This file implements a pass that automatically parallelizes a program,
using the Cilk multi-threaded runtime system to execute parallel code.
The current version inserts too many sync() operations in the program
because it does not attempt to optimize their placement.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4962 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Analysis/DataStructure/Parallelize.cpp b/lib/Analysis/DataStructure/Parallelize.cpp
new file mode 100644
index 0000000..08c800e
--- /dev/null
+++ b/lib/Analysis/DataStructure/Parallelize.cpp
@@ -0,0 +1,548 @@
+//===- Parallelize.cpp - Auto parallelization using DS Graphs ---*- C++ -*-===//
+//
+// This file implements a pass that automatically parallelizes a program,
+// using the Cilk multi-threaded runtime system to execute parallel code.
+// 
+// The pass uses the Program Dependence Graph (class PDGIterator) to
+// identify parallelizable function calls, i.e., calls whose instances
+// can be executed in parallel with instances of other function calls.
+// (In the future, this should also execute different instances of the same
+// function call in parallel, but that requires parallelizing across
+// loop iterations.)
+//
+// The output of the pass is LLVM code with:
+// (1) all parallelizable functions renamed to flag them as parallelizable;
+// (2) calls to a sync() function introduced at synchronization points.
+// The CWriter recognizes these functions and inserts the appropriate Cilk
+// keywords when writing out C code.  This C code must be compiled with cilk2c.
+// 
+// Current algorithmic limitations:
+// -- no array dependence analysis
+// -- no parallelization for function calls in different loop iterations
+//    (except in unlikely trivial cases)
+//
+// Limitations of using Cilk:
+// -- No parallelism within a function body, e.g., in a loop;
+// -- Simplistic synchronization model requiring all parallel threads 
+//    created within a function to block at a sync().
+// -- Excessive overhead at "spawned" function calls, which has no benefit
+//    once all threads are busy (especially common when the degree of
+//    parallelism is low).
+//===----------------------------------------------------------------------===//
+
+
+#include "llvm/Transforms/Parallelize.h"
+#include "llvm/Transforms/Utils/DemoteRegToStack.h"
+#include "llvm/Analysis/PgmDependenceGraph.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/DataStructure.h"
+#include "llvm/Analysis/DSGraph.h"
+#include "llvm/Module.h"
+#include "llvm/Function.h"
+#include "llvm/iOther.h"
+#include "llvm/iPHINode.h"
+#include "llvm/iTerminators.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Support/InstVisitor.h"
+#include "llvm/Support/Cilkifier.h"
+#include "Support/NonCopyable.h"
+#include "Support/Statistic.h"
+#include "Support/STLExtras.h"
+#include "Support/hash_set"
+#include "Support/hash_map"
+#include <vector>
+#include <stack>
+#include <functional>
+#include <algorithm>
+
+
+
+#if 0
+void AddToDomSet(vector<BasicBlock*>& domSet, BasicBlock* bb,
+                 const DominatorTree& domTree)
+{
+  DominatorTreeBase::Node* bbNode = domTree.getNode(bb);
+  const std::vector<Node*>& domKids = bbNode.getChildren();
+  domSet.insert(domSet.end(), domKids.begin(), domKids.end());
+  for (unsigned i = 0; i < domKids.size(); ++i)
+    AddToDomSet(domSet, domKids[i]->getNode(), domTree);
+}
+
+bool CheckDominance(Function& func,
+                    const CallInst& callInst1,
+                    const CallInst& callInst2)
+{
+  if (callInst1 == callInst2)           // makes sense if this is in a loop but
+    return false;                       // we're not handling loops yet
+
+  // Check first if one call dominates the other
+  DominatorSet& domSet = getAnalysis<DominatorSet>(func);
+  if (domSet.dominates(callInst2, callInst1))
+    { // swap callInst1 and callInst2
+      const CallInst& tmp = callInst2; callInst2 = callInst1; callInst1 = tmp;
+    }
+  else if (! domSet.dominates(callInst1, callInst2))
+    return false;                       // neither dominates the other: 
+
+  // 
+  if (! AreIndependent(func, callInst1, callInst2))
+    return false;
+}
+
+#endif
+
+
+//---------------------------------------------------------------------------- 
+// class Cilkifier
+//
+// Code generation pass that transforms code to identify where Cilk keywords
+// should be inserted.  This relies on dis -c to print out the keywords.
+//---------------------------------------------------------------------------- 
+
+
+class Cilkifier: public InstVisitor<Cilkifier>
+{
+  Function* DummySyncFunc;
+
+  // Data used when transforming each function.
