Check in LLVM r95781.
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
new file mode 100644
index 0000000..82be9cd
--- /dev/null
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -0,0 +1,5412 @@
+//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of the scalar evolution analysis
+// engine, which is used primarily to analyze expressions involving induction
+// variables in loops.
+//
+// There are several aspects to this library.  First is the representation of
+// scalar expressions, which are represented as subclasses of the SCEV class.
+// These classes are used to represent certain types of subexpressions that we
+// can handle. We only create one SCEV of a particular shape, so
+// pointer-comparisons for equality are legal.
+//
+// One important aspect of the SCEV objects is that they are never cyclic, even
+// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
+// the PHI node is one of the idioms that we can represent (e.g., a polynomial
+// recurrence) then we represent it directly as a recurrence node, otherwise we
+// represent it as a SCEVUnknown node.
+//
+// In addition to being able to represent expressions of various types, we also
+// have folders that are used to build the *canonical* representation for a
+// particular expression.  These folders are capable of using a variety of
+// rewrite rules to simplify the expressions.
+//
+// Once the folders are defined, we can implement the more interesting
+// higher-level code, such as the code that recognizes PHI nodes of various
+// types, computes the execution count of a loop, etc.
+//
+// TODO: We should use these routines and value representations to implement
+// dependence analysis!
+//
+//===----------------------------------------------------------------------===//
+//
+// There are several good references for the techniques used in this analysis.
+//
+//  Chains of recurrences -- a method to expedite the evaluation
+//  of closed-form functions
+//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
+//
+//  On computational properties of chains of recurrences
+//  Eugene V. Zima
+//
+//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
+//  Robert A. van Engelen
+//
+//  Efficient Symbolic Analysis for Optimizing Compilers
+//  Robert A. van Engelen
+//
+//  Using the chains of recurrences algebra for data dependence testing and
+//  induction variable substitution
+//  MS Thesis, Johnie Birch
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "scalar-evolution"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/GlobalAlias.h"
+#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Operator.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ConstantRange.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/InstIterator.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NumArrayLenItCounts,
+          "Number of trip counts computed with array length");
+STATISTIC(NumTripCountsComputed,
+          "Number of loops with predictable loop counts");
+STATISTIC(NumTripCountsNotComputed,
+          "Number of loops without predictable loop counts");
+STATISTIC(NumBruteForceTripCountsComputed,
+          "Number of loops with trip counts computed by force");
+
+static cl::opt<unsigned>
+MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
+                        cl::desc("Maximum number of iterations SCEV will "
+                                 "symbolically execute a constant "
+                                 "derived loop"),
+                        cl::init(100));
+
+static RegisterPass<ScalarEvolution>
+R("scalar-evolution", "Scalar Evolution Analysis", false, true);
+char ScalarEvolution::ID = 0;
+
+//===----------------------------------------------------------------------===//
+//                           SCEV class definitions
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Implementation of the SCEV class.
+//
+
+SCEV::~SCEV() {}
+
+void SCEV::dump() const {
+  print(dbgs());
+  dbgs() << '\n';
+}
+
+bool SCEV::isZero() const {
+  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
+    return SC->getValue()->isZero();
+  return false;
+}
+
+bool SCEV::isOne() const {
+  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
+    return SC->getValue()->isOne();
+  return false;
+}
+
+bool SCEV::isAllOnesValue() const {
+  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
+    return SC->getValue()->isAllOnesValue();
+  return false;
+}
+
+SCEVCouldNotCompute::SCEVCouldNotCompute() :
+  SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
+
+bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
+  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
+  return false;
+}
+
+const Type *SCEVCouldNotCompute::getType() const {
+  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
+  return 0;
+}
+
+bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
+  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
+  return false;
+}
+
+bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
+  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
+  return false;
+}
+
+void SCEVCouldNotCompute::print(raw_ostream &OS) const {
+  OS << "***COULDNOTCOMPUTE***";
+}
+
+bool SCEVCouldNotCompute::classof(const SCEV *S) {
+  return S->getSCEVType() == scCouldNotCompute;
+}
+
+const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
+  FoldingSetNodeID ID;
+  ID.AddInteger(scConstant);
+  ID.AddPointer(V);
+  void *IP = 0;
+  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+  SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
+  new (S) SCEVConstant(ID, V);
+  UniqueSCEVs.InsertNode(S, IP);
+  return S;
+}
+
+const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
+  return getConstant(ConstantInt::get(getContext(), Val));
+}
+
+const SCEV *
+ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
+  return getConstant(
+    ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
+}
+
+const Type *SCEVConstant::getType() const { return V->getType(); }
+
+void SCEVConstant::print(raw_ostream &OS) const {
+  WriteAsOperand(OS, V, false);
+}
+
+SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
+                           unsigned SCEVTy, const SCEV *op, const Type *ty)
+  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
+
+bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
+  return Op->dominates(BB, DT);
+}
+
+bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
+  return Op->properlyDominates(BB, DT);
+}
+
+SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
+                                   const SCEV *op, const Type *ty)
+  : SCEVCastExpr(ID, scTruncate, op, ty) {
+  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
+         (Ty->isInteger() || isa<PointerType>(Ty)) &&
+         "Cannot truncate non-integer value!");
+}
+
+void SCEVTruncateExpr::print(raw_ostream &OS) const {
+  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
+}
+
+SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
+                                       const SCEV *op, const Type *ty)
+  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
+  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
+         (Ty->isInteger() || isa<PointerType>(Ty)) &&
+         "Cannot zero extend non-integer value!");
+}
+
+void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
+  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
+}
+
+SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
+                                       const SCEV *op, const Type *ty)
+  : SCEVCastExpr(ID, scSignExtend, op, ty) {
+  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
+         (Ty->isInteger() || isa<PointerType>(Ty)) &&
+         "Cannot sign extend non-integer value!");
+}
+
+void SCEVSignExtendExpr::print(raw_ostream &OS) const {
+  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
+}
+
+void SCEVCommutativeExpr::print(raw_ostream &OS) const {
+  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
+  const char *OpStr = getOperationStr();
+  OS << "(" << *Operands[0];
+  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
+    OS << OpStr << *Operands[i];
+  OS << ")";
+}
+
+bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
+  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+    if (!getOperand(i)->dominates(BB, DT))
+      return false;
+  }
+  return true;
+}
+
+bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
+  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+    if (!getOperand(i)->properlyDominates(BB, DT))
+      return false;
+  }
+  return true;
+}
+
+bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
+  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
+}
+
+bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
+  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
+}
+
+void SCEVUDivExpr::print(raw_ostream &OS) const {
+  OS << "(" << *LHS << " /u " << *RHS << ")";
+}
+
+const Type *SCEVUDivExpr::getType() const {
+  // In most cases the types of LHS and RHS will be the same, but in some
+  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
+  // depend on the type for correctness, but handling types carefully can
+  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
+  // a pointer type than the RHS, so use the RHS' type here.
+  return RHS->getType();
+}
+
+bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
+  // Add recurrences are never invariant in the function-body (null loop).
+  if (!QueryLoop)
+    return false;
+
+  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
+  if (QueryLoop->contains(L))
+    return false;
+
+  // This recurrence is variant w.r.t. QueryLoop if any of its operands
+  // are variant.
+  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+    if (!getOperand(i)->isLoopInvariant(QueryLoop))
+      return false;
+
+  // Otherwise it's loop-invariant.
+  return true;
+}
+
+void SCEVAddRecExpr::print(raw_ostream &OS) const {
+  OS << "{" << *Operands[0];
+  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
+    OS << ",+," << *Operands[i];
+  OS << "}<";
+  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
+  OS << ">";
+}
+
+bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
+  // All non-instruction values are loop invariant.  All instructions are loop
+  // invariant if they are not contained in the specified loop.
+  // Instructions are never considered invariant in the function body
+  // (null loop) because they are defined within the "loop".
