| //===-- ARMAtomicExpandPass.cpp - Expand atomic instructions --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a pass (at IR level) to replace atomic instructions with |
| // appropriate (intrinsic-based) ldrex/strex loops. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "arm-atomic-expand" |
| #include "ARM.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| using namespace llvm; |
| |
| namespace { |
| class ARMAtomicExpandPass : public FunctionPass { |
| const TargetLowering *TLI; |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| explicit ARMAtomicExpandPass(const TargetMachine *TM = 0) |
| : FunctionPass(ID), TLI(TM->getTargetLowering()) {} |
| |
| bool runOnFunction(Function &F) override; |
| bool expandAtomicInsts(Function &F); |
| |
| bool expandAtomicLoad(LoadInst *LI); |
| bool expandAtomicStore(StoreInst *LI); |
| bool expandAtomicRMW(AtomicRMWInst *AI); |
| bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); |
| |
| AtomicOrdering insertLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord); |
| void insertTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord); |
| |
| /// Perform a load-linked operation on Addr, returning a "Value *" with the |
| /// corresponding pointee type. This may entail some non-trivial operations |
| /// to truncate or reconstruct illegal types since intrinsics must be legal |
| Value *loadLinked(IRBuilder<> &Builder, Value *Addr, AtomicOrdering Ord); |
| |
| /// Perform a store-conditional operation to Addr. Return the status of the |
| /// store: 0 if the it succeeded, non-zero otherwise. |
| Value *storeConditional(IRBuilder<> &Builder, Value *Val, Value *Addr, |
| AtomicOrdering Ord); |
| |
| /// Return true if the given (atomic) instruction should be expanded by this |
| /// pass. |
| bool shouldExpandAtomic(Instruction *Inst); |
| }; |
| } |
| |
| char ARMAtomicExpandPass::ID = 0; |
| |
| FunctionPass *llvm::createARMAtomicExpandPass(const TargetMachine *TM) { |
| return new ARMAtomicExpandPass(TM); |
| } |
| |
| bool ARMAtomicExpandPass::runOnFunction(Function &F) { |
| SmallVector<Instruction *, 1> AtomicInsts; |
| |
| // Changing control-flow while iterating through it is a bad idea, so gather a |
| // list of all atomic instructions before we start. |
| for (BasicBlock &BB : F) |
| for (Instruction &Inst : BB) { |
| if (isa<AtomicRMWInst>(&Inst) || isa<AtomicCmpXchgInst>(&Inst) || |
| (isa<LoadInst>(&Inst) && cast<LoadInst>(&Inst)->isAtomic()) || |
| (isa<StoreInst>(&Inst) && cast<StoreInst>(&Inst)->isAtomic())) |
| AtomicInsts.push_back(&Inst); |
| } |
| |
| bool MadeChange = false; |
| for (Instruction *Inst : AtomicInsts) { |
| if (!shouldExpandAtomic(Inst)) |
| continue; |
| |
| if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(Inst)) |
| MadeChange |= expandAtomicRMW(AI); |
| else if (AtomicCmpXchgInst *CI = dyn_cast<AtomicCmpXchgInst>(Inst)) |
| MadeChange |= expandAtomicCmpXchg(CI); |
| else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) |
| MadeChange |= expandAtomicLoad(LI); |
| else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) |
| MadeChange |= expandAtomicStore(SI); |
| else |
| llvm_unreachable("Unknown atomic instruction"); |
| } |
| |
| return MadeChange; |
| } |
| |
| bool ARMAtomicExpandPass::expandAtomicLoad(LoadInst *LI) { |
| // Load instructions don't actually need a leading fence, even in the |
| // SequentiallyConsistent case. |
| AtomicOrdering MemOpOrder = |
| TLI->getInsertFencesForAtomic() ? Monotonic : LI->getOrdering(); |
| |
| // The only 64-bit load guaranteed to be single-copy atomic by the ARM ARM is |
| // an ldrexd (A3.5.3). |
| IRBuilder<> Builder(LI); |
| Value *Val = loadLinked(Builder, LI->getPointerOperand(), MemOpOrder); |