+  hash_set<const Instruction*>  stmtsVisited;    // Flags for recursive DFS
+  hash_map<const CallInst*, hash_set<CallInst*> > spawnToSyncsMap;
+
+  // Input data for the transformation.
+  const hash_set<Function*>*    cilkFunctions;   // Set of parallel functions
+  PgmDependenceGraph*           depGraph;
+
+  void          DFSVisitInstr   (Instruction* I,
+                                 Instruction* root,
+                                 hash_set<const Instruction*>& depsOfRoot);
+
+public:
+  /*ctor*/      Cilkifier       (Module& M);
+
+  // Transform a single function including its name, its call sites, and syncs
+  // 
+  void          TransformFunc   (Function* F,
+                                 const hash_set<Function*>& cilkFunctions,
+                                 PgmDependenceGraph&  _depGraph);
+
+  // The visitor function that does most of the hard work, via DFSVisitInstr
+  // 
+  void visitCallInst(CallInst& CI);
+};
+
+
+Cilkifier::Cilkifier(Module& M)
+{
+  // create the dummy Sync function and add it to the Module
+  DummySyncFunc = new Function(FunctionType::get( Type::VoidTy,
+                                                 std::vector<const Type*>(),
+                                                 /*isVararg*/ false),
+                               /*isInternal*/ false, DummySyncFuncName, &M);
+}
+
+void Cilkifier::TransformFunc(Function* F,
+                              const hash_set<Function*>& _cilkFunctions,
+                              PgmDependenceGraph& _depGraph)
+{
+  // Memoize the information for this function
+  cilkFunctions = &_cilkFunctions;
+  depGraph = &_depGraph;
+
+  // Add the marker suffix to the Function name
+  // This should automatically mark all calls to the function also!
+  F->setName(F->getName() + CilkSuffix);
+
+  // Insert sync operations for each separate spawn
+  visit(*F);
+
+  // Now traverse the CFG in rPostorder and eliminate redundant syncs, i.e.,
+  // two consecutive sync's on a straight-line path with no intervening spawn.
+  
+}
+
+
+void Cilkifier::DFSVisitInstr(Instruction* I,
+                              Instruction* root,
+                              hash_set<const Instruction*>& depsOfRoot)
+{
+  assert(stmtsVisited.find(I) == stmtsVisited.end());
+  stmtsVisited.insert(I);
+
+  // If there is a dependence from root to I, insert Sync and return
+  if (depsOfRoot.find(I) != depsOfRoot.end())
+    { // Insert a sync before I and stop searching along this path.
+      // If I is a Phi instruction, the dependence can only be an SSA dep.
+      // and we need to insert the sync in the predecessor on the appropriate
+      // incoming edge!
+      CallInst* syncI = 0;
+      if (PHINode* phiI = dyn_cast<PHINode>(I))
+        { // check all operands of the Phi and insert before each one
+          for (unsigned i = 0, N = phiI->getNumIncomingValues(); i < N; ++i)
+            if (phiI->getIncomingValue(i) == root)
+              syncI = new CallInst(DummySyncFunc, std::vector<Value*>(), "",
+                                   phiI->getIncomingBlock(i)->getTerminator());
+        }
+      else
+        syncI = new CallInst(DummySyncFunc, std::vector<Value*>(), "", I);
+
+      // Remember the sync for each spawn to eliminate rendundant ones later
+      spawnToSyncsMap[cast<CallInst>(root)].insert(syncI);
+
+      return;
+    }
+
+  // else visit unvisited successors
+  if (BranchInst* brI = dyn_cast<BranchInst>(I))
+    { // visit first instruction in each successor BB
+      for (unsigned i = 0, N = brI->getNumSuccessors(); i < N; ++i)
+        if (stmtsVisited.find(&brI->getSuccessor(i)->front())
+            == stmtsVisited.end())
+          DFSVisitInstr(&brI->getSuccessor(i)->front(), root, depsOfRoot);
+    }
+  else
+    if (Instruction* nextI = I->getNext())
+      if (stmtsVisited.find(nextI) == stmtsVisited.end())
+        DFSVisitInstr(nextI, root, depsOfRoot);
+}
+
+
+void Cilkifier::visitCallInst(CallInst& CI)
+{
+  assert(CI.getCalledFunction() != 0 && "Only direct calls can be spawned.");
+  if (cilkFunctions->find(CI.getCalledFunction()) == cilkFunctions->end())
+    return;                             // not a spawn
+
+  // Find all the outgoing memory dependences.