+  if (Instruction *I = dyn_cast<Instruction>(V))
+    return L && !L->contains(I);
+  return true;
+}
+
+bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
+  if (Instruction *I = dyn_cast<Instruction>(getValue()))
+    return DT->dominates(I->getParent(), BB);
+  return true;
+}
+
+bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
+  if (Instruction *I = dyn_cast<Instruction>(getValue()))
+    return DT->properlyDominates(I->getParent(), BB);
+  return true;
+}
+
+const Type *SCEVUnknown::getType() const {
+  return V->getType();
+}
+
+bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
+  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
+    if (VCE->getOpcode() == Instruction::PtrToInt)
+      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
+        if (CE->getOpcode() == Instruction::GetElementPtr &&
+            CE->getOperand(0)->isNullValue() &&
+            CE->getNumOperands() == 2)
+          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
+            if (CI->isOne()) {
+              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
+                                 ->getElementType();
+              return true;
+            }
+
+  return false;
+}
+
+bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
+  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
+    if (VCE->getOpcode() == Instruction::PtrToInt)
+      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
+        if (CE->getOpcode() == Instruction::GetElementPtr &&
+            CE->getOperand(0)->isNullValue()) {
+          const Type *Ty =
+            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
+          if (const StructType *STy = dyn_cast<StructType>(Ty))
+            if (!STy->isPacked() &&
+                CE->getNumOperands() == 3 &&
+                CE->getOperand(1)->isNullValue()) {
+              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
+                if (CI->isOne() &&
+                    STy->getNumElements() == 2 &&
+                    STy->getElementType(0)->isInteger(1)) {
+                  AllocTy = STy->getElementType(1);
+                  return true;
+                }
+            }
+        }
+
+  return false;
+}
+
+bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
+  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
+    if (VCE->getOpcode() == Instruction::PtrToInt)
+      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
+        if (CE->getOpcode() == Instruction::GetElementPtr &&
+            CE->getNumOperands() == 3 &&
+            CE->getOperand(0)->isNullValue() &&
+            CE->getOperand(1)->isNullValue()) {
+          const Type *Ty =
+            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
+          // Ignore vector types here so that ScalarEvolutionExpander doesn't
+          // emit getelementptrs that index into vectors.
+          if (isa<StructType>(Ty) || isa<ArrayType>(Ty)) {
+            CTy = Ty;
+            FieldNo = CE->getOperand(2);
+            return true;
+          }
+        }
+
+  return false;
+}
+
+void SCEVUnknown::print(raw_ostream &OS) const {
+  const Type *AllocTy;
+  if (isSizeOf(AllocTy)) {
+    OS << "sizeof(" << *AllocTy << ")";
+    return;
+  }
+  if (isAlignOf(AllocTy)) {
+    OS << "alignof(" << *AllocTy << ")";
+    return;
+  }
+
+  const Type *CTy;
+  Constant *FieldNo;
+  if (isOffsetOf(CTy, FieldNo)) {
+    OS << "offsetof(" << *CTy << ", ";
+    WriteAsOperand(OS, FieldNo, false);
+    OS << ")";
+    return;
+  }
+
+  // Otherwise just print it normally.
+  WriteAsOperand(OS, V, false);
+}
+
+//===----------------------------------------------------------------------===//
+//                               SCEV Utilities
+//===----------------------------------------------------------------------===//
+
+static bool CompareTypes(const Type *A, const Type *B) {
+  if (A->getTypeID() != B->getTypeID())
+    return A->getTypeID() < B->getTypeID();
+  if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
+    const IntegerType *BI = cast<IntegerType>(B);
+    return AI->getBitWidth() < BI->getBitWidth();
+  }
+  if (const PointerType *AI = dyn_cast<PointerType>(A)) {
+    const PointerType *BI = cast<PointerType>(B);
+    return CompareTypes(AI->getElementType(), BI->getElementType());
+  }
+  if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
+    const ArrayType *BI = cast<ArrayType>(B);
+    if (AI->getNumElements() != BI->getNumElements())
+      return AI->getNumElements() < BI->getNumElements();
+    return CompareTypes(AI->getElementType(), BI->getElementType());
+  }
+  if (const VectorType *AI = dyn_cast<VectorType>(A)) {
+    const VectorType *BI = cast<VectorType>(B);
+    if (AI->getNumElements() != BI->getNumElements())
+      return AI->getNumElements() < BI->getNumElements();
+    return CompareTypes(AI->getElementType(), BI->getElementType());
+  }
+  if (const StructType *AI = dyn_cast<StructType>(A)) {
+    const StructType *BI = cast<StructType>(B);
+    if (AI->getNumElements() != BI->getNumElements())
+      return AI->getNumElements() < BI->getNumElements();
+    for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
+      if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
+          CompareTypes(BI->getElementType(i), AI->getElementType(i)))
+        return CompareTypes(AI->getElementType(i), BI->getElementType(i));
+  }
+  return false;
+}
+
+namespace {
+  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
+  /// than the complexity of the RHS.  This comparator is used to canonicalize
+  /// expressions.
+  class SCEVComplexityCompare {
+    LoopInfo *LI;
+  public:
+    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
+
+    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
+      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
+      if (LHS == RHS)
+        return false;
+
+      // Primarily, sort the SCEVs by their getSCEVType().
+      if (LHS->getSCEVType() != RHS->getSCEVType())
+        return LHS->getSCEVType() < RHS->getSCEVType();
+
+      // Aside from the getSCEVType() ordering, the particular ordering
+      // isn't very important except that it's beneficial to be consistent,
+      // so that (a + b) and (b + a) don't end up as different expressions.
+
+      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
+      // not as complete as it could be.
+      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
+        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
+
+        // Order pointer values after integer values. This helps SCEVExpander
+        // form GEPs.
+        if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
+          return false;
+        if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
+          return true;
+
+        // Compare getValueID values.
+        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
+          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
+
+        // Sort arguments by their position.
+        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
+          const Argument *RA = cast<Argument>(RU->getValue());
+          return LA->getArgNo() < RA->getArgNo();
+        }
+
+        // For instructions, compare their loop depth, and their opcode.
+        // This is pretty loose.
+        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
+          Instruction *RV = cast<Instruction>(RU->getValue());
+
+          // Compare loop depths.
+          if (LI->getLoopDepth(LV->getParent()) !=
+              LI->getLoopDepth(RV->getParent()))
+            return LI->getLoopDepth(LV->getParent()) <
+                   LI->getLoopDepth(RV->getParent());
+
+          // Compare opcodes.
+          if (LV->getOpcode() != RV->getOpcode())
+            return LV->getOpcode() < RV->getOpcode();
+
+          // Compare the number of operands.
+          if (LV->getNumOperands() != RV->getNumOperands())
+            return LV->getNumOperands() < RV->getNumOperands();
+        }
+
+        return false;
+      }
+
+      // Compare constant values.
+      if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
+        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
+        if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
+          return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
+        return LC->getValue()->getValue().ult(RC->getValue()->getValue());
+      }
+
+      // Compare addrec loop depths.
+      if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
+        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
+        if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
+          return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
+      }
+
+      // Lexicographically compare n-ary expressions.
+      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
+        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
+        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
+          if (i >= RC->getNumOperands())
+            return false;
+          if (operator()(LC->getOperand(i), RC->getOperand(i)))
+            return true;
+          if (operator()(RC->getOperand(i), LC->getOperand(i)))
+            return false;
+        }
+        return LC->getNumOperands() < RC->getNumOperands();
+      }
+
+      // Lexicographically compare udiv expressions.
+      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
+        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
+        if (operator()(LC->getLHS(), RC->getLHS()))
+          return true;
+        if (operator()(RC->getLHS(), LC->getLHS()))
+          return false;
+        if (operator()(LC->getRHS(), RC->getRHS()))
+          return true;
+        if (operator()(RC->getRHS(), LC->getRHS()))
+          return false;
+        return false;
+      }
+
+      // Compare cast expressions by operand.
+      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
+        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
+        return operator()(LC->getOperand(), RC->getOperand());
+      }
+
+      llvm_unreachable("Unknown SCEV kind!");
+      return false;
+    }
+  };
+}
+
+/// GroupByComplexity - Given a list of SCEV objects, order them by their
+/// complexity, and group objects of the same complexity together by value.
+/// When this routine is finished, we know that any duplicates in the vector are
+/// consecutive and that complexity is monotonically increasing.
+///
+/// Note that we go take special precautions to ensure that we get determinstic
+/// results from this routine.  In other words, we don't want the results of
+/// this to depend on where the addresses of various SCEV objects happened to
+/// land in memory.
+///
+static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
+                              LoopInfo *LI) {
+  if (Ops.size() < 2) return;  // Noop
+  if (Ops.size() == 2) {
+    // This is the common case, which also happens to be trivially simple.
+    // Special case it.
+    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
+      std::swap(Ops[0], Ops[1]);
+    return;
+  }
+
+  // Do the rough sort by complexity.
+  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
+
+  // Now that we are sorted by complexity, group elements of the same
+  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
+  // be extremely short in practice.  Note that we take this approach because we
+  // do not want to depend on the addresses of the objects we are grouping.
+  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
+    const SCEV *S = Ops[i];
+    unsigned Complexity = S->getSCEVType();
+
+    // If there are any objects of the same complexity and same value as this
+    // one, group them.
+    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
+      if (Ops[j] == S) { // Found a duplicate.
+        // Move it to immediately after i'th element.
+        std::swap(Ops[i+1], Ops[j]);
+        ++i;   // no need to rescan it.
+        if (i == e-2) return;  // Done!
+      }
+    }
+  }
+}
+
+
+
+//===----------------------------------------------------------------------===//
+//                      Simple SCEV method implementations
+//===----------------------------------------------------------------------===//
+
+/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
+/// Assume, K > 0.
