Check in LLVM r95781.
diff --git a/docs/tutorial/LangImpl3.html b/docs/tutorial/LangImpl3.html
new file mode 100644
index 0000000..aab7faa
--- /dev/null
+++ b/docs/tutorial/LangImpl3.html
@@ -0,0 +1,1269 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
+                      "http://www.w3.org/TR/html4/strict.dtd">
+
+<html>
+<head>
+  <title>Kaleidoscope: Implementing code generation to LLVM IR</title>
+  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+  <meta name="author" content="Chris Lattner">
+  <link rel="stylesheet" href="../llvm.css" type="text/css">
+</head>
+
+<body>
+
+<div class="doc_title">Kaleidoscope: Code generation to LLVM IR</div>
+
+<ul>
+<li><a href="index.html">Up to Tutorial Index</a></li>
+<li>Chapter 3
+  <ol>
+    <li><a href="#intro">Chapter 3 Introduction</a></li>
+    <li><a href="#basics">Code Generation Setup</a></li>
+    <li><a href="#exprs">Expression Code Generation</a></li>
+    <li><a href="#funcs">Function Code Generation</a></li>
+    <li><a href="#driver">Driver Changes and Closing Thoughts</a></li>
+    <li><a href="#code">Full Code Listing</a></li>
+  </ol>
+</li>
+<li><a href="LangImpl4.html">Chapter 4</a>: Adding JIT and Optimizer 
+Support</li>
+</ul>
+
+<div class="doc_author">
+  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="intro">Chapter 3 Introduction</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language
+with LLVM</a>" tutorial.  This chapter shows you how to transform the <a 
+href="LangImpl2.html">Abstract Syntax Tree</a>, built in Chapter 2, into LLVM IR.
+This will teach you a little bit about how LLVM does things, as well as
+demonstrate how easy it is to use.  It's much more work to build a lexer and
+parser than it is to generate LLVM IR code. :)
+</p>
+
+<p><b>Please note</b>: the code in this chapter and later require LLVM 2.2 or
+later.  LLVM 2.1 and before will not work with it.  Also note that you need
+to use a version of this tutorial that matches your LLVM release: If you are
+using an official LLVM release, use the version of the documentation included
+with your release or on the <a href="http://llvm.org/releases/">llvm.org 
+releases page</a>.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="basics">Code Generation Setup</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+In order to generate LLVM IR, we want some simple setup to get started.  First
+we define virtual code generation (codegen) methods in each AST class:</p>
+
+<div class="doc_code">
+<pre>
+/// ExprAST - Base class for all expression nodes.
+class ExprAST {
+public:
+  virtual ~ExprAST() {}
+  <b>virtual Value *Codegen() = 0;</b>
+};
+
+/// NumberExprAST - Expression class for numeric literals like "1.0".
+class NumberExprAST : public ExprAST {
+  double Val;
+public:
+  NumberExprAST(double val) : Val(val) {}
+  <b>virtual Value *Codegen();</b>
+};
+...
+</pre>
+</div>
+
+<p>The Codegen() method says to emit IR for that AST node along with all the things it
+depends on, and they all return an LLVM Value object. 
+"Value" is the class used to represent a "<a 
+href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
+Assignment (SSA)</a> register" or "SSA value" in LLVM.  The most distinct aspect
+of SSA values is that their value is computed as the related instruction
+executes, and it does not get a new value until (and if) the instruction
+re-executes.  In other words, there is no way to "change" an SSA value.  For
+more information, please read up on <a 
+href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
+Assignment</a> - the concepts are really quite natural once you grok them.</p>
+
+<p>Note that instead of adding virtual methods to the ExprAST class hierarchy,
+it could also make sense to use a <a
+href="http://en.wikipedia.org/wiki/Visitor_pattern">visitor pattern</a> or some
+other way to model this.  Again, this tutorial won't dwell on good software
+engineering practices: for our purposes, adding a virtual method is
+simplest.</p>
+
+<p>The
+second thing we want is an "Error" method like we used for the parser, which will
+be used to report errors found during code generation (for example, use of an
+undeclared parameter):</p>
+
+<div class="doc_code">
+<pre>
+Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+static Module *TheModule;
+static IRBuilder&lt;&gt; Builder(getGlobalContext());
+static std::map&lt;std::string, Value*&gt; NamedValues;
+</pre>
+</div>
+
+<p>The static variables will be used during code generation.  <tt>TheModule</tt>
+is the LLVM construct that contains all of the functions and global variables in
+a chunk of code.  In many ways, it is the top-level structure that the LLVM IR
+uses to contain code.</p>
+
+<p>The <tt>Builder</tt> object is a helper object that makes it easy to generate
+LLVM instructions.  Instances of the <a 
+href="http://llvm.org/doxygen/IRBuilder_8h-source.html"><tt>IRBuilder</tt></a> 
+class template keep track of the current place to insert instructions and has
+methods to create new instructions.</p>
+
+<p>The <tt>NamedValues</tt> map keeps track of which values are defined in the
+current scope and what their LLVM representation is.  (In other words, it is a
+symbol table for the code).  In this form of Kaleidoscope, the only things that
+can be referenced are function parameters.  As such, function parameters will
+be in this map when generating code for their function body.</p>
+
+<p>
+With these basics in place, we can start talking about how to generate code for
+each expression.  Note that this assumes that the <tt>Builder</tt> has been set
+up to generate code <em>into</em> something.  For now, we'll assume that this
+has already been done, and we'll just use it to emit code.
