| //===- TopDownClosure.cpp - Compute the top-down interprocedure closure ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the TDDataStructures class, which represents the |
| // Top-down Interprocedural closure of the data structure graph over the |
| // program. This is useful (but not strictly necessary?) for applications |
| // like pointer analysis. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/DataStructure/DataStructure.h" |
| #include "llvm/Module.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Analysis/DataStructure/DSGraph.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Timer.h" |
| #include "llvm/ADT/Statistic.h" |
| using namespace llvm; |
| |
| #if 0 |
| #define TIME_REGION(VARNAME, DESC) \ |
| NamedRegionTimer VARNAME(DESC) |
| #else |
| #define TIME_REGION(VARNAME, DESC) |
| #endif |
| |
| namespace { |
| RegisterAnalysis<TDDataStructures> // Register the pass |
| Y("tddatastructure", "Top-down Data Structure Analysis"); |
| |
| Statistic<> NumTDInlines("tddatastructures", "Number of graphs inlined"); |
| } |
| |
| void TDDataStructures::markReachableFunctionsExternallyAccessible(DSNode *N, |
| hash_set<DSNode*> &Visited) { |
| if (!N || Visited.count(N)) return; |
| Visited.insert(N); |
| |
| for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) { |
| DSNodeHandle &NH = N->getLink(i*N->getPointerSize()); |
| if (DSNode *NN = NH.getNode()) { |
| std::vector<Function*> Functions; |
| NN->addFullFunctionList(Functions); |
| ArgsRemainIncomplete.insert(Functions.begin(), Functions.end()); |
| markReachableFunctionsExternallyAccessible(NN, Visited); |
| } |
| } |
| } |
| |
| |
| // run - Calculate the top down data structure graphs for each function in the |
| // program. |
| // |
| bool TDDataStructures::runOnModule(Module &M) { |
| BUDataStructures &BU = getAnalysis<BUDataStructures>(); |
| GlobalECs = BU.getGlobalECs(); |
| GlobalsGraph = new DSGraph(BU.getGlobalsGraph(), GlobalECs); |
| GlobalsGraph->setPrintAuxCalls(); |
| |
| // Figure out which functions must not mark their arguments complete because |
| // they are accessible outside this compilation unit. Currently, these |
| // arguments are functions which are reachable by global variables in the |
| // globals graph. |
| const DSScalarMap &GGSM = GlobalsGraph->getScalarMap(); |
| hash_set<DSNode*> Visited; |
| for (DSScalarMap::global_iterator I=GGSM.global_begin(), E=GGSM.global_end(); |
| I != E; ++I) { |
| DSNode *N = GGSM.find(*I)->second.getNode(); |
| if (N->isIncomplete()) |
| markReachableFunctionsExternallyAccessible(N, Visited); |
| } |
| |
| // Loop over unresolved call nodes. Any functions passed into (but not |
| // returned!) from unresolvable call nodes may be invoked outside of the |
| // current module. |
| for (DSGraph::afc_iterator I = GlobalsGraph->afc_begin(), |
| E = GlobalsGraph->afc_end(); I != E; ++I) |
| for (unsigned arg = 0, e = I->getNumPtrArgs(); arg != e; ++arg) |
| markReachableFunctionsExternallyAccessible(I->getPtrArg(arg).getNode(), |
| Visited); |
| Visited.clear(); |
| |
| // Functions without internal linkage also have unknown incoming arguments! |
| for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) |
| if (!I->isExternal() && !I->hasInternalLinkage()) |
| ArgsRemainIncomplete.insert(I); |
| |
| // We want to traverse the call graph in reverse post-order. To do this, we |
| // calculate a post-order traversal, then reverse it. |
| hash_set<DSGraph*> VisitedGraph; |
| std::vector<DSGraph*> PostOrder; |