+static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
+                                       ScalarEvolution &SE,
+                                       const Type* ResultTy) {
+  // Handle the simplest case efficiently.
+  if (K == 1)
+    return SE.getTruncateOrZeroExtend(It, ResultTy);
+
+  // We are using the following formula for BC(It, K):
+  //
+  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
+  //
+  // Suppose, W is the bitwidth of the return value.  We must be prepared for
+  // overflow.  Hence, we must assure that the result of our computation is
+  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
+  // safe in modular arithmetic.
+  //
+  // However, this code doesn't use exactly that formula; the formula it uses
+  // is something like the following, where T is the number of factors of 2 in
+  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
+  // exponentiation:
+  //
+  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
+  //
+  // This formula is trivially equivalent to the previous formula.  However,
+  // this formula can be implemented much more efficiently.  The trick is that
+  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
+  // arithmetic.  To do exact division in modular arithmetic, all we have
+  // to do is multiply by the inverse.  Therefore, this step can be done at
+  // width W.
+  //
+  // The next issue is how to safely do the division by 2^T.  The way this
+  // is done is by doing the multiplication step at a width of at least W + T
+  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
+  // when we perform the division by 2^T (which is equivalent to a right shift
+  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
+  // truncated out after the division by 2^T.
+  //
+  // In comparison to just directly using the first formula, this technique
+  // is much more efficient; using the first formula requires W * K bits,
+  // but this formula less than W + K bits. Also, the first formula requires
+  // a division step, whereas this formula only requires multiplies and shifts.
+  //
+  // It doesn't matter whether the subtraction step is done in the calculation
+  // width or the input iteration count's width; if the subtraction overflows,
+  // the result must be zero anyway.  We prefer here to do it in the width of
+  // the induction variable because it helps a lot for certain cases; CodeGen
+  // isn't smart enough to ignore the overflow, which leads to much less
+  // efficient code if the width of the subtraction is wider than the native
+  // register width.
+  //
+  // (It's possible to not widen at all by pulling out factors of 2 before
+  // the multiplication; for example, K=2 can be calculated as
+  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
+  // extra arithmetic, so it's not an obvious win, and it gets
+  // much more complicated for K > 3.)
+
+  // Protection from insane SCEVs; this bound is conservative,
+  // but it probably doesn't matter.
+  if (K > 1000)
+    return SE.getCouldNotCompute();
+
+  unsigned W = SE.getTypeSizeInBits(ResultTy);
+
+  // Calculate K! / 2^T and T; we divide out the factors of two before
+  // multiplying for calculating K! / 2^T to avoid overflow.
+  // Other overflow doesn't matter because we only care about the bottom
+  // W bits of the result.
+  APInt OddFactorial(W, 1);
+  unsigned T = 1;
+  for (unsigned i = 3; i <= K; ++i) {
+    APInt Mult(W, i);
+    unsigned TwoFactors = Mult.countTrailingZeros();
+    T += TwoFactors;
+    Mult = Mult.lshr(TwoFactors);
+    OddFactorial *= Mult;
+  }
+
+  // We need at least W + T bits for the multiplication step
+  unsigned CalculationBits = W + T;
+
+  // Calcuate 2^T, at width T+W.
+  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
+
+  // Calculate the multiplicative inverse of K! / 2^T;
+  // this multiplication factor will perform the exact division by
+  // K! / 2^T.
+  APInt Mod = APInt::getSignedMinValue(W+1);
+  APInt MultiplyFactor = OddFactorial.zext(W+1);
+  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
+  MultiplyFactor = MultiplyFactor.trunc(W);
+
+  // Calculate the product, at width T+W
+  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
+                                                      CalculationBits);
+  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
+  for (unsigned i = 1; i != K; ++i) {
+    const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
+    Dividend = SE.getMulExpr(Dividend,
+                             SE.getTruncateOrZeroExtend(S, CalculationTy));
+  }
+
+  // Divide by 2^T
+  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
+
+  // Truncate the result, and divide by K! / 2^T.
+
+  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
+                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
+}
+
+/// evaluateAtIteration - Return the value of this chain of recurrences at
+/// the specified iteration number.  We can evaluate this recurrence by
+/// multiplying each element in the chain by the binomial coefficient
+/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
+///
+///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
+///
+/// where BC(It, k) stands for binomial coefficient.
+///
+const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
+                                                ScalarEvolution &SE) const {
+  const SCEV *Result = getStart();
+  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
+    // The computation is correct in the face of overflow provided that the
+    // multiplication is performed _after_ the evaluation of the binomial
+    // coefficient.
+    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
+    if (isa<SCEVCouldNotCompute>(Coeff))
+      return Coeff;
+
+    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
+  }
+  return Result;
+}
+
+//===----------------------------------------------------------------------===//
+//                    SCEV Expression folder implementations
+//===----------------------------------------------------------------------===//
+
+const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
+                                             const Type *Ty) {
+  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
+         "This is not a truncating conversion!");
+  assert(isSCEVable(Ty) &&
+         "This is not a conversion to a SCEVable type!");
+  Ty = getEffectiveSCEVType(Ty);
+
+  FoldingSetNodeID ID;
+  ID.AddInteger(scTruncate);
+  ID.AddPointer(Op);
+  ID.AddPointer(Ty);
+  void *IP = 0;
+  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+
+  // Fold if the operand is constant.
+  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
+    return getConstant(
+      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
+
+  // trunc(trunc(x)) --> trunc(x)
+  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
+    return getTruncateExpr(ST->getOperand(), Ty);
+
+  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
+  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
+    return getTruncateOrSignExtend(SS->getOperand(), Ty);
+
+  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
+  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
+    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
+
+  // If the input value is a chrec scev, truncate the chrec's operands.
+  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
+    SmallVector<const SCEV *, 4> Operands;
+    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
+      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
+    return getAddRecExpr(Operands, AddRec->getLoop());
+  }
+
+  // The cast wasn't folded; create an explicit cast node.
+  // Recompute the insert position, as it may have been invalidated.
+  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+  SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
+  new (S) SCEVTruncateExpr(ID, Op, Ty);
+  UniqueSCEVs.InsertNode(S, IP);
+  return S;
+}
+
+const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
+                                               const Type *Ty) {
+  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
+         "This is not an extending conversion!");
+  assert(isSCEVable(Ty) &&
+         "This is not a conversion to a SCEVable type!");
+  Ty = getEffectiveSCEVType(Ty);
+
+  // Fold if the operand is constant.
+  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
+    const Type *IntTy = getEffectiveSCEVType(Ty);
+    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
+    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
+    return getConstant(cast<ConstantInt>(C));
+  }
+
+  // zext(zext(x)) --> zext(x)
+  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
+    return getZeroExtendExpr(SZ->getOperand(), Ty);
+
+  // Before doing any expensive analysis, check to see if we've already
+  // computed a SCEV for this Op and Ty.
+  FoldingSetNodeID ID;
+  ID.AddInteger(scZeroExtend);
+  ID.AddPointer(Op);
+  ID.AddPointer(Ty);
+  void *IP = 0;
+  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+
+  // If the input value is a chrec scev, and we can prove that the value
+  // did not overflow the old, smaller, value, we can zero extend all of the
+  // operands (often constants).  This allows analysis of something like
+  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
+  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
+    if (AR->isAffine()) {
+      const SCEV *Start = AR->getStart();
+      const SCEV *Step = AR->getStepRecurrence(*this);
+      unsigned BitWidth = getTypeSizeInBits(AR->getType());
+      const Loop *L = AR->getLoop();
+
+      // If we have special knowledge that this addrec won't overflow,
+      // we don't need to do any further analysis.
+      if (AR->hasNoUnsignedWrap())
+        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
+                             getZeroExtendExpr(Step, Ty),
+                             L);
+
+      // Check whether the backedge-taken count is SCEVCouldNotCompute.
+      // Note that this serves two purposes: It filters out loops that are
+      // simply not analyzable, and it covers the case where this code is
+      // being called from within backedge-taken count analysis, such that
+      // attempting to ask for the backedge-taken count would likely result
+      // in infinite recursion. In the later case, the analysis code will
+      // cope with a conservative value, and it will take care to purge
+      // that value once it has finished.
+      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
+      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
+        // Manually compute the final value for AR, checking for
+        // overflow.
+
+        // Check whether the backedge-taken count can be losslessly casted to
+        // the addrec's type. The count is always unsigned.
+        const SCEV *CastedMaxBECount =
+          getTruncateOrZeroExtend(MaxBECount, Start->getType());
+        const SCEV *RecastedMaxBECount =
+          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
+        if (MaxBECount == RecastedMaxBECount) {
+          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
+          // Check whether Start+Step*MaxBECount has no unsigned overflow.