+</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="exprs">Expression Code Generation</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Generating LLVM code for expression nodes is very straightforward: less
+than 45 lines of commented code for all four of our expression nodes.  First
+we'll do numeric literals:</p>
+
+<div class="doc_code">
+<pre>
+Value *NumberExprAST::Codegen() {
+  return ConstantFP::get(getGlobalContext(), APFloat(Val));
+}
+</pre>
+</div>
+
+<p>In the LLVM IR, numeric constants are represented with the
+<tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt>
+internally (<tt>APFloat</tt> has the capability of holding floating point
+constants of <em>A</em>rbitrary <em>P</em>recision).  This code basically just
+creates and returns a <tt>ConstantFP</tt>.  Note that in the LLVM IR
+that constants are all uniqued together and shared.  For this reason, the API
+uses "the Context.get..." idiom instead of "new foo(..)" or "foo::Create(..)".</p>
+
+<div class="doc_code">
+<pre>
+Value *VariableExprAST::Codegen() {
+  // Look this variable up in the function.
+  Value *V = NamedValues[Name];
+  return V ? V : ErrorV("Unknown variable name");
+}
+</pre>
+</div>
+
+<p>References to variables are also quite simple using LLVM.  In the simple version
+of Kaleidoscope, we assume that the variable has already been emitted somewhere
+and its value is available.  In practice, the only values that can be in the
+<tt>NamedValues</tt> map are function arguments.  This
+code simply checks to see that the specified name is in the map (if not, an 
+unknown variable is being referenced) and returns the value for it.  In future
+chapters, we'll add support for <a href="LangImpl5.html#for">loop induction 
+variables</a> in the symbol table, and for <a 
+href="LangImpl7.html#localvars">local variables</a>.</p>
+
+<div class="doc_code">
+<pre>
+Value *BinaryExprAST::Codegen() {
+  Value *L = LHS-&gt;Codegen();
+  Value *R = RHS-&gt;Codegen();
+  if (L == 0 || R == 0) return 0;
+  
+  switch (Op) {
+  case '+': return Builder.CreateAdd(L, R, "addtmp");
+  case '-': return Builder.CreateSub(L, R, "subtmp");
+  case '*': return Builder.CreateMul(L, R, "multmp");
+  case '&lt;':
+    L = Builder.CreateFCmpULT(L, R, "cmptmp");
+    // Convert bool 0/1 to double 0.0 or 1.0
+    return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+                                "booltmp");
+  default: return ErrorV("invalid binary operator");
+  }
+}
+</pre>
+</div>
+
+<p>Binary operators start to get more interesting.  The basic idea here is that
+we recursively emit code for the left-hand side of the expression, then the 
+right-hand side, then we compute the result of the binary expression.  In this
+code, we do a simple switch on the opcode to create the right LLVM instruction.
+</p>
+
+<p>In the example above, the LLVM builder class is starting to show its value.  
+IRBuilder knows where to insert the newly created instruction, all you have to
+do is specify what instruction to create (e.g. with <tt>CreateAdd</tt>), which
+operands to use (<tt>L</tt> and <tt>R</tt> here) and optionally provide a name
+for the generated instruction.</p>
+
+<p>One nice thing about LLVM is that the name is just a hint.  For instance, if
+the code above emits multiple "addtmp" variables, LLVM will automatically
+provide each one with an increasing, unique numeric suffix.  Local value names
+for instructions are purely optional, but it makes it much easier to read the
+IR dumps.</p>
+
+<p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained by
+strict rules: for example, the Left and Right operators of
+an <a href="../LangRef.html#i_add">add instruction</a> must have the same
+type, and the result type of the add must match the operand types.  Because
+all values in Kaleidoscope are doubles, this makes for very simple code for add,
+sub and mul.</p>
+
+<p>On the other hand, LLVM specifies that the <a 
+href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value
+(a one bit integer).  The problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value.  In order to get these semantics, we combine the fcmp instruction with
+a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>.  This instruction
+converts its input integer into a floating point value by treating the input
+as an unsigned value.  In contrast, if we used the <a 
+href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '&lt;'
+operator would return 0.0 and -1.0, depending on the input value.</p>
+
+<div class="doc_code">
+<pre>
+Value *CallExprAST::Codegen() {
+  // Look up the name in the global module table.
+  Function *CalleeF = TheModule-&gt;getFunction(Callee);
+  if (CalleeF == 0)
+    return ErrorV("Unknown function referenced");
+  
+  // If argument mismatch error.