| const BUDataStructures::ActualCalleesTy &ActualCallees = |
| getAnalysis<BUDataStructures>().getActualCallees(); |
| |
| #if 0 |
| {TIME_REGION(XXX, "td:Copy graphs"); |
| |
| // Visit each of the graphs in reverse post-order now! |
| for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) |
| if (!I->isExternal()) |
| getOrCreateDSGraph(*I); |
| return false; |
| } |
| #endif |
| |
| |
| {TIME_REGION(XXX, "td:Compute postorder"); |
| |
| // Calculate top-down from main... |
| if (Function *F = M.getMainFunction()) |
| ComputePostOrder(*F, VisitedGraph, PostOrder, ActualCallees); |
| |
| // Next calculate the graphs for each unreachable function... |
| for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) |
| ComputePostOrder(*I, VisitedGraph, PostOrder, ActualCallees); |
| |
| VisitedGraph.clear(); // Release memory! |
| } |
| |
| {TIME_REGION(XXX, "td:Inline stuff"); |
| |
| // Visit each of the graphs in reverse post-order now! |
| while (!PostOrder.empty()) { |
| InlineCallersIntoGraph(*PostOrder.back()); |
| PostOrder.pop_back(); |
| } |
| } |
| |
| // Free the IndCallMap. |
| while (!IndCallMap.empty()) { |
| delete IndCallMap.begin()->second; |
| IndCallMap.erase(IndCallMap.begin()); |
| } |
| |
| |
| ArgsRemainIncomplete.clear(); |
| GlobalsGraph->removeTriviallyDeadNodes(); |
| |
| return false; |
| } |
| |
| |
| DSGraph &TDDataStructures::getOrCreateDSGraph(Function &F) { |
| DSGraph *&G = DSInfo[&F]; |
| if (G == 0) { // Not created yet? Clone BU graph... |
| G = new DSGraph(getAnalysis<BUDataStructures>().getDSGraph(F), GlobalECs, |
| DSGraph::DontCloneAuxCallNodes); |
| assert(G->getAuxFunctionCalls().empty() && "Cloned aux calls?"); |
| G->setPrintAuxCalls(); |
| G->setGlobalsGraph(GlobalsGraph); |
| |
| // Note that this graph is the graph for ALL of the function in the SCC, not |
| // just F. |
| for (DSGraph::retnodes_iterator RI = G->retnodes_begin(), |
| E = G->retnodes_end(); RI != E; ++RI) |
| if (RI->first != &F) |
| DSInfo[RI->first] = G; |
| } |
| return *G; |
| } |
| |
| |
| void TDDataStructures::ComputePostOrder(Function &F,hash_set<DSGraph*> &Visited, |
| std::vector<DSGraph*> &PostOrder, |
| const BUDataStructures::ActualCalleesTy &ActualCallees) { |
| if (F.isExternal()) return; |
| DSGraph &G = getOrCreateDSGraph(F); |
| if (Visited.count(&G)) return; |
| Visited.insert(&G); |
| |
| // Recursively traverse all of the callee graphs. |
| for (DSGraph::fc_iterator CI = G.fc_begin(), E = G.fc_end(); CI != E; ++CI) { |
| Instruction *CallI = CI->getCallSite().getInstruction(); |
| std::pair<BUDataStructures::ActualCalleesTy::const_iterator, |
| BUDataStructures::ActualCalleesTy::const_iterator> |
| IP = ActualCallees.equal_range(CallI); |
| |
| for (BUDataStructures::ActualCalleesTy::const_iterator I = IP.first; |
| I != IP.second; ++I) |
| ComputePostOrder(*I->second, Visited, PostOrder, ActualCallees); |
| } |
| |
| PostOrder.push_back(&G); |
| } |
| |
| |
| |
| |
| |
| // releaseMemory - If the pass pipeline is done with this pass, we can release |
| // our memory... here... |
| // |
| // FIXME: This should be releaseMemory and will work fine, except that LoadVN |
| // has no way to extend the lifetime of the pass, which screws up ds-aa. |
| // |
| void TDDataStructures::releaseMyMemory() { |
| for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(), |
| E = DSInfo.end(); I != E; ++I) { |
| I->second->getReturnNodes().erase(I->first); |
| if (I->second->getReturnNodes().empty()) |