+          const SCEV *ZMul =
+            getMulExpr(CastedMaxBECount,
+                       getTruncateOrZeroExtend(Step, Start->getType()));
+          const SCEV *Add = getAddExpr(Start, ZMul);
+          const SCEV *OperandExtendedAdd =
+            getAddExpr(getZeroExtendExpr(Start, WideTy),
+                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
+                                  getZeroExtendExpr(Step, WideTy)));
+          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
+            // Return the expression with the addrec on the outside.
+            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
+                                 getZeroExtendExpr(Step, Ty),
+                                 L);
+
+          // Similar to above, only this time treat the step value as signed.
+          // This covers loops that count down.
+          const SCEV *SMul =
+            getMulExpr(CastedMaxBECount,
+                       getTruncateOrSignExtend(Step, Start->getType()));
+          Add = getAddExpr(Start, SMul);
+          OperandExtendedAdd =
+            getAddExpr(getZeroExtendExpr(Start, WideTy),
+                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
+                                  getSignExtendExpr(Step, WideTy)));
+          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
+            // Return the expression with the addrec on the outside.
+            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
+                                 getSignExtendExpr(Step, Ty),
+                                 L);
+        }
+
+        // If the backedge is guarded by a comparison with the pre-inc value
+        // the addrec is safe. Also, if the entry is guarded by a comparison
+        // with the start value and the backedge is guarded by a comparison
+        // with the post-inc value, the addrec is safe.
+        if (isKnownPositive(Step)) {
+          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
+                                      getUnsignedRange(Step).getUnsignedMax());
+          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
+              (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
+               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
+                                           AR->getPostIncExpr(*this), N)))
+            // Return the expression with the addrec on the outside.
+            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
+                                 getZeroExtendExpr(Step, Ty),
+                                 L);
+        } else if (isKnownNegative(Step)) {
+          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
+                                      getSignedRange(Step).getSignedMin());
+          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
+              (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
+               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
+                                           AR->getPostIncExpr(*this), N)))
+            // Return the expression with the addrec on the outside.
+            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
+                                 getSignExtendExpr(Step, Ty),
+                                 L);
+        }
+      }
+    }
+
+  // The cast wasn't folded; create an explicit cast node.
+  // Recompute the insert position, as it may have been invalidated.
+  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+  SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
+  new (S) SCEVZeroExtendExpr(ID, Op, Ty);
+  UniqueSCEVs.InsertNode(S, IP);
+  return S;
+}
+
+const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
+                                               const Type *Ty) {
+  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
+         "This is not an extending conversion!");
+  assert(isSCEVable(Ty) &&
+         "This is not a conversion to a SCEVable type!");
+  Ty = getEffectiveSCEVType(Ty);
+
+  // Fold if the operand is constant.
+  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
+    const Type *IntTy = getEffectiveSCEVType(Ty);
+    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
+    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
+    return getConstant(cast<ConstantInt>(C));
+  }
+
+  // sext(sext(x)) --> sext(x)
+  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
+    return getSignExtendExpr(SS->getOperand(), Ty);
+
+  // Before doing any expensive analysis, check to see if we've already
+  // computed a SCEV for this Op and Ty.
+  FoldingSetNodeID ID;
+  ID.AddInteger(scSignExtend);
+  ID.AddPointer(Op);
+  ID.AddPointer(Ty);
+  void *IP = 0;
+  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+
+  // If the input value is a chrec scev, and we can prove that the value
+  // did not overflow the old, smaller, value, we can sign extend all of the
+  // operands (often constants).  This allows analysis of something like
+  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
+  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
+    if (AR->isAffine()) {
+      const SCEV *Start = AR->getStart();
+      const SCEV *Step = AR->getStepRecurrence(*this);
+      unsigned BitWidth = getTypeSizeInBits(AR->getType());
+      const Loop *L = AR->getLoop();
+
+      // If we have special knowledge that this addrec won't overflow,
+      // we don't need to do any further analysis.
+      if (AR->hasNoSignedWrap())
+        return getAddRecExpr(getSignExtendExpr(Start, Ty),
+                             getSignExtendExpr(Step, Ty),
+                             L);
+
+      // Check whether the backedge-taken count is SCEVCouldNotCompute.
+      // Note that this serves two purposes: It filters out loops that are
+      // simply not analyzable, and it covers the case where this code is
+      // being called from within backedge-taken count analysis, such that
+      // attempting to ask for the backedge-taken count would likely result
+      // in infinite recursion. In the later case, the analysis code will
+      // cope with a conservative value, and it will take care to purge
+      // that value once it has finished.
+      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
+      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
+        // Manually compute the final value for AR, checking for
+        // overflow.
+
+        // Check whether the backedge-taken count can be losslessly casted to
+        // the addrec's type. The count is always unsigned.
+        const SCEV *CastedMaxBECount =
+          getTruncateOrZeroExtend(MaxBECount, Start->getType());
+        const SCEV *RecastedMaxBECount =
+          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
+        if (MaxBECount == RecastedMaxBECount) {
+          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
+          // Check whether Start+Step*MaxBECount has no signed overflow.
+          const SCEV *SMul =
+            getMulExpr(CastedMaxBECount,
+                       getTruncateOrSignExtend(Step, Start->getType()));
+          const SCEV *Add = getAddExpr(Start, SMul);
+          const SCEV *OperandExtendedAdd =
+            getAddExpr(getSignExtendExpr(Start, WideTy),
+                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
+                                  getSignExtendExpr(Step, WideTy)));
+          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
+            // Return the expression with the addrec on the outside.
+            return getAddRecExpr(getSignExtendExpr(Start, Ty),
+                                 getSignExtendExpr(Step, Ty),
+                                 L);
+
+          // Similar to above, only this time treat the step value as unsigned.
+          // This covers loops that count up with an unsigned step.
+          const SCEV *UMul =
+            getMulExpr(CastedMaxBECount,
+                       getTruncateOrZeroExtend(Step, Start->getType()));
+          Add = getAddExpr(Start, UMul);
+          OperandExtendedAdd =
+            getAddExpr(getSignExtendExpr(Start, WideTy),
+                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
+                                  getZeroExtendExpr(Step, WideTy)));
+          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
+            // Return the expression with the addrec on the outside.
+            return getAddRecExpr(getSignExtendExpr(Start, Ty),
+                                 getZeroExtendExpr(Step, Ty),
+                                 L);
+        }
+
+        // If the backedge is guarded by a comparison with the pre-inc value
+        // the addrec is safe. Also, if the entry is guarded by a comparison
+        // with the start value and the backedge is guarded by a comparison
+        // with the post-inc value, the addrec is safe.
+        if (isKnownPositive(Step)) {
+          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
+                                      getSignedRange(Step).getSignedMax());
+          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
+              (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
+               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
+                                           AR->getPostIncExpr(*this), N)))
+            // Return the expression with the addrec on the outside.
+            return getAddRecExpr(getSignExtendExpr(Start, Ty),
+                                 getSignExtendExpr(Step, Ty),
+                                 L);
+        } else if (isKnownNegative(Step)) {
+          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
+                                      getSignedRange(Step).getSignedMin());
+          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
+              (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
+               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
+                                           AR->getPostIncExpr(*this), N)))
+            // Return the expression with the addrec on the outside.
+            return getAddRecExpr(getSignExtendExpr(Start, Ty),
+                                 getSignExtendExpr(Step, Ty),
+                                 L);
+        }
+      }
+    }
+
+  // The cast wasn't folded; create an explicit cast node.
+  // Recompute the insert position, as it may have been invalidated.
+  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+  SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
+  new (S) SCEVSignExtendExpr(ID, Op, Ty);
+  UniqueSCEVs.InsertNode(S, IP);
+  return S;
+}
+
+/// getAnyExtendExpr - Return a SCEV for the given operand extended with
+/// unspecified bits out to the given type.
+///
+const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
+                                              const Type *Ty) {
+  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
+         "This is not an extending conversion!");
+  assert(isSCEVable(Ty) &&
+         "This is not a conversion to a SCEVable type!");
+  Ty = getEffectiveSCEVType(Ty);
+
+  // Sign-extend negative constants.
+  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
+    if (SC->getValue()->getValue().isNegative())
+      return getSignExtendExpr(Op, Ty);
+
+  // Peel off a truncate cast.
+  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
+    const SCEV *NewOp = T->getOperand();
+    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
+      return getAnyExtendExpr(NewOp, Ty);
+    return getTruncateOrNoop(NewOp, Ty);
+  }
+
+  // Next try a zext cast. If the cast is folded, use it.
+  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
+  if (!isa<SCEVZeroExtendExpr>(ZExt))
+    return ZExt;
+
+  // Next try a sext cast. If the cast is folded, use it.