+  if (CalleeF-&gt;arg_size() != Args.size())
+    return ErrorV("Incorrect # arguments passed");
+
+  std::vector&lt;Value*&gt; ArgsV;
+  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+    ArgsV.push_back(Args[i]-&gt;Codegen());
+    if (ArgsV.back() == 0) return 0;
+  }
+  
+  return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
+}
+</pre>
+</div>
+
+<p>Code generation for function calls is quite straightforward with LLVM.  The
+code above initially does a function name lookup in the LLVM Module's symbol
+table.  Recall that the LLVM Module is the container that holds all of the
+functions we are JIT'ing.  By giving each function the same name as what the
+user specifies, we can use the LLVM symbol table to resolve function names for
+us.</p>
+
+<p>Once we have the function to call, we recursively codegen each argument that
+is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call
+instruction</a>.  Note that LLVM uses the native C calling conventions by
+default, allowing these calls to also call into standard library functions like
+"sin" and "cos", with no additional effort.</p>
+
+<p>This wraps up our handling of the four basic expressions that we have so far
+in Kaleidoscope.  Feel free to go in and add some more.  For example, by 
+browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find
+several other interesting instructions that are really easy to plug into our
+basic framework.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="funcs">Function Code Generation</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Code generation for prototypes and functions must handle a number of
+details, which make their code less beautiful than expression code
+generation, but allows us to  illustrate some important points.  First, lets
+talk about code generation for prototypes: they are used both for function 
+bodies and external function declarations.  The code starts with:</p>
+
+<div class="doc_code">
+<pre>
+Function *PrototypeAST::Codegen() {
+  // Make the function type:  double(double,double) etc.
+  std::vector&lt;const Type*&gt; Doubles(Args.size(),
+                                   Type::getDoubleTy(getGlobalContext()));
+  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+                                       Doubles, false);
+  
+  Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+</pre>
+</div>
+
+<p>This code packs a lot of power into a few lines.  Note first that this 
+function returns a "Function*" instead of a "Value*".  Because a "prototype"
+really talks about the external interface for a function (not the value computed
+by an expression), it makes sense for it to return the LLVM Function it
+corresponds to when codegen'd.</p>
+
+<p>The call to <tt>Context.get</tt> creates
+the <tt>FunctionType</tt> that should be used for a given Prototype.  Since all
+function arguments in Kaleidoscope are of type double, the first line creates
+a vector of "N" LLVM double types.  It then uses the <tt>Context.get</tt>
+method to create a function type that takes "N" doubles as arguments, returns
+one double as a result, and that is not vararg (the false parameter indicates
+this).  Note that Types in LLVM are uniqued just like Constants are, so you
+don't "new" a type, you "get" it.</p>
+
+<p>The final line above actually creates the function that the prototype will
+correspond to.  This indicates the type, linkage and name to use, as well as which
+module to insert into.  "<a href="../LangRef.html#linkage">external linkage</a>"
+means that the function may be defined outside the current module and/or that it
+is callable by functions outside the module.  The Name passed in is the name the
+user specified: since "<tt>TheModule</tt>" is specified, this name is registered
+in "<tt>TheModule</tt>"s symbol table, which is used by the function call code
+above.</p>
+
+<div class="doc_code">
+<pre>
+  // If F conflicted, there was already something named 'Name'.  If it has a
+  // body, don't allow redefinition or reextern.
+  if (F-&gt;getName() != Name) {
+    // Delete the one we just made and get the existing one.
+    F-&gt;eraseFromParent();
+    F = TheModule-&gt;getFunction(Name);
+</pre>
+</div>
+
+<p>The Module symbol table works just like the Function symbol table when it
+comes to name conflicts: if a new function is created with a name was previously
+added to the symbol table, it will get implicitly renamed when added to the
+Module.  The code above exploits this fact to determine if there was a previous
+definition of this function.</p>
+
+<p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases:
+first, we want to allow 'extern'ing a function more than once, as long as the
+prototypes for the externs match (since all arguments have the same type, we
+just have to check that the number of arguments match).  Second, we want to
+allow 'extern'ing a function and then defining a body for it.  This is useful
+when defining mutually recursive functions.</p>
+
+<p>In order to implement this, the code above first checks to see if there is
+a collision on the name of the function.  If so, it deletes the function we just
+created (by calling <tt>eraseFromParent</tt>) and then calling 
+<tt>getFunction</tt> to get the existing function with the specified name.  Note
+that many APIs in LLVM have "erase" forms and "remove" forms.  The "remove" form
+unlinks the object from its parent (e.g. a Function from a Module) and returns
+it.  The "erase" form unlinks the object and then deletes it.</p>
+   
+<div class="doc_code">
+<pre>
+    // If F already has a body, reject this.
+    if (!F-&gt;empty()) {
+      ErrorF("redefinition of function");
+      return 0;
+    }
+    
+    // If F took a different number of args, reject.
+    if (F-&gt;arg_size() != Args.size()) {
+      ErrorF("redefinition of function with different # args");
+      return 0;
+    }
+  }
+</pre>
+</div>
+
+<p>In order to verify the logic above, we first check to see if the pre-existing
+function is "empty".  In this case, empty means that it has no basic blocks in
+it, which means it has no body.  If it has no body, it is a forward 
+declaration.  Since we don't allow anything after a full definition of the
+function, the code rejects this case.  If the previous reference to a function
+was an 'extern', we simply verify that the number of arguments for that
+definition and this one match up.  If not, we emit an error.</p>
+
+<div class="doc_code">
+<pre>
+  // Set names for all arguments.
+  unsigned Idx = 0;
+  for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
+       ++AI, ++Idx) {
+    AI-&gt;setName(Args[Idx]);
+    
+    // Add arguments to variable symbol table.