| delete I->second; |
| } |
| |
| // Empty map so next time memory is released, data structures are not |
| // re-deleted. |
| DSInfo.clear(); |
| delete GlobalsGraph; |
| GlobalsGraph = 0; |
| } |
| |
| /// InlineCallersIntoGraph - Inline all of the callers of the specified DS graph |
| /// into it, then recompute completeness of nodes in the resultant graph. |
| void TDDataStructures::InlineCallersIntoGraph(DSGraph &DSG) { |
| // Inline caller graphs into this graph. First step, get the list of call |
| // sites that call into this graph. |
| std::vector<CallerCallEdge> EdgesFromCaller; |
| std::map<DSGraph*, std::vector<CallerCallEdge> >::iterator |
| CEI = CallerEdges.find(&DSG); |
| if (CEI != CallerEdges.end()) { |
| std::swap(CEI->second, EdgesFromCaller); |
| CallerEdges.erase(CEI); |
| } |
| |
| // Sort the caller sites to provide a by-caller-graph ordering. |
| std::sort(EdgesFromCaller.begin(), EdgesFromCaller.end()); |
| |
| |
| // Merge information from the globals graph into this graph. FIXME: This is |
| // stupid. Instead of us cloning information from the GG into this graph, |
| // then having RemoveDeadNodes clone it back, we should do all of this as a |
| // post-pass over all of the graphs. We need to take cloning out of |
| // removeDeadNodes and gut removeDeadNodes at the same time first though. :( |
| { |
| DSGraph &GG = *DSG.getGlobalsGraph(); |
| ReachabilityCloner RC(DSG, GG, |
| DSGraph::DontCloneCallNodes | |
| DSGraph::DontCloneAuxCallNodes); |
| for (DSScalarMap::global_iterator |
| GI = DSG.getScalarMap().global_begin(), |
| E = DSG.getScalarMap().global_end(); GI != E; ++GI) |
| RC.getClonedNH(GG.getNodeForValue(*GI)); |
| } |
| |
| DEBUG(std::cerr << "[TD] Inlining callers into '" << DSG.getFunctionNames() |
| << "'\n"); |
| |
| // Iteratively inline caller graphs into this graph. |
| while (!EdgesFromCaller.empty()) { |
| DSGraph &CallerGraph = *EdgesFromCaller.back().CallerGraph; |
| |
| // Iterate through all of the call sites of this graph, cloning and merging |
| // any nodes required by the call. |
| ReachabilityCloner RC(DSG, CallerGraph, |
| DSGraph::DontCloneCallNodes | |
| DSGraph::DontCloneAuxCallNodes); |
| |
| // Inline all call sites from this caller graph. |
| do { |
| const DSCallSite &CS = *EdgesFromCaller.back().CS; |
| Function &CF = *EdgesFromCaller.back().CalledFunction; |
| DEBUG(std::cerr << " [TD] Inlining graph into Fn '" |
| << CF.getName() << "' from "); |
| if (CallerGraph.getReturnNodes().empty()) |
| DEBUG(std::cerr << "SYNTHESIZED INDIRECT GRAPH"); |
| else |
| DEBUG (std::cerr << "Fn '" |
| << CS.getCallSite().getInstruction()-> |
| getParent()->getParent()->getName() << "'"); |
| DEBUG(std::cerr << ": " << CF.getFunctionType()->getNumParams() |
| << " args\n"); |
| |
| // Get the formal argument and return nodes for the called function and |
| // merge them with the cloned subgraph. |
| DSCallSite T1 = DSG.getCallSiteForArguments(CF); |
| RC.mergeCallSite(T1, CS); |
| ++NumTDInlines; |
| |
| EdgesFromCaller.pop_back(); |
| } while (!EdgesFromCaller.empty() && |
| EdgesFromCaller.back().CallerGraph == &CallerGraph); |
| } |
| |
| |
| // Next, now that this graph is finalized, we need to recompute the |
| // incompleteness markers for this graph and remove unreachable nodes. |
| DSG.maskIncompleteMarkers(); |
| |
| // If any of the functions has incomplete incoming arguments, don't mark any |
| // of them as complete. |
| bool HasIncompleteArgs = false; |