+  const SCEV *SExt = getSignExtendExpr(Op, Ty);
+  if (!isa<SCEVSignExtendExpr>(SExt))
+    return SExt;
+
+  // Force the cast to be folded into the operands of an addrec.
+  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
+    SmallVector<const SCEV *, 4> Ops;
+    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
+         I != E; ++I)
+      Ops.push_back(getAnyExtendExpr(*I, Ty));
+    return getAddRecExpr(Ops, AR->getLoop());
+  }
+
+  // If the expression is obviously signed, use the sext cast value.
+  if (isa<SCEVSMaxExpr>(Op))
+    return SExt;
+
+  // Absent any other information, use the zext cast value.
+  return ZExt;
+}
+
+/// CollectAddOperandsWithScales - Process the given Ops list, which is
+/// a list of operands to be added under the given scale, update the given
+/// map. This is a helper function for getAddRecExpr. As an example of
+/// what it does, given a sequence of operands that would form an add
+/// expression like this:
+///
+///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
+///
+/// where A and B are constants, update the map with these values:
+///
+///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
+///
+/// and add 13 + A*B*29 to AccumulatedConstant.
+/// This will allow getAddRecExpr to produce this:
+///
+///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
+///
+/// This form often exposes folding opportunities that are hidden in
+/// the original operand list.
+///
+/// Return true iff it appears that any interesting folding opportunities
+/// may be exposed. This helps getAddRecExpr short-circuit extra work in
+/// the common case where no interesting opportunities are present, and
+/// is also used as a check to avoid infinite recursion.
+///
+static bool
+CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
+                             SmallVector<const SCEV *, 8> &NewOps,
+                             APInt &AccumulatedConstant,
+                             const SmallVectorImpl<const SCEV *> &Ops,
+                             const APInt &Scale,
+                             ScalarEvolution &SE) {
+  bool Interesting = false;
+
+  // Iterate over the add operands.
+  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
+    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
+      APInt NewScale =
+        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
+      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
+        // A multiplication of a constant with another add; recurse.
+        Interesting |=
+          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
+                                       cast<SCEVAddExpr>(Mul->getOperand(1))
+                                         ->getOperands(),
+                                       NewScale, SE);
+      } else {
+        // A multiplication of a constant with some other value. Update
+        // the map.
+        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
+        const SCEV *Key = SE.getMulExpr(MulOps);
+        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
+          M.insert(std::make_pair(Key, NewScale));
+        if (Pair.second) {
+          NewOps.push_back(Pair.first->first);
+        } else {
+          Pair.first->second += NewScale;
+          // The map already had an entry for this value, which may indicate
+          // a folding opportunity.
+          Interesting = true;
+        }
+      }
+    } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
+      // Pull a buried constant out to the outside.
+      if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
+        Interesting = true;
+      AccumulatedConstant += Scale * C->getValue()->getValue();
+    } else {
+      // An ordinary operand. Update the map.
+      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
+        M.insert(std::make_pair(Ops[i], Scale));
+      if (Pair.second) {
+        NewOps.push_back(Pair.first->first);
+      } else {
+        Pair.first->second += Scale;
+        // The map already had an entry for this value, which may indicate
+        // a folding opportunity.
+        Interesting = true;
+      }
+    }
+  }
+
+  return Interesting;
+}
+
+namespace {
+  struct APIntCompare {
+    bool operator()(const APInt &LHS, const APInt &RHS) const {
+      return LHS.ult(RHS);
+    }
+  };
+}
+
+/// getAddExpr - Get a canonical add expression, or something simpler if
+/// possible.
+const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
+                                        bool HasNUW, bool HasNSW) {
+  assert(!Ops.empty() && "Cannot get empty add!");
+  if (Ops.size() == 1) return Ops[0];
+#ifndef NDEBUG
+  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
+    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
+           getEffectiveSCEVType(Ops[0]->getType()) &&
+           "SCEVAddExpr operand types don't match!");
+#endif
+
+  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
+  if (!HasNUW && HasNSW) {
+    bool All = true;
+    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+      if (!isKnownNonNegative(Ops[i])) {
+        All = false;
+        break;
+      }
+    if (All) HasNUW = true;
+  }
+
+  // Sort by complexity, this groups all similar expression types together.
+  GroupByComplexity(Ops, LI);
+
+  // If there are any constants, fold them together.
+  unsigned Idx = 0;
+  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
+    ++Idx;
+    assert(Idx < Ops.size());
+    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
+      // We found two constants, fold them together!
+      Ops[0] = getConstant(LHSC->getValue()->getValue() +
+                           RHSC->getValue()->getValue());
+      if (Ops.size() == 2) return Ops[0];
+      Ops.erase(Ops.begin()+1);  // Erase the folded element
+      LHSC = cast<SCEVConstant>(Ops[0]);
+    }
+
+    // If we are left with a constant zero being added, strip it off.
+    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
+      Ops.erase(Ops.begin());
+      --Idx;
+    }
+  }
+
+  if (Ops.size() == 1) return Ops[0];
+
+  // Okay, check to see if the same value occurs in the operand list twice.  If
+  // so, merge them together into an multiply expression.  Since we sorted the
+  // list, these values are required to be adjacent.
+  const Type *Ty = Ops[0]->getType();
+  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
+    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
+      // Found a match, merge the two values into a multiply, and add any
+      // remaining values to the result.
+      const SCEV *Two = getIntegerSCEV(2, Ty);
+      const SCEV *Mul = getMulExpr(Ops[i], Two);
+      if (Ops.size() == 2)
+        return Mul;
+      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
+      Ops.push_back(Mul);
+      return getAddExpr(Ops, HasNUW, HasNSW);
+    }
+
+  // Check for truncates. If all the operands are truncated from the same
+  // type, see if factoring out the truncate would permit the result to be
+  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
+  // if the contents of the resulting outer trunc fold to something simple.
+  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
+    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
+    const Type *DstType = Trunc->getType();
+    const Type *SrcType = Trunc->getOperand()->getType();
+    SmallVector<const SCEV *, 8> LargeOps;
+    bool Ok = true;
+    // Check all the operands to see if they can be represented in the
+    // source type of the truncate.
+    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
+        if (T->getOperand()->getType() != SrcType) {
+          Ok = false;
+          break;
+        }
+        LargeOps.push_back(T->getOperand());
+      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
+        // This could be either sign or zero extension, but sign extension
+        // is much more likely to be foldable here.
+        LargeOps.push_back(getSignExtendExpr(C, SrcType));
+      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
+        SmallVector<const SCEV *, 8> LargeMulOps;
+        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
+          if (const SCEVTruncateExpr *T =
+                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
+            if (T->getOperand()->getType() != SrcType) {
+              Ok = false;
+              break;
+            }
+            LargeMulOps.push_back(T->getOperand());
+          } else if (const SCEVConstant *C =
+                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
+            // This could be either sign or zero extension, but sign extension
+            // is much more likely to be foldable here.
+            LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
+          } else {
+            Ok = false;
+            break;
+          }
+        }
+        if (Ok)
+          LargeOps.push_back(getMulExpr(LargeMulOps));
+      } else {
+        Ok = false;
+        break;
+      }
+    }
+    if (Ok) {
+      // Evaluate the expression in the larger type.
+      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
+      // If it folds to something simple, use it. Otherwise, don't.
+      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
+        return getTruncateExpr(Fold, DstType);
+    }
+  }
+
+  // Skip past any other cast SCEVs.
+  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
+    ++Idx;
+
+  // If there are add operands they would be next.
+  if (Idx < Ops.size()) {
+    bool DeletedAdd = false;
+    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
+      // If we have an add, expand the add operands onto the end of the operands
+      // list.
+      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
+      Ops.erase(Ops.begin()+Idx);
+      DeletedAdd = true;
+    }
+
+    // If we deleted at least one add, we added operands to the end of the list,
+    // and they are not necessarily sorted.  Recurse to resort and resimplify
+    // any operands we just aquired.
+    if (DeletedAdd)
+      return getAddExpr(Ops);
+  }
+
+  // Skip over the add expression until we get to a multiply.
+  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
+    ++Idx;
+
+  // Check to see if there are any folding opportunities present with
+  // operands multiplied by constant values.
+  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
+    uint64_t BitWidth = getTypeSizeInBits(Ty);
+    DenseMap<const SCEV *, APInt> M;
+    SmallVector<const SCEV *, 8> NewOps;
+    APInt AccumulatedConstant(BitWidth, 0);
+    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
+                                     Ops, APInt(BitWidth, 1), *this)) {
+      // Some interesting folding opportunity is present, so its worthwhile to
+      // re-generate the operands list. Group the operands by constant scale,
+      // to avoid multiplying by the same constant scale multiple times.
+      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
+      for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
+           E = NewOps.end(); I != E; ++I)
+        MulOpLists[M.find(*I)->second].push_back(*I);
+      // Re-generate the operands list.