+    NamedValues[Args[Idx]] = AI;
+  }
+  return F;
+}
+</pre>
+</div>
+
+<p>The last bit of code for prototypes loops over all of the arguments in the
+function, setting the name of the LLVM Argument objects to match, and registering
+the arguments in the <tt>NamedValues</tt> map for future use by the
+<tt>VariableExprAST</tt> AST node.  Once this is set up, it returns the Function
+object to the caller.  Note that we don't check for conflicting 
+argument names here (e.g. "extern foo(a b a)").  Doing so would be very
+straight-forward with the mechanics we have already used above.</p>
+
+<div class="doc_code">
+<pre>
+Function *FunctionAST::Codegen() {
+  NamedValues.clear();
+  
+  Function *TheFunction = Proto-&gt;Codegen();
+  if (TheFunction == 0)
+    return 0;
+</pre>
+</div>
+
+<p>Code generation for function definitions starts out simply enough: we just
+codegen the prototype (Proto) and verify that it is ok.  We then clear out the
+<tt>NamedValues</tt> map to make sure that there isn't anything in it from the
+last function we compiled.  Code generation of the prototype ensures that there
+is an LLVM Function object that is ready to go for us.</p>
+
+<div class="doc_code">
+<pre>
+  // Create a new basic block to start insertion into.
+  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+  Builder.SetInsertPoint(BB);
+  
+  if (Value *RetVal = Body-&gt;Codegen()) {
+</pre>
+</div>
+
+<p>Now we get to the point where the <tt>Builder</tt> is set up.  The first
+line creates a new <a href="http://en.wikipedia.org/wiki/Basic_block">basic
+block</a> (named "entry"), which is inserted into <tt>TheFunction</tt>.  The
+second line then tells the builder that new instructions should be inserted into
+the end of the new basic block.  Basic blocks in LLVM are an important part
+of functions that define the <a 
+href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>.
+Since we don't have any control flow, our functions will only contain one 
+block at this point.  We'll fix this in <a href="LangImpl5.html">Chapter 5</a> :).</p>
+
+<div class="doc_code">
+<pre>
+  if (Value *RetVal = Body-&gt;Codegen()) {
+    // Finish off the function.
+    Builder.CreateRet(RetVal);
+
+    // Validate the generated code, checking for consistency.
+    verifyFunction(*TheFunction);
+
+    return TheFunction;
+  }
+</pre>
+</div>
+
+<p>Once the insertion point is set up, we call the <tt>CodeGen()</tt> method for
+the root expression of the function.  If no error happens, this emits code to
+compute the expression into the entry block and returns the value that was
+computed.  Assuming no error, we then create an LLVM <a 
+href="../LangRef.html#i_ret">ret instruction</a>, which completes the function.
+Once the function is built, we call <tt>verifyFunction</tt>, which
+is provided by LLVM.  This function does a variety of consistency checks on the
+generated code, to determine if our compiler is doing everything right.  Using
+this is important: it can catch a lot of bugs.  Once the function is finished
+and validated, we return it.</p>
+  
+<div class="doc_code">
+<pre>
+  // Error reading body, remove function.
+  TheFunction-&gt;eraseFromParent();
+  return 0;
+}
+</pre>
+</div>
+
+<p>The only piece left here is handling of the error case.  For simplicity, we
+handle this by merely deleting the function we produced with the 
+<tt>eraseFromParent</tt> method.  This allows the user to redefine a function
+that they incorrectly typed in before: if we didn't delete it, it would live in
+the symbol table, with a body, preventing future redefinition.</p>
+
+<p>This code does have a bug, though.  Since the <tt>PrototypeAST::Codegen</tt>
+can return a previously defined forward declaration, our code can actually delete
+a forward declaration.  There are a number of ways to fix this bug, see what you
+can come up with!  Here is a testcase:</p>
+
+<div class="doc_code">
+<pre>
+extern foo(a b);     # ok, defines foo.
+def foo(a b) c;      # error, 'c' is invalid.
