Use getConstant instead of getIntegerSCEV. The two are basically the
same, now that getConstant has overloads consistent with ConstantInt::get.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102965 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index 0d44a3f..d2b46d6 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -761,7 +761,7 @@
CalculationBits);
const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
for (unsigned i = 1; i != K; ++i) {
- const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
+ const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Dividend = SE.getMulExpr(Dividend,
SE.getTruncateOrZeroExtend(S, CalculationTy));
}
@@ -1326,7 +1326,7 @@
if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
// Found a match, merge the two values into a multiply, and add any
// remaining values to the result.
- const SCEV *Two = getIntegerSCEV(2, Ty);
+ const SCEV *Two = getConstant(Ty, 2);
const SCEV *Mul = getMulExpr(Ops[i], Two);
if (Ops.size() == 2)
return Mul;
@@ -1443,7 +1443,7 @@
Ops.push_back(getMulExpr(getConstant(I->first),
getAddExpr(I->second)));
if (Ops.empty())
- return getIntegerSCEV(0, Ty);
+ return getConstant(Ty, 0);
if (Ops.size() == 1)
return Ops[0];
return getAddExpr(Ops);
@@ -1468,7 +1468,7 @@
MulOps.erase(MulOps.begin()+MulOp);
InnerMul = getMulExpr(MulOps);
}
- const SCEV *One = getIntegerSCEV(1, Ty);
+ const SCEV *One = getConstant(Ty, 1);
const SCEV *AddOne = getAddExpr(InnerMul, One);
const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
if (Ops.size() == 2) return OuterMul;
@@ -2778,7 +2778,7 @@
// Don't attempt to analyze GEPs over unsized objects.
if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
return getUnknown(GEP);
- const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
+ const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
gep_type_iterator GTI = gep_type_begin(GEP);
for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
E = GEP->op_end();
@@ -3187,7 +3187,7 @@
else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
return getConstant(CI);
else if (isa<ConstantPointerNull>(V))
- return getIntegerSCEV(0, V->getType());
+ return getConstant(V->getType(), 0);
else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
else
@@ -3861,7 +3861,7 @@
return getCouldNotCompute();
else
// The backedge is never taken.
- return getIntegerSCEV(0, CI->getType());
+ return getConstant(CI->getType(), 0);
}
// If it's not an integer or pointer comparison then compute it the hard way.
@@ -4687,7 +4687,7 @@
// already. If so, the backedge will execute zero times.
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
if (!C->getValue()->isNullValue())
- return getIntegerSCEV(0, C->getType());
+ return getConstant(C->getType(), 0);
return getCouldNotCompute(); // Otherwise it will loop infinitely.
}
@@ -5374,7 +5374,7 @@
"This code doesn't handle negative strides yet!");
const Type *Ty = Start->getType();
- const SCEV *NegOne = getIntegerSCEV(-1, Ty);
+ const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
const SCEV *Diff = getMinusSCEV(End, Start);
const SCEV *RoundUp = getAddExpr(Step, NegOne);
@@ -5430,7 +5430,7 @@
// behavior, so if wrap does occur, the loop could either terminate or
// loop infinitely, but in either case, the loop is guaranteed to
// iterate at least until the iteration where the wrapping occurs.
- const SCEV *One = getIntegerSCEV(1, Step->getType());
+ const SCEV *One = getConstant(Step->getType(), 1);
if (isSigned) {
APInt Max = APInt::getSignedMaxValue(BitWidth);
if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
@@ -5481,7 +5481,7 @@
// This allows the subsequent ceiling division of (N+(step-1))/step to
// compute the correct value.
const SCEV *StepMinusOne = getMinusSCEV(Step,
- getIntegerSCEV(1, Step->getType()));
+ getConstant(Step->getType(), 1));
MaxEnd = isSigned ?
getSMinExpr(MaxEnd,
getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
@@ -5518,7 +5518,7 @@
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
if (!SC->getValue()->isZero()) {
SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
- Operands[0] = SE.getIntegerSCEV(0, SC->getType());
+ Operands[0] = SE.getConstant(SC->getType(), 0);
const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
if (const SCEVAddRecExpr *ShiftedAddRec =
dyn_cast<SCEVAddRecExpr>(Shifted))
@@ -5542,7 +5542,7 @@
// iteration exits.