+      Ops.clear();
+      if (AccumulatedConstant != 0)
+        Ops.push_back(getConstant(AccumulatedConstant));
+      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
+           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
+        if (I->first != 0)
+          Ops.push_back(getMulExpr(getConstant(I->first),
+                                   getAddExpr(I->second)));
+      if (Ops.empty())
+        return getIntegerSCEV(0, Ty);
+      if (Ops.size() == 1)
+        return Ops[0];
+      return getAddExpr(Ops);
+    }
+  }
+
+  // If we are adding something to a multiply expression, make sure the
+  // something is not already an operand of the multiply.  If so, merge it into
+  // the multiply.
+  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
+    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
+    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
+      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
+      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
+        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
+          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
+          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
+          if (Mul->getNumOperands() != 2) {
+            // If the multiply has more than two operands, we must get the
+            // Y*Z term.
+            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
+            MulOps.erase(MulOps.begin()+MulOp);
+            InnerMul = getMulExpr(MulOps);
+          }
+          const SCEV *One = getIntegerSCEV(1, Ty);
+          const SCEV *AddOne = getAddExpr(InnerMul, One);
+          const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
+          if (Ops.size() == 2) return OuterMul;
+          if (AddOp < Idx) {
+            Ops.erase(Ops.begin()+AddOp);
+            Ops.erase(Ops.begin()+Idx-1);
+          } else {
+            Ops.erase(Ops.begin()+Idx);
+            Ops.erase(Ops.begin()+AddOp-1);
+          }
+          Ops.push_back(OuterMul);
+          return getAddExpr(Ops);
+        }
+
+      // Check this multiply against other multiplies being added together.
+      for (unsigned OtherMulIdx = Idx+1;
+           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
+           ++OtherMulIdx) {
+        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
+        // If MulOp occurs in OtherMul, we can fold the two multiplies
+        // together.
+        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
+             OMulOp != e; ++OMulOp)
+          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
+            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
+            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
+            if (Mul->getNumOperands() != 2) {
+              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
+                                                  Mul->op_end());
+              MulOps.erase(MulOps.begin()+MulOp);
+              InnerMul1 = getMulExpr(MulOps);
+            }
+            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
+            if (OtherMul->getNumOperands() != 2) {
+              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
+                                                  OtherMul->op_end());
+              MulOps.erase(MulOps.begin()+OMulOp);
+              InnerMul2 = getMulExpr(MulOps);
+            }
+            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
+            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
+            if (Ops.size() == 2) return OuterMul;
+            Ops.erase(Ops.begin()+Idx);
+            Ops.erase(Ops.begin()+OtherMulIdx-1);
+            Ops.push_back(OuterMul);
+            return getAddExpr(Ops);
+          }
+      }
+    }
+  }
+
+  // If there are any add recurrences in the operands list, see if any other
+  // added values are loop invariant.  If so, we can fold them into the
+  // recurrence.
+  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
+    ++Idx;
+
+  // Scan over all recurrences, trying to fold loop invariants into them.
+  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
+    // Scan all of the other operands to this add and add them to the vector if
+    // they are loop invariant w.r.t. the recurrence.
+    SmallVector<const SCEV *, 8> LIOps;
+    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
+    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
+        LIOps.push_back(Ops[i]);
+        Ops.erase(Ops.begin()+i);
+        --i; --e;
+      }
+
+    // If we found some loop invariants, fold them into the recurrence.
+    if (!LIOps.empty()) {
+      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
+      LIOps.push_back(AddRec->getStart());
+
+      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
+                                             AddRec->op_end());
+      AddRecOps[0] = getAddExpr(LIOps);
+
+      // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
+      // is not associative so this isn't necessarily safe.
+      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
+
+      // If all of the other operands were loop invariant, we are done.
+      if (Ops.size() == 1) return NewRec;
+
+      // Otherwise, add the folded AddRec by the non-liv parts.
+      for (unsigned i = 0;; ++i)
+        if (Ops[i] == AddRec) {
+          Ops[i] = NewRec;
+          break;
+        }
+      return getAddExpr(Ops);
+    }
+
+    // Okay, if there weren't any loop invariants to be folded, check to see if
+    // there are multiple AddRec's with the same loop induction variable being
+    // added together.  If so, we can fold them.
+    for (unsigned OtherIdx = Idx+1;
+         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
+      if (OtherIdx != Idx) {
+        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
+        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
+          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
+          SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
+                                              AddRec->op_end());
+          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
+            if (i >= NewOps.size()) {
+              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
+                            OtherAddRec->op_end());
+              break;
+            }
+            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
+          }
+          const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
+
+          if (Ops.size() == 2) return NewAddRec;
+
+          Ops.erase(Ops.begin()+Idx);
+          Ops.erase(Ops.begin()+OtherIdx-1);
+          Ops.push_back(NewAddRec);
+          return getAddExpr(Ops);
+        }
+      }
+
+    // Otherwise couldn't fold anything into this recurrence.  Move onto the
+    // next one.
+  }
+
+  // Okay, it looks like we really DO need an add expr.  Check to see if we
+  // already have one, otherwise create a new one.
+  FoldingSetNodeID ID;
+  ID.AddInteger(scAddExpr);
+  ID.AddInteger(Ops.size());
+  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+    ID.AddPointer(Ops[i]);
+  void *IP = 0;
+  SCEVAddExpr *S =
+    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
+  if (!S) {
+    S = SCEVAllocator.Allocate<SCEVAddExpr>();
+    new (S) SCEVAddExpr(ID, Ops);
+    UniqueSCEVs.InsertNode(S, IP);
+  }
+  if (HasNUW) S->setHasNoUnsignedWrap(true);
+  if (HasNSW) S->setHasNoSignedWrap(true);
+  return S;
+}
+
+/// getMulExpr - Get a canonical multiply expression, or something simpler if
+/// possible.
+const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
+                                        bool HasNUW, bool HasNSW) {
+  assert(!Ops.empty() && "Cannot get empty mul!");
+  if (Ops.size() == 1) return Ops[0];
+#ifndef NDEBUG
+  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
+    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
+           getEffectiveSCEVType(Ops[0]->getType()) &&
+           "SCEVMulExpr operand types don't match!");
+#endif
+
+  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
+  if (!HasNUW && HasNSW) {
+    bool All = true;
+    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+      if (!isKnownNonNegative(Ops[i])) {
+        All = false;
+        break;
+      }
+    if (All) HasNUW = true;
+  }
+
+  // Sort by complexity, this groups all similar expression types together.
+  GroupByComplexity(Ops, LI);
+
+  // If there are any constants, fold them together.
+  unsigned Idx = 0;
+  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
+
+    // C1*(C2+V) -> C1*C2 + C1*V
+    if (Ops.size() == 2)
+      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
+        if (Add->getNumOperands() == 2 &&
+            isa<SCEVConstant>(Add->getOperand(0)))
+          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
+                            getMulExpr(LHSC, Add->getOperand(1)));
+
+    ++Idx;
+    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
+      // We found two constants, fold them together!
+      ConstantInt *Fold = ConstantInt::get(getContext(),
+                                           LHSC->getValue()->getValue() *
+                                           RHSC->getValue()->getValue());
+      Ops[0] = getConstant(Fold);
+      Ops.erase(Ops.begin()+1);  // Erase the folded element
+      if (Ops.size() == 1) return Ops[0];
+      LHSC = cast<SCEVConstant>(Ops[0]);
+    }
+
+    // If we are left with a constant one being multiplied, strip it off.
+    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
+      Ops.erase(Ops.begin());
+      --Idx;
+    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
+      // If we have a multiply of zero, it will always be zero.
+      return Ops[0];
+    } else if (Ops[0]->isAllOnesValue()) {
+      // If we have a mul by -1 of an add, try distributing the -1 among the
+      // add operands.
+      if (Ops.size() == 2)
+        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
+          SmallVector<const SCEV *, 4> NewOps;
+          bool AnyFolded = false;
+          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
+               I != E; ++I) {
+            const SCEV *Mul = getMulExpr(Ops[0], *I);
+            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
+            NewOps.push_back(Mul);
+          }
+          if (AnyFolded)
+            return getAddExpr(NewOps);
+        }
+    }
+  }
+
+  // Skip over the add expression until we get to a multiply.
+  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
+    ++Idx;
+
+  if (Ops.size() == 1)
+    return Ops[0];
+
+  // If there are mul operands inline them all into this expression.
+  if (Idx < Ops.size()) {
+    bool DeletedMul = false;
+    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
+      // If we have an mul, expand the mul operands onto the end of the operands
+      // list.
+      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
+      Ops.erase(Ops.begin()+Idx);
+      DeletedMul = true;
+    }
+
+    // If we deleted at least one mul, we added operands to the end of the list,
+    // and they are not necessarily sorted.  Recurse to resort and resimplify
+    // any operands we just aquired.