| for (DSGraph::retnodes_iterator I = DSG.retnodes_begin(), |
| E = DSG.retnodes_end(); I != E; ++I) |
| if (ArgsRemainIncomplete.count(I->first)) { |
| HasIncompleteArgs = true; |
| break; |
| } |
| |
| // Recompute the Incomplete markers. Depends on whether args are complete |
| unsigned Flags |
| = HasIncompleteArgs ? DSGraph::MarkFormalArgs : DSGraph::IgnoreFormalArgs; |
| DSG.markIncompleteNodes(Flags | DSGraph::IgnoreGlobals); |
| |
| // Delete dead nodes. Treat globals that are unreachable as dead also. |
| DSG.removeDeadNodes(DSGraph::RemoveUnreachableGlobals); |
| |
| // We are done with computing the current TD Graph! Finally, before we can |
| // finish processing this function, we figure out which functions it calls and |
| // records these call graph edges, so that we have them when we process the |
| // callee graphs. |
| if (DSG.fc_begin() == DSG.fc_end()) return; |
| |
| const BUDataStructures::ActualCalleesTy &ActualCallees = |
| getAnalysis<BUDataStructures>().getActualCallees(); |
| |
| // Loop over all the call sites and all the callees at each call site, and add |
| // edges to the CallerEdges structure for each callee. |
| for (DSGraph::fc_iterator CI = DSG.fc_begin(), E = DSG.fc_end(); |
| CI != E; ++CI) { |
| |
| // Handle direct calls efficiently. |
| if (CI->isDirectCall()) { |
| if (!CI->getCalleeFunc()->isExternal() && |
| !DSG.getReturnNodes().count(CI->getCalleeFunc())) |
| CallerEdges[&getDSGraph(*CI->getCalleeFunc())] |
| .push_back(CallerCallEdge(&DSG, &*CI, CI->getCalleeFunc())); |
| continue; |
| } |
| |
| Instruction *CallI = CI->getCallSite().getInstruction(); |
| // For each function in the invoked function list at this call site... |
| std::pair<BUDataStructures::ActualCalleesTy::const_iterator, |
| BUDataStructures::ActualCalleesTy::const_iterator> |
| IP = ActualCallees.equal_range(CallI); |
| |
| // Skip over all calls to this graph (SCC calls). |
| while (IP.first != IP.second && &getDSGraph(*IP.first->second) == &DSG) |
| ++IP.first; |
| |
| // All SCC calls? |
| if (IP.first == IP.second) continue; |
| |
| Function *FirstCallee = IP.first->second; |
| ++IP.first; |
| |
| // Skip over more SCC calls. |
| while (IP.first != IP.second && &getDSGraph(*IP.first->second) == &DSG) |
| ++IP.first; |
| |
| // If there is exactly one callee from this call site, remember the edge in |
| // CallerEdges. |
| if (IP.first == IP.second) { |
| if (!FirstCallee->isExternal()) |
| CallerEdges[&getDSGraph(*FirstCallee)] |
| .push_back(CallerCallEdge(&DSG, &*CI, FirstCallee)); |
| continue; |
| } |
| |
| // Otherwise, there are multiple callees from this call site, so it must be |
| // an indirect call. Chances are that there will be other call sites with |
| // this set of targets. If so, we don't want to do M*N inlining operations, |
| // so we build up a new, private, graph that represents the calls of all |
| // calls to this set of functions. |
| std::vector<Function*> Callees; |
| IP = ActualCallees.equal_range(CallI); |
| for (BUDataStructures::ActualCalleesTy::const_iterator I = IP.first; |
| I != IP.second; ++I) |
| if (!I->second->isExternal()) |
| Callees.push_back(I->second); |
| std::sort(Callees.begin(), Callees.end()); |
| |
| std::map<std::vector<Function*>, DSGraph*>::iterator IndCallRecI = |
| IndCallMap.lower_bound(Callees); |
| |
| DSGraph *IndCallGraph; |
| |
| // If we already have this graph, recycle it. |
| if (IndCallRecI != IndCallMap.end() && IndCallRecI->first == Callees) { |
| std::cerr << " [TD] *** Reuse of indcall graph for " << Callees.size() |
