(LiveRange(VNIA->def, EndA, VNIA)); |
| |
| // FIXME: If this is the only entry edge, we don't need the extra PHI value. |
| // FIXME: If there are multiple entry blocks (so not a loop), we need proper |
| // SSA update. |
| |
| // Now look at the start of B. |
| SlotIndex StartB = lis_.getMBBStartIdx(&B); |
| SlotIndex EndB = lis_.getMBBEndIdx(&B); |
| const LiveRange *CurB = curli_->getLiveRangeContaining(StartB); |
| if (!CurB) { |
| DEBUG(dbgs() << " enterIntvAtEnd: curli not live in to BB#" |
| << B.getNumber() << ".\n"); |
| return; |
| } |
| |
| VNInfo *VNIB = openli_->getVNInfoAt(StartB); |
| if (!VNIB) { |
| // Create a phi value. |
| VNIB = openli_->getNextValue(SlotIndex(StartB, true), 0, false, |
| lis_.getVNInfoAllocator()); |
| VNIB->setIsPHIDef(true); |
| // Add a minimal range for the new value. |
| openli_->addRange(LiveRange(VNIB->def, std::min(EndB, CurB->end), VNIB)); |
| |
| VNInfo *&mapVNI = valueMap_[CurB->valno]; |
| if (mapVNI) { |
| // Multiple copies - must create PHI value. |
| abort(); |
| } else { |
| // This is the first copy of dupLR. Mark the mapping. |
| mapVNI = VNIB; |
| } |
| |
| } |
| |
| DEBUG(dbgs() << " enterIntvAtEnd: " << *openli_ << '\n'); |
| } |
| |
| /// useIntv - indicate that all instructions in MBB should use openli. |
| void SplitEditor::useIntv(const MachineBasicBlock &MBB) { |
| useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); |
| } |
| |
| void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { |
| assert(openli_ && "openIntv not called before useIntv"); |
| |
| // Map the curli values from the interval into openli_ |
| LiveInterval::const_iterator B = curli_->begin(), E = curli_->end(); |
| LiveInterval::const_iterator I = std::lower_bound(B, E, Start); |
| |
| if (I != B) { |
| --I; |
| // I begins before Start, but overlaps. openli may already have a value. |
| if (I->end > Start && !openli_->liveAt(Start)) |
| openli_->addRange(LiveRange(Start, std::min(End, I->end), |
| mapValue(I->valno))); |
| ++I; |
| } |
| |
| // The remaining ranges begin after Start. |
| for (;I != E && I->start < End; ++I) |
| openli_->addRange(LiveRange(I->start, std::min(End, I->end), |
| mapValue(I->valno))); |
| DEBUG(dbgs() << " added range [" << Start << ';' << End << "): " << *openli_ |
| << '\n'); |
| } |
| |
| /// leaveIntvAtTop - Leave the interval at the top of MBB. |
| /// Currently, only one value can leave the interval. |
| void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { |
| assert(openli_ && "openIntv not called before leaveIntvAtTop"); |
| |
| SlotIndex Start = lis_.getMBBStartIdx(&MBB); |
| const LiveRange *CurLR = curli_->getLiveRangeContaining(Start); |
| |
| // Is curli even live-in to MBB? |
| if (!CurLR) { |
| DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": not live\n"); |
| return; |
| } |
| |
| // Is curli defined by PHI at the beginning of MBB? |
| bool isPHIDef = CurLR->valno->isPHIDef() && |
| CurLR->valno->def.getBaseIndex() == Start; |
| |
| // If MBB is using a value of curli that was defined outside the openli range, |
| // we don't want to copy it back here. |
| if (!isPHIDef && !openli_->liveAt(CurLR->valno->def)) { |
| DEBUG(dbgs() << " leaveIntvAtTop at " << Start |
| << ": using external value\n"); |
| liveThrough_ = true; |
| return; |
| } |
| |
| // We are going to insert a back copy, so we must have a dupli_. |
| LiveRange *DupLR = getDupLI()->getLiveRangeContaining(Start); |
| assert(DupLR && "dupli not live into black, but curli is?"); |
| |
| // Insert the COPY instruction. |
| MachineInstr *MI = BuildMI(MBB, MBB.begin(), DebugLoc(), |
| tii_.get(TargetOpcode::COPY), dupli_->reg) |
| .addReg(openli_->reg); |
| SlotIndex Idx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); |
| |
| // Adjust dupli and openli values. |
| if (isPHIDef) { |
| // dupli was already a PHI on entry to MBB. Simply insert an openli PHI, |
| // and shift the dupli def down to the COPY. |
| VNInfo *VNI = openli_->getNextValue(SlotIndex(Start, true), 0, false, |
| lis_.getVNInfoAllocator()); |
| VNI->setIsPHIDef(true); |
| openli_->addRange(LiveRange(VNI->def, Idx, VNI)); |
| |
| dupli_->removeRange(Start, Idx); |
| DupLR->valno->def = Idx; |
| DupLR->valno->setIsPHIDef(false); |
| } else { |
| // The dupli value was defined somewhere inside the openli range. |