+    if (DeletedMul)
+      return getMulExpr(Ops);
+  }
+
+  // If there are any add recurrences in the operands list, see if any other
+  // added values are loop invariant.  If so, we can fold them into the
+  // recurrence.
+  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
+    ++Idx;
+
+  // Scan over all recurrences, trying to fold loop invariants into them.
+  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
+    // Scan all of the other operands to this mul and add them to the vector if
+    // they are loop invariant w.r.t. the recurrence.
+    SmallVector<const SCEV *, 8> LIOps;
+    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
+    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
+        LIOps.push_back(Ops[i]);
+        Ops.erase(Ops.begin()+i);
+        --i; --e;
+      }
+
+    // If we found some loop invariants, fold them into the recurrence.
+    if (!LIOps.empty()) {
+      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
+      SmallVector<const SCEV *, 4> NewOps;
+      NewOps.reserve(AddRec->getNumOperands());
+      if (LIOps.size() == 1) {
+        const SCEV *Scale = LIOps[0];
+        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
+          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
+      } else {
+        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
+          SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
+          MulOps.push_back(AddRec->getOperand(i));
+          NewOps.push_back(getMulExpr(MulOps));
+        }
+      }
+
+      // It's tempting to propagate the NSW flag here, but nsw multiplication
+      // is not associative so this isn't necessarily safe.
+      const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
+                                         HasNUW && AddRec->hasNoUnsignedWrap(),
+                                         /*HasNSW=*/false);
+
+      // If all of the other operands were loop invariant, we are done.
+      if (Ops.size() == 1) return NewRec;
+
+      // Otherwise, multiply the folded AddRec by the non-liv parts.
+      for (unsigned i = 0;; ++i)
+        if (Ops[i] == AddRec) {
+          Ops[i] = NewRec;
+          break;
+        }
+      return getMulExpr(Ops);
+    }
+
+    // Okay, if there weren't any loop invariants to be folded, check to see if
+    // there are multiple AddRec's with the same loop induction variable being
+    // multiplied together.  If so, we can fold them.
+    for (unsigned OtherIdx = Idx+1;
+         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
+      if (OtherIdx != Idx) {
+        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
+        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
+          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
+          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
+          const SCEV *NewStart = getMulExpr(F->getStart(),
+                                                 G->getStart());
+          const SCEV *B = F->getStepRecurrence(*this);
+          const SCEV *D = G->getStepRecurrence(*this);
+          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
+                                          getMulExpr(G, B),
+                                          getMulExpr(B, D));
+          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
+                                               F->getLoop());
+          if (Ops.size() == 2) return NewAddRec;
+
+          Ops.erase(Ops.begin()+Idx);
+          Ops.erase(Ops.begin()+OtherIdx-1);
+          Ops.push_back(NewAddRec);
+          return getMulExpr(Ops);
+        }
+      }
+
+    // Otherwise couldn't fold anything into this recurrence.  Move onto the
+    // next one.
+  }
+
+  // Okay, it looks like we really DO need an mul expr.  Check to see if we
+  // already have one, otherwise create a new one.
+  FoldingSetNodeID ID;
+  ID.AddInteger(scMulExpr);
+  ID.AddInteger(Ops.size());
+  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+    ID.AddPointer(Ops[i]);
+  void *IP = 0;
+  SCEVMulExpr *S =
+    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
+  if (!S) {
+    S = SCEVAllocator.Allocate<SCEVMulExpr>();
+    new (S) SCEVMulExpr(ID, Ops);
+    UniqueSCEVs.InsertNode(S, IP);
+  }
+  if (HasNUW) S->setHasNoUnsignedWrap(true);
+  if (HasNSW) S->setHasNoSignedWrap(true);
+  return S;
+}
+
+/// getUDivExpr - Get a canonical unsigned division expression, or something
+/// simpler if possible.
+const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
+                                         const SCEV *RHS) {
+  assert(getEffectiveSCEVType(LHS->getType()) ==
+         getEffectiveSCEVType(RHS->getType()) &&
+         "SCEVUDivExpr operand types don't match!");
+
+  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
+    if (RHSC->getValue()->equalsInt(1))
+      return LHS;                               // X udiv 1 --> x
+    if (RHSC->isZero())
+      return getIntegerSCEV(0, LHS->getType()); // value is undefined
+
+    // Determine if the division can be folded into the operands of
+    // its operands.
+    // TODO: Generalize this to non-constants by using known-bits information.
+    const Type *Ty = LHS->getType();
+    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
+    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
+    // For non-power-of-two values, effectively round the value up to the
+    // nearest power of two.
+    if (!RHSC->getValue()->getValue().isPowerOf2())
+      ++MaxShiftAmt;
+    const IntegerType *ExtTy =
+      IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
+    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
+    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
+      if (const SCEVConstant *Step =
+            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
+        if (!Step->getValue()->getValue()
+              .urem(RHSC->getValue()->getValue()) &&
+            getZeroExtendExpr(AR, ExtTy) ==
+            getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
+                          getZeroExtendExpr(Step, ExtTy),
+                          AR->getLoop())) {
+          SmallVector<const SCEV *, 4> Operands;
+          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
+            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
+          return getAddRecExpr(Operands, AR->getLoop());
+        }
+    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
+    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
+      SmallVector<const SCEV *, 4> Operands;
+      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
+        Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
+      if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
+        // Find an operand that's safely divisible.
+        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
+          const SCEV *Op = M->getOperand(i);
+          const SCEV *Div = getUDivExpr(Op, RHSC);
+          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
+            const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
+            Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
+                                                  MOperands.end());
+            Operands[i] = Div;
+            return getMulExpr(Operands);
+          }
+        }
+    }
+    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
+    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
+      SmallVector<const SCEV *, 4> Operands;
+      for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
+        Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
+      if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
+        Operands.clear();
+        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
+          const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
+          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
+            break;
+          Operands.push_back(Op);
+        }
+        if (Operands.size() == A->getNumOperands())
+          return getAddExpr(Operands);
+      }
+    }
+
+    // Fold if both operands are constant.
+    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
+      Constant *LHSCV = LHSC->getValue();
+      Constant *RHSCV = RHSC->getValue();
+      return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
+                                                                 RHSCV)));
+    }
+  }
+
+  FoldingSetNodeID ID;
+  ID.AddInteger(scUDivExpr);
+  ID.AddPointer(LHS);
+  ID.AddPointer(RHS);
+  void *IP = 0;
+  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+  SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
+  new (S) SCEVUDivExpr(ID, LHS, RHS);
+  UniqueSCEVs.InsertNode(S, IP);
+  return S;
+}
+
+
+/// getAddRecExpr - Get an add recurrence expression for the specified loop.
+/// Simplify the expression as much as possible.
+const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
+                                           const SCEV *Step, const Loop *L,
+                                           bool HasNUW, bool HasNSW) {
+  SmallVector<const SCEV *, 4> Operands;
+  Operands.push_back(Start);
+  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
+    if (StepChrec->getLoop() == L) {
+      Operands.insert(Operands.end(), StepChrec->op_begin(),
+                      StepChrec->op_end());
+      return getAddRecExpr(Operands, L);
+    }
+
+  Operands.push_back(Step);
+  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
+}
+
+/// getAddRecExpr - Get an add recurrence expression for the specified loop.
+/// Simplify the expression as much as possible.
+const SCEV *
+ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
+                               const Loop *L,
+                               bool HasNUW, bool HasNSW) {
+  if (Operands.size() == 1) return Operands[0];
+#ifndef NDEBUG
+  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
+    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
+           getEffectiveSCEVType(Operands[0]->getType()) &&
+           "SCEVAddRecExpr operand types don't match!");
+#endif
+
+  if (Operands.back()->isZero()) {
+    Operands.pop_back();
+    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
+  }
+
+  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
+  if (!HasNUW && HasNSW) {
+    bool All = true;
+    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
+      if (!isKnownNonNegative(Operands[i])) {
+        All = false;
+        break;
+      }
+    if (All) HasNUW = true;
+  }
+
+  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
+  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
+    const Loop *NestedLoop = NestedAR->getLoop();
+    if (L->contains(NestedLoop->getHeader()) ?
+        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
+        (!NestedLoop->contains(L->getHeader()) &&
+         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
+      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
+                                                  NestedAR->op_end());
+      Operands[0] = NestedAR->getStart();
+      // AddRecs require their operands be loop-invariant with respect to their
+      // loops. Don't perform this transformation if it would break this
+      // requirement.
+      bool AllInvariant = true;
+      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
+        if (!Operands[i]->isLoopInvariant(L)) {
+          AllInvariant = false;
+          break;
+        }
+      if (AllInvariant) {
+        NestedOperands[0] = getAddRecExpr(Operands, L);
+        AllInvariant = true;
+        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
+          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
+            AllInvariant = false;
+            break;
+          }
+        if (AllInvariant)
+          // Ok, both add recurrences are valid after the transformation.