unsigned BitWidth = SE.getTypeSizeInBits(getType());
if (!Range.contains(APInt(BitWidth, 0)))
- return SE.getIntegerSCEV(0, getType());
+ return SE.getConstant(getType(), 0);
if (isAffine()) {
// If this is an affine expression then we have this situation:
diff --git a/lib/Analysis/ScalarEvolutionExpander.cpp b/lib/Analysis/ScalarEvolutionExpander.cpp
index e9a634b..0012b84 100644
--- a/lib/Analysis/ScalarEvolutionExpander.cpp
+++ b/lib/Analysis/ScalarEvolutionExpander.cpp
@@ -192,7 +192,7 @@
// x/x == 1.
if (S == Factor) {
- S = SE.getIntegerSCEV(1, S->getType());
+ S = SE.getConstant(S->getType(), 1);
return true;
}
@@ -244,7 +244,7 @@
// Mul's operands. If so, we can just remove it.
for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
const SCEV *SOp = M->getOperand(i);
- const SCEV *Remainder = SE.getIntegerSCEV(0, SOp->getType());
+ const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
Remainder->isZero()) {
SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
@@ -259,7 +259,7 @@
// In an AddRec, check if both start and step are divisible.
if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
const SCEV *Step = A->getStepRecurrence(SE);
- const SCEV *StepRem = SE.getIntegerSCEV(0, Step->getType());
+ const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
return false;
if (!StepRem->isZero())
@@ -289,7 +289,7 @@
SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
// Let ScalarEvolution sort and simplify the non-addrecs list.
const SCEV *Sum = NoAddRecs.empty() ?
- SE.getIntegerSCEV(0, Ty) :
+ SE.getConstant(Ty, 0) :
SE.getAddExpr(NoAddRecs);
// If it returned an add, use the operands. Otherwise it simplified
// the sum into a single value, so just use that.
@@ -316,7 +316,7 @@
while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
const SCEV *Start = A->getStart();
if (Start->isZero()) break;
- const SCEV *Zero = SE.getIntegerSCEV(0, Ty);
+ const SCEV *Zero = SE.getConstant(Ty, 0);
AddRecs.push_back(SE.getAddRecExpr(Zero,
A->getStepRecurrence(SE),
A->getLoop()));
@@ -392,7 +392,7 @@
SmallVector<const SCEV *, 8> NewOps;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
const SCEV *Op = Ops[i];
- const SCEV *Remainder = SE.getIntegerSCEV(0, Ty);
+ const SCEV *Remainder = SE.getConstant(Ty, 0);
if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
// Op now has ElSize factored out.
ScaledOps.push_back(Op);
@@ -803,7 +803,7 @@
while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
Base = A->getStart();
Rest = SE.getAddExpr(Rest,
- SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
+ SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
A->getStepRecurrence(SE),
A->getLoop()));
}
@@ -985,7 +985,7 @@
const SCEV *PostLoopOffset = 0;
if (!Start->properlyDominates(L->getHeader(), SE.DT)) {
PostLoopOffset = Start;
- Start = SE.getIntegerSCEV(0, Normalized->getType());
+ Start = SE.getConstant(Normalized->getType(), 0);
Normalized =
cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start,
Normalized->getStepRecurrence(SE),
@@ -997,7 +997,7 @@
const SCEV *PostLoopScale = 0;
if (!Step->dominates(L->getHeader(), SE.DT)) {
PostLoopScale = Step;
- Step = SE.getIntegerSCEV(1, Normalized->getType());
+ Step = SE.getConstant(Normalized->getType(), 1);
Normalized =
cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
Normalized->getLoop()));
@@ -1080,7 +1080,7 @@
// {X,+,F} --> X + {0,+,F}
if (!S->getStart()->isZero()) {
SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
- NewOps[0] = SE.getIntegerSCEV(0, Ty);
+ NewOps[0] = SE.getConstant(Ty, 0);
const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
// Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
@@ -1108,7 +1108,7 @@
// {0,+,1} --> Insert a canonical induction variable into the loop!
if (S->isAffine() &&
- S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
+ S->getOperand(1) == SE.getConstant(Ty, 1)) {
// If there's a canonical IV, just use it.
if (CanonicalIV) {
assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
@@ -1342,8 +1342,8 @@
SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
const Type *Ty) {
assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
- const SCEV *H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
- SE.getIntegerSCEV(1, Ty), L);
+ const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
+ SE.getConstant(Ty, 1), L);
BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
Value *V = expandCodeFor(H, 0, L->getHeader()->begin());