+  hash_set<const Instruction*> depsOfRoot;
+  for (PgmDependenceGraph::iterator DI =
+         depGraph->outDepBegin(CI, MemoryDeps); ! DI.fini(); ++DI)
+    depsOfRoot.insert(&DI->getSink()->getInstr());
+
+  // Now find all outgoing SSA dependences to the eventual non-Phi users of
+  // the call value (i.e., direct users that are not phis, and for any
+  // user that is a Phi, direct non-Phi users of that Phi, and recursively).
+  std::stack<const PHINode*> phiUsers;
+  hash_set<const PHINode*> phisSeen;    // ensures we don't visit a phi twice
+  for (Value::use_iterator UI=CI.use_begin(), UE=CI.use_end(); UI != UE; ++UI)
+    if (const PHINode* phiUser = dyn_cast<PHINode>(*UI))
+      {
+        if (phisSeen.find(phiUser) == phisSeen.end())
+          {
+            phiUsers.push(phiUser);
+            phisSeen.insert(phiUser);
+          }
+      }
+    else
+      depsOfRoot.insert(cast<Instruction>(*UI));
+
+  // Now we've found the non-Phi users and immediate phi users.
+  // Recursively walk the phi users and add their non-phi users.
+  for (const PHINode* phiUser; !phiUsers.empty(); phiUsers.pop())
+    {
+      phiUser = phiUsers.top();
+      for (Value::use_const_iterator UI=phiUser->use_begin(),
+             UE=phiUser->use_end(); UI != UE; ++UI)
+        if (const PHINode* pn = dyn_cast<PHINode>(*UI))
+          {
+            if (phisSeen.find(pn) == phisSeen.end())
+              {
+                phiUsers.push(pn);
+                phisSeen.insert(pn);
+              }
+          }
+        else
+          depsOfRoot.insert(cast<Instruction>(*UI));
+    }
+
+  // Walk paths of the CFG starting at the call instruction and insert
+  // one sync before the first dependence on each path, if any.
+  if (! depsOfRoot.empty())
+    {
+      stmtsVisited.clear();             // start a new DFS for this CallInst
+      assert(CI.getNext() && "Call instruction cannot be a terminator!");
+      DFSVisitInstr(CI.getNext(), &CI, depsOfRoot);
+    }
+
+  // Now, eliminate all users of the SSA value of the CallInst, i.e., 
+  // if the call instruction returns a value, delete the return value
+  // register and replace it by a stack slot.
+  if (CI.getType() != Type::VoidTy)
+    DemoteRegToStack(CI);
+}
+
+
+//---------------------------------------------------------------------------- 
+// class FindParallelCalls
+//
+// Find all CallInst instructions that have at least one other CallInst
+// that is independent.  These are the instructions that can produce
+// useful parallelism.
+//---------------------------------------------------------------------------- 
+
+class FindParallelCalls: public InstVisitor<FindParallelCalls>,
+                         public NonCopyable
+{
+  typedef hash_set<CallInst*>           DependentsSet;
+  typedef DependentsSet::iterator       Dependents_iterator;
+  typedef DependentsSet::const_iterator Dependents_const_iterator;
+
+  PgmDependenceGraph& depGraph;         // dependence graph for the function
+  hash_set<Instruction*> stmtsVisited;  // flags for DFS walk of depGraph
+  hash_map<CallInst*, bool > completed; // flags marking if a CI is done
+  hash_map<CallInst*, DependentsSet> dependents; // dependent CIs for each CI
+
+  void VisitOutEdges(Instruction*   I,
+                     CallInst*      root,
+                     DependentsSet& depsOfRoot);
+
+public:
+  std::vector<CallInst*> parallelCalls;
+
+public:
+  /*ctor*/      FindParallelCalls       (Function& F, PgmDependenceGraph& DG);
+  void          visitCallInst           (CallInst& CI);
+};
+
+
+FindParallelCalls::FindParallelCalls(Function& F,
+                                     PgmDependenceGraph& DG)
+  : depGraph(DG)
+{
+  // Find all CallInsts reachable from each CallInst using a recursive DFS
+  visit(F);
+
+  // Now we've found all CallInsts reachable from each CallInst.
+  // Find those CallInsts that are parallel with at least one other CallInst
+  // by counting total inEdges and outEdges.
+  // 
+  unsigned long totalNumCalls = completed.size();
+
+  if (totalNumCalls == 1)
+    { // Check first for the special case of a single call instruction not
+      // in any loop.  It is not parallel, even if it has no dependences
+      // (this is why it is a special case).