+def bar() foo(1, 2); # error, unknown function "foo"
+</pre>
+</div>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="driver">Driver Changes and 
+Closing Thoughts</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+For now, code generation to LLVM doesn't really get us much, except that we can
+look at the pretty IR calls.  The sample code inserts calls to Codegen into the
+"<tt>HandleDefinition</tt>", "<tt>HandleExtern</tt>" etc functions, and then
+dumps out the LLVM IR.  This gives a nice way to look at the LLVM IR for simple
+functions.  For example:
+</p>
+
+<div class="doc_code">
+<pre>
+ready> <b>4+5</b>;
+Read top-level expression:
+define double @""() {
+entry:
+        %addtmp = add double 4.000000e+00, 5.000000e+00
+        ret double %addtmp
+}
+</pre>
+</div>
+
+<p>Note how the parser turns the top-level expression into anonymous functions
+for us.  This will be handy when we add <a href="LangImpl4.html#jit">JIT 
+support</a> in the next chapter.  Also note that the code is very literally
+transcribed, no optimizations are being performed.  We will 
+<a href="LangImpl4.html#trivialconstfold">add optimizations</a> explicitly in
+the next chapter.</p>
+
+<div class="doc_code">
+<pre>
+ready&gt; <b>def foo(a b) a*a + 2*a*b + b*b;</b>
+Read function definition:
+define double @foo(double %a, double %b) {
+entry:
+        %multmp = mul double %a, %a
+        %multmp1 = mul double 2.000000e+00, %a
+        %multmp2 = mul double %multmp1, %b
+        %addtmp = add double %multmp, %multmp2
+        %multmp3 = mul double %b, %b
+        %addtmp4 = add double %addtmp, %multmp3
+        ret double %addtmp4
+}
+</pre>
+</div>
+
+<p>This shows some simple arithmetic. Notice the striking similarity to the
+LLVM builder calls that we use to create the instructions.</p>
+
+<div class="doc_code">
+<pre>
+ready&gt; <b>def bar(a) foo(a, 4.0) + bar(31337);</b>
+Read function definition:
+define double @bar(double %a) {
+entry:
+        %calltmp = call double @foo( double %a, double 4.000000e+00 )
+        %calltmp1 = call double @bar( double 3.133700e+04 )
+        %addtmp = add double %calltmp, %calltmp1
+        ret double %addtmp
+}
+</pre>
+</div>
+
+<p>This shows some function calls.  Note that this function will take a long
+time to execute if you call it.  In the future we'll add conditional control 
+flow to actually make recursion useful :).</p>
+
+<div class="doc_code">
+<pre>
+ready&gt; <b>extern cos(x);</b>
+Read extern: 
+declare double @cos(double)
+
+ready&gt; <b>cos(1.234);</b>
+Read top-level expression:
+define double @""() {
+entry:
+        %calltmp = call double @cos( double 1.234000e+00 )
+        ret double %calltmp
+}
+</pre>
+</div>
+
+<p>This shows an extern for the libm "cos" function, and a call to it.</p>
+
+
+<div class="doc_code">
+<pre>
+ready&gt; <b>^D</b>
+; ModuleID = 'my cool jit'
+
+define double @""() {
+entry:
+        %addtmp = add double 4.000000e+00, 5.000000e+00
+        ret double %addtmp
+}
+
+define double @foo(double %a, double %b) {
+entry:
+        %multmp = mul double %a, %a
+        %multmp1 = mul double 2.000000e+00, %a
+        %multmp2 = mul double %multmp1, %b
+        %addtmp = add double %multmp, %multmp2
+        %multmp3 = mul double %b, %b
+        %addtmp4 = add double %addtmp, %multmp3
+        ret double %addtmp4
+}
+
+define double @bar(double %a) {
+entry:
+        %calltmp = call double @foo( double %a, double 4.000000e+00 )
+        %calltmp1 = call double @bar( double 3.133700e+04 )
+        %addtmp = add double %calltmp, %calltmp1
+        ret double %addtmp
+}
+
+declare double @cos(double)
+
+define double @""() {
+entry:
+        %calltmp = call double @cos( double 1.234000e+00 )
+        ret double %calltmp
+}
+</pre>
+</div>
+
+<p>When you quit the current demo, it dumps out the IR for the entire module
+generated.  Here you can see the big picture with all the functions referencing
+each other.</p>
+
+<p>This wraps up the third chapter of the Kaleidoscope tutorial.  Up next, we'll
+describe how to <a href="LangImpl4.html">add JIT codegen and optimizer
+support</a> to this so we can actually start running code!</p>
+
+</div>
+
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="code">Full Code Listing</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+Here is the complete code listing for our running example, enhanced with the
+LLVM code generator.    Because this uses the LLVM libraries, we need to link
+them in.  To do this, we use the <a 
+href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform
+our makefile/command line about which options to use:</p>
+
+<div class="doc_code">
+<pre>
+   # Compile
+   g++ -g -O3 toy.cpp `llvm-config --cppflags --ldflags --libs core` -o toy
+   # Run
+   ./toy
+</pre>
+</div>
+
+<p>Here is the code:</p>
+
+<div class="doc_code">
+<pre>
+// To build this:
+// See example below.
+
+#include "llvm/DerivedTypes.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Module.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/Support/IRBuilder.h"
+#include &lt;cstdio&gt;
+#include &lt;string&gt;
+#include &lt;map&gt;
+#include &lt;vector&gt;
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Lexer
+//===----------------------------------------------------------------------===//
+
+// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+// of these for known things.
+enum Token {
+  tok_eof = -1,
+
+  // commands
+  tok_def = -2, tok_extern = -3,
+
+  // primary
+  tok_identifier = -4, tok_number = -5
+};
+
+static std::string IdentifierStr;  // Filled in if tok_identifier
+static double NumVal;              // Filled in if tok_number
+
+/// gettok - Return the next token from standard input.
+static int gettok() {
+  static int LastChar = ' ';
+
+  // Skip any whitespace.
+  while (isspace(LastChar))
+    LastChar = getchar();
+
+  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+    IdentifierStr = LastChar;
+    while (isalnum((LastChar = getchar())))
+      IdentifierStr += LastChar;
+
+    if (IdentifierStr == "def") return tok_def;
+    if (IdentifierStr == "extern") return tok_extern;
+    return tok_identifier;
+  }
+
+  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
+    std::string NumStr;
+    do {
+      NumStr += LastChar;
+      LastChar = getchar();
+    } while (isdigit(LastChar) || LastChar == '.');
+
+    NumVal = strtod(NumStr.c_str(), 0);
+    return tok_number;
+  }
+
+  if (LastChar == '#') {
+    // Comment until end of line.