| DEBUG(dbgs() << " leaveIntvAtTop source value defined at " |
| << DupLR->valno->def << "\n"); |
| // FIXME: We may not need a PHI here if all predecessors have the same |
| // value. |
| VNInfo *VNI = openli_->getNextValue(SlotIndex(Start, true), 0, false, |
| lis_.getVNInfoAllocator()); |
| VNI->setIsPHIDef(true); |
| openli_->addRange(LiveRange(VNI->def, Idx, VNI)); |
| |
| // FIXME: What if DupLR->valno is used by multiple exits? SSA Update. |
| |
| // closeIntv is going to remove the superfluous live ranges. |
| DupLR->valno->def = Idx; |
| DupLR->valno->setIsPHIDef(false); |
| } |
| |
| DEBUG(dbgs() << " leaveIntvAtTop at " << Idx << ": " << *openli_ << '\n'); |
| } |
| |
| /// closeIntv - Indicate that we are done editing the currently open |
| /// LiveInterval, and ranges can be trimmed. |
| void SplitEditor::closeIntv() { |
| assert(openli_ && "openIntv not called before closeIntv"); |
| |
| DEBUG(dbgs() << " closeIntv cleaning up\n"); |
| DEBUG(dbgs() << " open " << *openli_ << '\n'); |
| |
| if (liveThrough_) { |
| DEBUG(dbgs() << " value live through region, leaving dupli as is.\n"); |
| } else { |
| // live out with copies inserted, or killed by region. Either way we need to |
| // remove the overlapping region from dupli. |
| getDupLI(); |
| for (LiveInterval::iterator I = openli_->begin(), E = openli_->end(); |
| I != E; ++I) { |
| dupli_->removeRange(I->start, I->end); |
| } |
| // FIXME: A block branching to the entry block may also branch elsewhere |
| // curli is live. We need both openli and curli to be live in that case. |
| DEBUG(dbgs() << " dup2 " << *dupli_ << '\n'); |
| } |
| openli_ = 0; |
| } |
| |
| /// rewrite - after all the new live ranges have been created, rewrite |
| /// instructions using curli to use the new intervals. |
| void SplitEditor::rewrite() { |
| assert(!openli_ && "Previous LI not closed before rewrite"); |
| const LiveInterval *curli = sa_.getCurLI(); |
| for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(curli->reg), |
| RE = mri_.reg_end(); RI != RE;) { |
| MachineOperand &MO = RI.getOperand(); |
| MachineInstr *MI = MO.getParent(); |
| ++RI; |
| if (MI->isDebugValue()) { |
| DEBUG(dbgs() << "Zapping " << *MI); |
| // FIXME: We can do much better with debug values. |
| MO.setReg(0); |
| continue; |
| } |
| SlotIndex Idx = lis_.getInstructionIndex(MI); |
| Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); |
| LiveInterval *LI = dupli_; |
| for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { |
| LiveInterval *testli = intervals_[i]; |
| if (testli->liveAt(Idx)) { |
| LI = testli; |
| break; |
| } |
| } |
| if (LI) |
| MO.setReg(LI->reg); |
| DEBUG(dbgs() << "rewrite " << Idx << '\t' << *MI); |
| } |
| |
| // dupli_ goes in last, after rewriting. |
| if (dupli_) { |
| dupli_->RenumberValues(); |
| intervals_.push_back(dupli_); |
| } |
| |
| // FIXME: *Calculate spill weights, allocation hints, and register classes for |
| // firstInterval.. |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Loop Splitting |
| //===----------------------------------------------------------------------===// |
| |
| bool SplitEditor::splitAroundLoop(const MachineLoop *Loop) { |
| SplitAnalysis::LoopBlocks Blocks; |
| sa_.getLoopBlocks(Loop, Blocks); |
| |
| // Break critical edges as needed. |
| SplitAnalysis::BlockPtrSet CriticalExits; |
| sa_.getCriticalExits(Blocks, CriticalExits); |
| assert(CriticalExits.empty() && "Cannot break critical exits yet"); |
| |
| // Create new live interval for the loop. |
| openIntv(); |
| |
| // Insert copies in the predecessors. |
| for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), |
| E = Blocks.Preds.end(); I != E; ++I) { |
| MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); |
| enterIntvAtEnd(MBB, *Loop->getHeader()); |
| } |
| |
| // Switch all loop blocks. |
| for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), |
| E = Blocks.Loop.end(); I != E; ++I) |
| useIntv(**I); |
| |
| // Insert back copies in the exit blocks. |
| for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), |
| E = Blocks.Exits.end(); I != E; ++I) { |
| MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); |
| leaveIntvAtTop(MBB); |
| } |
| |
| // Done. |
| closeIntv(); |
| rewrite(); |
| return dupli_; |
| } |
| |