+      //
+      // FIXME:
+      // THIS CASE IS NOT HANDLED RIGHT NOW, I.E., THERE IS NO
+      // PARALLELISM FOR CALLS IN DIFFERENT ITERATIONS OF A LOOP.
+      // 
+      return;
+    }
+
+  hash_map<CallInst*, unsigned long> numDeps;
+  for (hash_map<CallInst*, DependentsSet>::iterator II = dependents.begin(),
+         IE = dependents.end(); II != IE; ++II)
+    {
+      CallInst* fromCI = II->first;
+      numDeps[fromCI] += II->second.size();
+      for (Dependents_iterator DI = II->second.begin(), DE = II->second.end();
+           DI != DE; ++DI)
+        numDeps[*DI]++;                 // *DI can be reached from II->first
+    }
+
+  for (hash_map<CallInst*, DependentsSet>::iterator
+         II = dependents.begin(), IE = dependents.end(); II != IE; ++II)
+
+    // FIXME: Remove "- 1" when considering parallelism in loops
+    if (numDeps[II->first] < totalNumCalls - 1)
+      parallelCalls.push_back(II->first);
+}
+
+
+void FindParallelCalls::VisitOutEdges(Instruction* I,
+                                      CallInst* root,
+                                      DependentsSet& depsOfRoot)
+{
+  assert(stmtsVisited.find(I) == stmtsVisited.end() && "Stmt visited twice?");
+  stmtsVisited.insert(I);
+
+  if (CallInst* CI = dyn_cast<CallInst>(I))
+
+    // FIXME: Ignoring parallelism in a loop.  Here we're actually *ignoring*
+    // a self-dependence in order to get the count comparison right above.
+    // When we include loop parallelism, self-dependences should be included.
+    // 
+    if (CI != root)
+
+      { // CallInst root has a path to CallInst I and any calls reachable from I
+        depsOfRoot.insert(CI);
+        if (completed[CI])
+          { // We have already visited I so we know all nodes it can reach!
+            DependentsSet& depsOfI = dependents[CI];
+            depsOfRoot.insert(depsOfI.begin(), depsOfI.end());
+            return;
+          }
+      }
+
+  // If we reach here, we need to visit all children of I
+  for (PgmDependenceGraph::iterator DI = depGraph.outDepBegin(*I);
+       ! DI.fini(); ++DI)
+    {
+      Instruction* sink = &DI->getSink()->getInstr();
+      if (stmtsVisited.find(sink) == stmtsVisited.end())
+        VisitOutEdges(sink, root, depsOfRoot);
+    }
+}
+
+
+void FindParallelCalls::visitCallInst(CallInst& CI)
+{
+  if (completed[&CI])
+    return;
+  stmtsVisited.clear();                      // clear flags to do a fresh DFS
+
+  // Visit all children of CI using a recursive walk through dep graph
+  DependentsSet& depsOfRoot = dependents[&CI];
+  for (PgmDependenceGraph::iterator DI = depGraph.outDepBegin(CI);
+       ! DI.fini(); ++DI)
+    {
+      Instruction* sink = &DI->getSink()->getInstr();
+      if (stmtsVisited.find(sink) == stmtsVisited.end())
+        VisitOutEdges(sink, &CI, depsOfRoot);
+    }
+
+  completed[&CI] = true;
+}
+
+
+//---------------------------------------------------------------------------- 
+// class Parallelize
+//
+// (1) Find candidate parallel functions: any function F s.t.
+//       there is a call C1 to the function F that is followed or preceded
+//       by at least one other call C2 that is independent of this one
+//       (i.e., there is no dependence path from C1 to C2 or C2 to C1)
+// (2) Label such a function F as a cilk function.
+// (3) Convert every call to F to a spawn
+// (4) For every function X, insert sync statements so that
+//        every spawn is postdominated by a sync before any statements
+//        with a data dependence to/from the call site for the spawn
+// 
+//---------------------------------------------------------------------------- 
+
+namespace {
+  class Parallelize: public Pass
+  {
+  public:
+    /// Driver functions to transform a program
+    ///
+    bool run(Module& M);
+
+    /// getAnalysisUsage - Modifies extensively so preserve nothing.
+    /// Uses the DependenceGraph and the Top-down DS Graph (only to find
+    /// all functions called via an indirect call).