+    do LastChar = getchar();
+    while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
+    
+    if (LastChar != EOF)
+      return gettok();
+  }
+  
+  // Check for end of file.  Don't eat the EOF.
+  if (LastChar == EOF)
+    return tok_eof;
+
+  // Otherwise, just return the character as its ascii value.
+  int ThisChar = LastChar;
+  LastChar = getchar();
+  return ThisChar;
+}
+
+//===----------------------------------------------------------------------===//
+// Abstract Syntax Tree (aka Parse Tree)
+//===----------------------------------------------------------------------===//
+
+/// ExprAST - Base class for all expression nodes.
+class ExprAST {
+public:
+  virtual ~ExprAST() {}
+  virtual Value *Codegen() = 0;
+};
+
+/// NumberExprAST - Expression class for numeric literals like "1.0".
+class NumberExprAST : public ExprAST {
+  double Val;
+public:
+  NumberExprAST(double val) : Val(val) {}
+  virtual Value *Codegen();
+};
+
+/// VariableExprAST - Expression class for referencing a variable, like "a".
+class VariableExprAST : public ExprAST {
+  std::string Name;
+public:
+  VariableExprAST(const std::string &amp;name) : Name(name) {}
+  virtual Value *Codegen();
+};
+
+/// BinaryExprAST - Expression class for a binary operator.
+class BinaryExprAST : public ExprAST {
+  char Op;
+  ExprAST *LHS, *RHS;
+public:
+  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
+    : Op(op), LHS(lhs), RHS(rhs) {}
+  virtual Value *Codegen();
+};
+
+/// CallExprAST - Expression class for function calls.
+class CallExprAST : public ExprAST {
+  std::string Callee;
+  std::vector&lt;ExprAST*&gt; Args;
+public:
+  CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
+    : Callee(callee), Args(args) {}
+  virtual Value *Codegen();
+};
+
+/// PrototypeAST - This class represents the "prototype" for a function,
+/// which captures its name, and its argument names (thus implicitly the number
+/// of arguments the function takes).
+class PrototypeAST {
+  std::string Name;
+  std::vector&lt;std::string&gt; Args;
+public:
+  PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args)
+    : Name(name), Args(args) {}
+  
+  Function *Codegen();
+};
+
+/// FunctionAST - This class represents a function definition itself.
+class FunctionAST {
+  PrototypeAST *Proto;
+  ExprAST *Body;
+public:
+  FunctionAST(PrototypeAST *proto, ExprAST *body)
+    : Proto(proto), Body(body) {}
+  
+  Function *Codegen();
+};
+
+//===----------------------------------------------------------------------===//
+// Parser
+//===----------------------------------------------------------------------===//
+
+/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
+/// token the parser is looking at.  getNextToken reads another token from the
+/// lexer and updates CurTok with its results.
+static int CurTok;
+static int getNextToken() {
+  return CurTok = gettok();
+}
+
+/// BinopPrecedence - This holds the precedence for each binary operator that is
+/// defined.
+static std::map&lt;char, int&gt; BinopPrecedence;
+
+/// GetTokPrecedence - Get the precedence of the pending binary operator token.
+static int GetTokPrecedence() {
+  if (!isascii(CurTok))
+    return -1;
+  
+  // Make sure it's a declared binop.
+  int TokPrec = BinopPrecedence[CurTok];
+  if (TokPrec &lt;= 0) return -1;
+  return TokPrec;
+}
+
+/// Error* - These are little helper functions for error handling.
+ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+static ExprAST *ParseExpression();
+
+/// identifierexpr
+///   ::= identifier
+///   ::= identifier '(' expression* ')'
+static ExprAST *ParseIdentifierExpr() {
+  std::string IdName = IdentifierStr;
+  
+  getNextToken();  // eat identifier.
+  
+  if (CurTok != '(') // Simple variable ref.
+    return new VariableExprAST(IdName);
+  
+  // Call.
+  getNextToken();  // eat (
+  std::vector&lt;ExprAST*&gt; Args;
+  if (CurTok != ')') {
+    while (1) {
+      ExprAST *Arg = ParseExpression();
+      if (!Arg) return 0;
+      Args.push_back(Arg);
+
+      if (CurTok == ')') break;
+
+      if (CurTok != ',')
+        return Error("Expected ')' or ',' in argument list");
+      getNextToken();
+    }
+  }
+
+  // Eat the ')'.
+  getNextToken();
+  
+  return new CallExprAST(IdName, Args);
+}
+
+/// numberexpr ::= number
+static ExprAST *ParseNumberExpr() {
+  ExprAST *Result = new NumberExprAST(NumVal);
+  getNextToken(); // consume the number
+  return Result;
+}
+
+/// parenexpr ::= '(' expression ')'
+static ExprAST *ParseParenExpr() {
+  getNextToken();  // eat (.
+  ExprAST *V = ParseExpression();
+  if (!V) return 0;
+  
+  if (CurTok != ')')
+    return Error("expected ')'");
+  getNextToken();  // eat ).