| |
| insertTrailingFence(Builder, LI->getOrdering()); |
| |
| LI->replaceAllUsesWith(Val); |
| LI->eraseFromParent(); |
| |
| return true; |
| } |
| |
| bool ARMAtomicExpandPass::expandAtomicStore(StoreInst *SI) { |
| // The only atomic 64-bit store on ARM is an strexd that succeeds, which means |
| // we need a loop and the entire instruction is essentially an "atomicrmw |
| // xchg" that ignores the value loaded. |
| IRBuilder<> Builder(SI); |
| AtomicRMWInst *AI = |
| Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), |
| SI->getValueOperand(), SI->getOrdering()); |
| SI->eraseFromParent(); |
| |
| // Now we have an appropriate swap instruction, lower it as usual. |
| return expandAtomicRMW(AI); |
| } |
| |
| bool ARMAtomicExpandPass::expandAtomicRMW(AtomicRMWInst *AI) { |
| AtomicOrdering Order = AI->getOrdering(); |
| Value *Addr = AI->getPointerOperand(); |
| BasicBlock *BB = AI->getParent(); |
| Function *F = BB->getParent(); |
| LLVMContext &Ctx = F->getContext(); |
| |
| // Given: atomicrmw some_op iN* %addr, iN %incr ordering |
| // |
| // The standard expansion we produce is: |
| // [...] |
| // fence? |
| // atomicrmw.start: |
| // %loaded = @load.linked(%addr) |
| // %new = some_op iN %loaded, %incr |
| // %stored = @store_conditional(%new, %addr) |
| // %try_again = icmp i32 ne %stored, 0 |
| // br i1 %try_again, label %loop, label %atomicrmw.end |
| // atomicrmw.end: |
| // fence? |
| // [...] |
| BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end"); |
| BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); |
| |
| // This grabs the DebugLoc from AI. |
| IRBuilder<> Builder(AI); |
| |
| // The split call above "helpfully" added a branch at the end of BB (to the |
| // wrong place), but we might want a fence too. It's easiest to just remove |
| // the branch entirely. |
| std::prev(BB->end())->eraseFromParent(); |
| Builder.SetInsertPoint(BB); |
| AtomicOrdering MemOpOrder = insertLeadingFence(Builder, Order); |
| Builder.CreateBr(LoopBB); |
| |
| // Start the main loop block now that we've taken care of the preliminaries. |
| Builder.SetInsertPoint(LoopBB); |
| Value *Loaded = loadLinked(Builder, Addr, MemOpOrder); |
| |
| Value *NewVal; |
| switch (AI->getOperation()) { |
| case AtomicRMWInst::Xchg: |
| NewVal = AI->getValOperand(); |
| break; |
| case AtomicRMWInst::Add: |
| NewVal = Builder.CreateAdd(Loaded, AI->getValOperand(), "new"); |
| break; |
| case AtomicRMWInst::Sub: |
| NewVal = Builder.CreateSub(Loaded, AI->getValOperand(), "new"); |
| break; |
| case AtomicRMWInst::And: |
| NewVal = Builder.CreateAnd(Loaded, AI->getValOperand(), "new"); |
| break; |
| case AtomicRMWInst::Nand: |
| NewVal = Builder.CreateAnd(Loaded, Builder.CreateNot(AI->getValOperand()), |
| "new"); |
| break; |
| case AtomicRMWInst::Or: |
| NewVal = Builder.CreateOr(Loaded, AI->getValOperand(), "new"); |
| break; |
| case AtomicRMWInst::Xor: |
| NewVal = Builder.CreateXor(Loaded, AI->getValOperand(), "new"); |
| break; |
| case AtomicRMWInst::Max: |
| NewVal = Builder.CreateICmpSGT(Loaded, AI->getValOperand()); |
| NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new"); |
| break; |
| case AtomicRMWInst::Min: |
| NewVal = Builder.CreateICmpSLE(Loaded, AI->getValOperand()); |
| NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new"); |
| break; |
| case AtomicRMWInst::UMax: |
| NewVal = Builder.CreateICmpUGT(Loaded, AI->getValOperand()); |
| NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new"); |
| break; |
| case AtomicRMWInst::UMin: |
| NewVal = Builder.CreateICmpULE(Loaded, AI->getValOperand()); |
| NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new"); |
| break; |
| default: |
| llvm_unreachable("Unknown atomic op"); |