+    ///
+    void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.addRequired<TDDataStructures>();
+      AU.addRequired<MemoryDepAnalysis>();  // force this not to be released
+      AU.addRequired<PgmDependenceGraph>(); // because it is needed by this
+    }
+  };
+
+  RegisterOpt<Parallelize> X("parallel", "Parallelize program using Cilk");
+}
+
+
+static Function* FindMain(Module& M)
+{
+  for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)
+    if (FI->getName() == std::string("main"))
+      return FI;
+  return NULL;
+}
+
+
+bool Parallelize::run(Module& M)
+{
+  hash_set<Function*> parallelFunctions;
+  hash_set<Function*> safeParallelFunctions;
+  hash_set<const GlobalValue*> indirectlyCalled;
+
+  // If there is no main (i.e., for an incomplete program), we can do nothing.
+  // If there is a main, mark main as a parallel function.
+  // 
+  Function* mainFunc = FindMain(M);
+  if (!mainFunc)
+    return false;
+
+  // (1) Find candidate parallel functions and mark them as Cilk functions
+  // 
+  for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)
+    if (! FI->isExternal())
+      {
+        Function* F = FI;
+        DSGraph& tdg = getAnalysis<TDDataStructures>().getDSGraph(*F);
+
+        // All the hard analysis work gets done here!
+        // 
+        FindParallelCalls finder(*F,
+                                getAnalysis<PgmDependenceGraph>().getGraph(*F));
+                        /* getAnalysis<MemoryDepAnalysis>().getGraph(*F)); */
+
+        // Now we know which call instructions are useful to parallelize.
+        // Remember those callee functions.
+        // 
+        for (std::vector<CallInst*>::iterator
+               CII = finder.parallelCalls.begin(),
+               CIE = finder.parallelCalls.end(); CII != CIE; ++CII)
+          {
+            // Check if this is a direct call...
+            if ((*CII)->getCalledFunction() != NULL)
+              { // direct call: if this is to a non-external function,
+                // mark it as a parallelizable function
+                if (! (*CII)->getCalledFunction()->isExternal())
+                  parallelFunctions.insert((*CII)->getCalledFunction());
+              }
+            else
+              { // Indirect call: mark all potential callees as bad
+                std::vector<GlobalValue*> callees =
+                  tdg.getNodeForValue((*CII)->getCalledValue())
+                  .getNode()->getGlobals();
+                indirectlyCalled.insert(callees.begin(), callees.end());
+              }
+          }
+      }
+
+  // Remove all indirectly called functions from the list of Cilk functions.
+  // 
+  for (hash_set<Function*>::iterator PFI = parallelFunctions.begin(),
+         PFE = parallelFunctions.end(); PFI != PFE; ++PFI)
+    if (indirectlyCalled.count(*PFI) == 0)
+      safeParallelFunctions.insert(*PFI);
+
+#undef CAN_USE_BIND1ST_ON_REFERENCE_TYPE_ARGS
+#ifdef CAN_USE_BIND1ST_ON_REFERENCE_TYPE_ARGS
+  // Use this undecipherable STLese because erase invalidates iterators.
+  // Otherwise we have to copy sets as above.
+  hash_set<Function*>::iterator extrasBegin = 
+    std::remove_if(parallelFunctions.begin(), parallelFunctions.end(),
+                   compose1(std::bind2nd(std::greater<int>(), 0),
+                            bind_obj(&indirectlyCalled,
+                                     &hash_set<const GlobalValue*>::count)));
+  parallelFunctions.erase(extrasBegin, parallelFunctions.end());
+#endif
+
+  // If there are no parallel functions, we can just give up.
+  if (safeParallelFunctions.empty())
+    return false;
+
+  // Add main as a parallel function since Cilk requires this.
+  safeParallelFunctions.insert(mainFunc);
+
+  // (2,3) Transform each Cilk function and all its calls simply by
+  //     adding a unique suffix to the function name.
+  //     This should identify both functions and calls to such functions
+  //     to the code generator.
+  // (4) Also, insert calls to sync at appropriate points.
+  // 
+  Cilkifier cilkifier(M);
+  for (hash_set<Function*>::iterator CFI = safeParallelFunctions.begin(),
+         CFE = safeParallelFunctions.end(); CFI != CFE; ++CFI)
+    {
+      cilkifier.TransformFunc(*CFI, safeParallelFunctions,
+                             getAnalysis<PgmDependenceGraph>().getGraph(**CFI));
+      /* getAnalysis<MemoryDepAnalysis>().getGraph(**CFI)); */
+    }
+
+  return true;
+}