+  return V;
+}
+
+/// primary
+///   ::= identifierexpr
+///   ::= numberexpr
+///   ::= parenexpr
+static ExprAST *ParsePrimary() {
+  switch (CurTok) {
+  default: return Error("unknown token when expecting an expression");
+  case tok_identifier: return ParseIdentifierExpr();
+  case tok_number:     return ParseNumberExpr();
+  case '(':            return ParseParenExpr();
+  }
+}
+
+/// binoprhs
+///   ::= ('+' primary)*
+static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+  // If this is a binop, find its precedence.
+  while (1) {
+    int TokPrec = GetTokPrecedence();
+    
+    // If this is a binop that binds at least as tightly as the current binop,
+    // consume it, otherwise we are done.
+    if (TokPrec &lt; ExprPrec)
+      return LHS;
+    
+    // Okay, we know this is a binop.
+    int BinOp = CurTok;
+    getNextToken();  // eat binop
+    
+    // Parse the primary expression after the binary operator.
+    ExprAST *RHS = ParsePrimary();
+    if (!RHS) return 0;
+    
+    // If BinOp binds less tightly with RHS than the operator after RHS, let
+    // the pending operator take RHS as its LHS.
+    int NextPrec = GetTokPrecedence();
+    if (TokPrec &lt; NextPrec) {
+      RHS = ParseBinOpRHS(TokPrec+1, RHS);
+      if (RHS == 0) return 0;
+    }
+    
+    // Merge LHS/RHS.
+    LHS = new BinaryExprAST(BinOp, LHS, RHS);
+  }
+}
+
+/// expression
+///   ::= primary binoprhs
+///
+static ExprAST *ParseExpression() {
+  ExprAST *LHS = ParsePrimary();
+  if (!LHS) return 0;
+  
+  return ParseBinOpRHS(0, LHS);
+}
+
+/// prototype
+///   ::= id '(' id* ')'
+static PrototypeAST *ParsePrototype() {
+  if (CurTok != tok_identifier)
+    return ErrorP("Expected function name in prototype");
+
+  std::string FnName = IdentifierStr;
+  getNextToken();
+  
+  if (CurTok != '(')
+    return ErrorP("Expected '(' in prototype");
+  
+  std::vector&lt;std::string&gt; ArgNames;
+  while (getNextToken() == tok_identifier)
+    ArgNames.push_back(IdentifierStr);
+  if (CurTok != ')')
+    return ErrorP("Expected ')' in prototype");
+  
+  // success.
+  getNextToken();  // eat ')'.
+  
+  return new PrototypeAST(FnName, ArgNames);
+}
+
+/// definition ::= 'def' prototype expression
+static FunctionAST *ParseDefinition() {
+  getNextToken();  // eat def.
+  PrototypeAST *Proto = ParsePrototype();
+  if (Proto == 0) return 0;
+
+  if (ExprAST *E = ParseExpression())
+    return new FunctionAST(Proto, E);
+  return 0;
+}
+
+/// toplevelexpr ::= expression
+static FunctionAST *ParseTopLevelExpr() {
+  if (ExprAST *E = ParseExpression()) {
+    // Make an anonymous proto.
+    PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
+    return new FunctionAST(Proto, E);
+  }
+  return 0;
+}
+
+/// external ::= 'extern' prototype
+static PrototypeAST *ParseExtern() {
+  getNextToken();  // eat extern.
+  return ParsePrototype();
+}
+
+//===----------------------------------------------------------------------===//
+// Code Generation
+//===----------------------------------------------------------------------===//
+
+static Module *TheModule;
+static IRBuilder&lt;&gt; Builder(getGlobalContext());
+static std::map&lt;std::string, Value*&gt; NamedValues;
+
+Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+Value *NumberExprAST::Codegen() {
+  return ConstantFP::get(getGlobalContext(), APFloat(Val));
+}
+
+Value *VariableExprAST::Codegen() {
+  // Look this variable up in the function.
+  Value *V = NamedValues[Name];
+  return V ? V : ErrorV("Unknown variable name");
+}
+
+Value *BinaryExprAST::Codegen() {
+  Value *L = LHS-&gt;Codegen();
+  Value *R = RHS-&gt;Codegen();
+  if (L == 0 || R == 0) return 0;
+  
+  switch (Op) {
+  case '+': return Builder.CreateAdd(L, R, "addtmp");
+  case '-': return Builder.CreateSub(L, R, "subtmp");
+  case '*': return Builder.CreateMul(L, R, "multmp");
+  case '&lt;':
+    L = Builder.CreateFCmpULT(L, R, "cmptmp");
+    // Convert bool 0/1 to double 0.0 or 1.0
+    return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+                                "booltmp");
+  default: return ErrorV("invalid binary operator");
+  }
+}
+
+Value *CallExprAST::Codegen() {
+  // Look up the name in the global module table.
+  Function *CalleeF = TheModule-&gt;getFunction(Callee);
+  if (CalleeF == 0)
+    return ErrorV("Unknown function referenced");
+  
+  // If argument mismatch error.
+  if (CalleeF-&gt;arg_size() != Args.size())
+    return ErrorV("Incorrect # arguments passed");
+
+  std::vector&lt;Value*&gt; ArgsV;
+  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+    ArgsV.push_back(Args[i]-&gt;Codegen());
+    if (ArgsV.back() == 0) return 0;
+  }
+  
+  return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
+}
+
+Function *PrototypeAST::Codegen() {
+  // Make the function type:  double(double,double) etc.