| << " callees!\n"; |
| IndCallGraph = IndCallRecI->second; |
| } else { |
| // Otherwise, create a new DSGraph to represent this. |
| IndCallGraph = new DSGraph(DSG.getGlobalECs(), DSG.getTargetData()); |
| |
| // Make a nullary dummy call site, which will eventually get some content |
| // merged into it. The actual callee function doesn't matter here, so we |
| // just pass it something to keep the ctor happy. |
| std::vector<DSNodeHandle> ArgDummyVec; |
| DSCallSite DummyCS(CI->getCallSite(), DSNodeHandle(), Callees[0]/*dummy*/, |
| ArgDummyVec); |
| IndCallGraph->getFunctionCalls().push_back(DummyCS); |
| |
| IndCallRecI = IndCallMap.insert(IndCallRecI, |
| std::make_pair(Callees, IndCallGraph)); |
| |
| // Additionally, make sure that each of the callees inlines this graph |
| // exactly once. |
| DSCallSite *NCS = &IndCallGraph->getFunctionCalls().front(); |
| for (unsigned i = 0, e = Callees.size(); i != e; ++i) { |
| DSGraph& CalleeGraph = getDSGraph(*Callees[i]); |
| if (&CalleeGraph != &DSG) |
| CallerEdges[&CalleeGraph].push_back(CallerCallEdge(IndCallGraph, NCS, |
| Callees[i])); |
| } |
| } |
| |
| // Now that we know which graph to use for this, merge the caller |
| // information into the graph, based on information from the call site. |
| ReachabilityCloner RC(*IndCallGraph, DSG, 0); |
| RC.mergeCallSite(IndCallGraph->getFunctionCalls().front(), *CI); |
| } |
| } |
| |
| |
| static const Function *getFnForValue(const Value *V) { |
| if (const Instruction *I = dyn_cast<Instruction>(V)) |
| return I->getParent()->getParent(); |
| else if (const Argument *A = dyn_cast<Argument>(V)) |
| return A->getParent(); |
| else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) |
| return BB->getParent(); |
| return 0; |
| } |
| |
| void TDDataStructures::deleteValue(Value *V) { |
| if (const Function *F = getFnForValue(V)) { // Function local value? |
| // If this is a function local value, just delete it from the scalar map! |
| getDSGraph(*F).getScalarMap().eraseIfExists(V); |
| return; |
| } |
| |
| if (Function *F = dyn_cast<Function>(V)) { |
| assert(getDSGraph(*F).getReturnNodes().size() == 1 && |
| "cannot handle scc's"); |
| delete DSInfo[F]; |
| DSInfo.erase(F); |
| return; |
| } |
| |
| assert(!isa<GlobalVariable>(V) && "Do not know how to delete GV's yet!"); |
| } |
| |
| void TDDataStructures::copyValue(Value *From, Value *To) { |
| if (From == To) return; |
| if (const Function *F = getFnForValue(From)) { // Function local value? |
| // If this is a function local value, just delete it from the scalar map! |
| getDSGraph(*F).getScalarMap().copyScalarIfExists(From, To); |
| return; |
| } |
| |
| if (Function *FromF = dyn_cast<Function>(From)) { |
| Function *ToF = cast<Function>(To); |
| assert(!DSInfo.count(ToF) && "New Function already exists!"); |
| DSGraph *NG = new DSGraph(getDSGraph(*FromF), GlobalECs); |
| DSInfo[ToF] = NG; |
| assert(NG->getReturnNodes().size() == 1 && "Cannot copy SCC's yet!"); |
| |
| // Change the Function* is the returnnodes map to the ToF. |
| DSNodeHandle Ret = NG->retnodes_begin()->second; |
| NG->getReturnNodes().clear(); |
| NG->getReturnNodes()[ToF] = Ret; |
| return; |
| } |
| |
| if (const Function *F = getFnForValue(To)) { |
| DSGraph &G = getDSGraph(*F); |
| G.getScalarMap().copyScalarIfExists(From, To); |
| return; |
| } |
| |
| std::cerr << *From; |
| std::cerr << *To; |
| assert(0 && "Do not know how to copy this yet!"); |
| abort(); |
| } |