| } |
| |
| Value *StoreSuccess = storeConditional(Builder, NewVal, Addr, MemOpOrder); |
| Value *TryAgain = Builder.CreateICmpNE( |
| StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); |
| Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); |
| |
| Builder.SetInsertPoint(ExitBB, ExitBB->begin()); |
| insertTrailingFence(Builder, Order); |
| |
| AI->replaceAllUsesWith(Loaded); |
| AI->eraseFromParent(); |
| |
| return true; |
| } |
| |
| bool ARMAtomicExpandPass::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { |
| AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); |
| AtomicOrdering FailureOrder = CI->getFailureOrdering(); |
| Value *Addr = CI->getPointerOperand(); |
| BasicBlock *BB = CI->getParent(); |
| Function *F = BB->getParent(); |
| LLVMContext &Ctx = F->getContext(); |
| |
| // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord |
| // |
| // The full expansion we produce is: |
| // [...] |
| // fence? |
| // cmpxchg.start: |
| // %loaded = @load.linked(%addr) |
| // %should_store = icmp eq %loaded, %desired |
| // br i1 %should_store, label %cmpxchg.trystore, |
| // label %cmpxchg.end/%cmpxchg.barrier |
| // cmpxchg.trystore: |
| // %stored = @store_conditional(%new, %addr) |
| // %try_again = icmp i32 ne %stored, 0 |
| // br i1 %try_again, label %loop, label %cmpxchg.end |
| // cmpxchg.barrier: |
| // fence? |
| // br label %cmpxchg.end |
| // cmpxchg.end: |
| // [...] |
| BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end"); |
| auto BarrierBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ExitBB); |
| auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.barrier", F, BarrierBB); |
| auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB); |
| |
| // This grabs the DebugLoc from CI |
| IRBuilder<> Builder(CI); |
| |
| // The split call above "helpfully" added a branch at the end of BB (to the |
| // wrong place), but we might want a fence too. It's easiest to just remove |
| // the branch entirely. |
| std::prev(BB->end())->eraseFromParent(); |
| Builder.SetInsertPoint(BB); |
| AtomicOrdering MemOpOrder = insertLeadingFence(Builder, SuccessOrder); |
| Builder.CreateBr(LoopBB); |
| |
| // Start the main loop block now that we've taken care of the preliminaries. |
| Builder.SetInsertPoint(LoopBB); |
| Value *Loaded = loadLinked(Builder, Addr, MemOpOrder); |
| Value *ShouldStore = |
| Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store"); |
| |
| // If the the cmpxchg doesn't actually need any ordering when it fails, we can |
| // jump straight past that fence instruction (if it exists). |
| BasicBlock *FailureBB = FailureOrder == Monotonic ? ExitBB : BarrierBB; |
| Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB); |
| |
| Builder.SetInsertPoint(TryStoreBB); |
| Value *StoreSuccess = |
| storeConditional(Builder, CI->getNewValOperand(), Addr, MemOpOrder); |
| Value *TryAgain = Builder.CreateICmpNE( |
| StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); |
| Builder.CreateCondBr(TryAgain, LoopBB, BarrierBB); |
| |
| // Finally, make sure later instructions don't get reordered with a fence if |
| // necessary. |
| Builder.SetInsertPoint(BarrierBB); |
| insertTrailingFence(Builder, SuccessOrder); |
| Builder.CreateBr(ExitBB); |
| |
| CI->replaceAllUsesWith(Loaded); |
| CI->eraseFromParent(); |
| |
| return true; |
| } |
| |
| Value *ARMAtomicExpandPass::loadLinked(IRBuilder<> &Builder, Value *Addr, |
| AtomicOrdering Ord) { |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Type *ValTy = cast<PointerType>(Addr->getType())->getElementType(); |
| bool IsAcquire = |
| Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent; |
| |
| // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd |
| // intrinsic must return {i32, i32} and we have to recombine them into a |
| // single i64 here. |
| if (ValTy->getPrimitiveSizeInBits() == 64) { |
| Intrinsic::ID Int = |
| IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd; |
| Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int); |
| |
| Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); |
| Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi"); |
| |
| Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); |
| Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); |
| Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); |
| Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); |
| return Builder.CreateOr( |
| Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64"); |
| } |
| |
| Type *Tys[] = { Addr->getType() }; |
| Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex; |
| Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys); |
| |
| return Builder.CreateTruncOrBitCast( |
| Builder.CreateCall(Ldrex, Addr), |
| cast<PointerType>(Addr->getType())->getElementType()); |
| } |
| |
| Value *ARMAtomicExpandPass::storeConditional(IRBuilder<> &Builder, Value *Val, |
| Value *Addr, AtomicOrdering Ord) { |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| bool IsRelease = |
| Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent; |
| |
| // Since the intrinsics must have legal type, the i64 intrinsics take two |
| // parameters: "i32, i32". We must marshal Val into the appropriate form |
| // before the call. |
| if (Val->getType()->getPrimitiveSizeInBits() == 64) { |
| Intrinsic::ID Int = |
| IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd; |
| Function *Strex = Intrinsic::getDeclaration(M, Int); |
| Type *Int32Ty = Type::getInt32Ty(M->getContext()); |
| |
| Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo"); |
| Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi"); |
| Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); |
| return Builder.CreateCall3(Strex, Lo, Hi, Addr); |
| } |
| |
| Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex; |
| Type *Tys[] = { Addr->getType() }; |
| Function *Strex = Intrinsic::getDeclaration(M, Int, Tys); |
| |
| return Builder.CreateCall2( |
| Strex, Builder.CreateZExtOrBitCast( |
| Val, Strex->getFunctionType()->getParamType(0)), |
| Addr); |
| } |
| |
| AtomicOrdering ARMAtomicExpandPass::insertLeadingFence(IRBuilder<> &Builder, |
| AtomicOrdering Ord) { |
| if (!TLI->getInsertFencesForAtomic()) |
| return Ord; |
| |
| if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent) |
| Builder.CreateFence(Release); |
| |
| // The exclusive operations don't need any barrier if we're adding separate |
| // fences. |
| return Monotonic; |
| } |
| |
| void ARMAtomicExpandPass::insertTrailingFence(IRBuilder<> &Builder, |
| AtomicOrdering Ord) { |
| if (!TLI->getInsertFencesForAtomic()) |
| return; |
| |
| if (Ord == Acquire || Ord == AcquireRelease) |
| Builder.CreateFence(Acquire); |
| else if (Ord == SequentiallyConsistent) |
| Builder.CreateFence(SequentiallyConsistent); |
| } |
| |
| bool ARMAtomicExpandPass::shouldExpandAtomic(Instruction *Inst) { |
| // Loads and stores less than 64-bits are already atomic; ones above that |
| // are doomed anyway, so defer to the default libcall and blame the OS when |
| // things go wrong: |
| if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) |
| return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 64; |
| else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) |
| return LI->getType()->getPrimitiveSizeInBits() == 64; |
| |
| // For the real atomic operations, we have ldrex/strex up to 64 bits. |
| return Inst->getType()->getPrimitiveSizeInBits() <= 64; |
| } |