+  std::vector&lt;const Type*&gt; Doubles(Args.size(),
+                                   Type::getDoubleTy(getGlobalContext()));
+  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+                                       Doubles, false);
+  
+  Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+  
+  // If F conflicted, there was already something named 'Name'.  If it has a
+  // body, don't allow redefinition or reextern.
+  if (F-&gt;getName() != Name) {
+    // Delete the one we just made and get the existing one.
+    F-&gt;eraseFromParent();
+    F = TheModule-&gt;getFunction(Name);
+    
+    // If F already has a body, reject this.
+    if (!F-&gt;empty()) {
+      ErrorF("redefinition of function");
+      return 0;
+    }
+    
+    // If F took a different number of args, reject.
+    if (F-&gt;arg_size() != Args.size()) {
+      ErrorF("redefinition of function with different # args");
+      return 0;
+    }
+  }
+  
+  // Set names for all arguments.
+  unsigned Idx = 0;
+  for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
+       ++AI, ++Idx) {
+    AI-&gt;setName(Args[Idx]);
+    
+    // Add arguments to variable symbol table.
+    NamedValues[Args[Idx]] = AI;
+  }
+  
+  return F;
+}
+
+Function *FunctionAST::Codegen() {
+  NamedValues.clear();
+  
+  Function *TheFunction = Proto-&gt;Codegen();
+  if (TheFunction == 0)
+    return 0;
+  
+  // Create a new basic block to start insertion into.
+  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+  Builder.SetInsertPoint(BB);
+  
+  if (Value *RetVal = Body-&gt;Codegen()) {
+    // Finish off the function.
+    Builder.CreateRet(RetVal);
+
+    // Validate the generated code, checking for consistency.
+    verifyFunction(*TheFunction);
+
+    return TheFunction;
+  }
+  
+  // Error reading body, remove function.
+  TheFunction-&gt;eraseFromParent();
+  return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Level parsing and JIT Driver
+//===----------------------------------------------------------------------===//
+
+static void HandleDefinition() {
+  if (FunctionAST *F = ParseDefinition()) {
+    if (Function *LF = F-&gt;Codegen()) {
+      fprintf(stderr, "Read function definition:");
+      LF-&gt;dump();
+    }
+  } else {
+    // Skip token for error recovery.
+    getNextToken();
+  }
+}
+
+static void HandleExtern() {
+  if (PrototypeAST *P = ParseExtern()) {
+    if (Function *F = P-&gt;Codegen()) {
+      fprintf(stderr, "Read extern: ");
+      F-&gt;dump();
+    }
+  } else {
+    // Skip token for error recovery.
+    getNextToken();
+  }
+}
+
+static void HandleTopLevelExpression() {
+  // Evaluate a top-level expression into an anonymous function.
+  if (FunctionAST *F = ParseTopLevelExpr()) {
+    if (Function *LF = F-&gt;Codegen()) {
+      fprintf(stderr, "Read top-level expression:");
+      LF-&gt;dump();
+    }
+  } else {
+    // Skip token for error recovery.
+    getNextToken();
+  }
+}
+
+/// top ::= definition | external | expression | ';'
+static void MainLoop() {
+  while (1) {
+    fprintf(stderr, "ready&gt; ");
+    switch (CurTok) {
+    case tok_eof:    return;
+    case ';':        getNextToken(); break;  // ignore top-level semicolons.
+    case tok_def:    HandleDefinition(); break;
+    case tok_extern: HandleExtern(); break;
+    default:         HandleTopLevelExpression(); break;
+    }
+  }
+}
+
+//===----------------------------------------------------------------------===//
+// "Library" functions that can be "extern'd" from user code.
+//===----------------------------------------------------------------------===//
+
+/// putchard - putchar that takes a double and returns 0.
+extern "C" 
+double putchard(double X) {
+  putchar((char)X);
+  return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Main driver code.
+//===----------------------------------------------------------------------===//
+
+int main() {
+  LLVMContext &amp;Context = getGlobalContext();
+
+  // Install standard binary operators.
+  // 1 is lowest precedence.
+  BinopPrecedence['&lt;'] = 10;
+  BinopPrecedence['+'] = 20;
+  BinopPrecedence['-'] = 20;
+  BinopPrecedence['*'] = 40;  // highest.
+
+  // Prime the first token.
+  fprintf(stderr, "ready&gt; ");
+  getNextToken();
+
+  // Make the module, which holds all the code.
+  TheModule = new Module("my cool jit", Context);
+
+  // Run the main "interpreter loop" now.
+  MainLoop();
+
+  // Print out all of the generated code.
+  TheModule-&gt;dump();
+
+  return 0;
+}
+</pre>
+</div>
+<a href="LangImpl4.html">Next: Adding JIT and Optimizer Support</a>
+</div>
+
+<!-- *********************************************************************** -->
+<hr>
+<address>
+  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
+  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
+  <a href="http://validator.w3.org/check/referer"><img
+  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
+
+  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
+  <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
+  Last modified: $Date: 2010-02-03 09:27:31 -0800 (Wed, 03 Feb 2010) $
+</address>
+</body>
+</html>