+          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
+      }
+      // Reset Operands to its original state.
+      Operands[0] = NestedAR;
+    }
+  }
+
+  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
+  // already have one, otherwise create a new one.
+  FoldingSetNodeID ID;
+  ID.AddInteger(scAddRecExpr);
+  ID.AddInteger(Operands.size());
+  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
+    ID.AddPointer(Operands[i]);
+  ID.AddPointer(L);
+  void *IP = 0;
+  SCEVAddRecExpr *S =
+    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
+  if (!S) {
+    S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
+    new (S) SCEVAddRecExpr(ID, Operands, L);
+    UniqueSCEVs.InsertNode(S, IP);
+  }
+  if (HasNUW) S->setHasNoUnsignedWrap(true);
+  if (HasNSW) S->setHasNoSignedWrap(true);
+  return S;
+}
+
+const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
+                                         const SCEV *RHS) {
+  SmallVector<const SCEV *, 2> Ops;
+  Ops.push_back(LHS);
+  Ops.push_back(RHS);
+  return getSMaxExpr(Ops);
+}
+
+const SCEV *
+ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
+  assert(!Ops.empty() && "Cannot get empty smax!");
+  if (Ops.size() == 1) return Ops[0];
+#ifndef NDEBUG
+  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
+    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
+           getEffectiveSCEVType(Ops[0]->getType()) &&
+           "SCEVSMaxExpr operand types don't match!");
+#endif
+
+  // Sort by complexity, this groups all similar expression types together.
+  GroupByComplexity(Ops, LI);
+
+  // If there are any constants, fold them together.
+  unsigned Idx = 0;
+  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
+    ++Idx;
+    assert(Idx < Ops.size());
+    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
+      // We found two constants, fold them together!
+      ConstantInt *Fold = ConstantInt::get(getContext(),
+                              APIntOps::smax(LHSC->getValue()->getValue(),
+                                             RHSC->getValue()->getValue()));
+      Ops[0] = getConstant(Fold);
+      Ops.erase(Ops.begin()+1);  // Erase the folded element
+      if (Ops.size() == 1) return Ops[0];
+      LHSC = cast<SCEVConstant>(Ops[0]);
+    }
+
+    // If we are left with a constant minimum-int, strip it off.
+    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
+      Ops.erase(Ops.begin());
+      --Idx;
+    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
+      // If we have an smax with a constant maximum-int, it will always be
+      // maximum-int.
+      return Ops[0];
+    }
+  }
+
+  if (Ops.size() == 1) return Ops[0];
+
+  // Find the first SMax
+  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
+    ++Idx;
+
+  // Check to see if one of the operands is an SMax. If so, expand its operands
+  // onto our operand list, and recurse to simplify.
+  if (Idx < Ops.size()) {
+    bool DeletedSMax = false;
+    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
+      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
+      Ops.erase(Ops.begin()+Idx);
+      DeletedSMax = true;
+    }
+
+    if (DeletedSMax)
+      return getSMaxExpr(Ops);
+  }
+
+  // Okay, check to see if the same value occurs in the operand list twice.  If
+  // so, delete one.  Since we sorted the list, these values are required to
+  // be adjacent.
+  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
+    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
+      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
+      --i; --e;
+    }
+
+  if (Ops.size() == 1) return Ops[0];
+
+  assert(!Ops.empty() && "Reduced smax down to nothing!");
+
+  // Okay, it looks like we really DO need an smax expr.  Check to see if we
+  // already have one, otherwise create a new one.
+  FoldingSetNodeID ID;
+  ID.AddInteger(scSMaxExpr);
+  ID.AddInteger(Ops.size());
+  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+    ID.AddPointer(Ops[i]);
+  void *IP = 0;
+  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+  SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
+  new (S) SCEVSMaxExpr(ID, Ops);
+  UniqueSCEVs.InsertNode(S, IP);
+  return S;
+}
+
+const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
+                                         const SCEV *RHS) {
+  SmallVector<const SCEV *, 2> Ops;
+  Ops.push_back(LHS);
+  Ops.push_back(RHS);
+  return getUMaxExpr(Ops);
+}
+
+const SCEV *
+ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
+  assert(!Ops.empty() && "Cannot get empty umax!");
+  if (Ops.size() == 1) return Ops[0];
+#ifndef NDEBUG
+  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
+    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
+           getEffectiveSCEVType(Ops[0]->getType()) &&
+           "SCEVUMaxExpr operand types don't match!");
+#endif
+
+  // Sort by complexity, this groups all similar expression types together.
+  GroupByComplexity(Ops, LI);
+
+  // If there are any constants, fold them together.
+  unsigned Idx = 0;
+  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
+    ++Idx;
+    assert(Idx < Ops.size());
+    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
+      // We found two constants, fold them together!
+      ConstantInt *Fold = ConstantInt::get(getContext(),
+                              APIntOps::umax(LHSC->getValue()->getValue(),
+                                             RHSC->getValue()->getValue()));
+      Ops[0] = getConstant(Fold);
+      Ops.erase(Ops.begin()+1);  // Erase the folded element
+      if (Ops.size() == 1) return Ops[0];
+      LHSC = cast<SCEVConstant>(Ops[0]);
+    }
+
+    // If we are left with a constant minimum-int, strip it off.
+    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
+      Ops.erase(Ops.begin());
+      --Idx;
+    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
+      // If we have an umax with a constant maximum-int, it will always be
+      // maximum-int.
+      return Ops[0];
+    }
+  }
+
+  if (Ops.size() == 1) return Ops[0];
+
+  // Find the first UMax
+  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
+    ++Idx;
+
+  // Check to see if one of the operands is a UMax. If so, expand its operands
+  // onto our operand list, and recurse to simplify.
+  if (Idx < Ops.size()) {
+    bool DeletedUMax = false;
+    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
+      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
+      Ops.erase(Ops.begin()+Idx);
+      DeletedUMax = true;
+    }
+
+    if (DeletedUMax)
+      return getUMaxExpr(Ops);
+  }
+
+  // Okay, check to see if the same value occurs in the operand list twice.  If
+  // so, delete one.  Since we sorted the list, these values are required to
+  // be adjacent.
+  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
+    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
+      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
+      --i; --e;
+    }
+
+  if (Ops.size() == 1) return Ops[0];
+
+  assert(!Ops.empty() && "Reduced umax down to nothing!");
+
+  // Okay, it looks like we really DO need a umax expr.  Check to see if we
+  // already have one, otherwise create a new one.
+  FoldingSetNodeID ID;
+  ID.AddInteger(scUMaxExpr);
+  ID.AddInteger(Ops.size());
+  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+    ID.AddPointer(Ops[i]);
+  void *IP = 0;
+  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+  SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
+  new (S) SCEVUMaxExpr(ID, Ops);
+  UniqueSCEVs.InsertNode(S, IP);
+  return S;
+}
+
+const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
+                                         const SCEV *RHS) {
+  // ~smax(~x, ~y) == smin(x, y).
+  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
+}
+
+const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
+                                         const SCEV *RHS) {
+  // ~umax(~x, ~y) == umin(x, y)
+  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
+}
+
+const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
+  Constant *C = ConstantExpr::getSizeOf(AllocTy);
+  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
+    C = ConstantFoldConstantExpression(CE, TD);
+  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
+  return getTruncateOrZeroExtend(getSCEV(C), Ty);
+}
+
+const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
+  Constant *C = ConstantExpr::getAlignOf(AllocTy);
+  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
+    C = ConstantFoldConstantExpression(CE, TD);
+  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
+  return getTruncateOrZeroExtend(getSCEV(C), Ty);
+}
+
+const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
+                                             unsigned FieldNo) {
+  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
+  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
+    C = ConstantFoldConstantExpression(CE, TD);
+  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
+  return getTruncateOrZeroExtend(getSCEV(C), Ty);
+}
+
+const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
+                                             Constant *FieldNo) {
+  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
+  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
+    C = ConstantFoldConstantExpression(CE, TD);
+  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
+  return getTruncateOrZeroExtend(getSCEV(C), Ty);
+}
+
+const SCEV *ScalarEvolution::getUnknown(Value *V) {
+  // Don't attempt to do anything other than create a SCEVUnknown object
+  // here.  createSCEV only calls getUnknown after checking for all other
+  // interesting possibilities, and any other code that calls getUnknown
+  // is doing so in order to hide a value from SCEV canonicalization.
+
+  FoldingSetNodeID ID;
+  ID.AddInteger(scUnknown);
+  ID.AddPointer(V);
+  void *IP = 0;
+  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+  SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
+  new (S) SCEVUnknown(ID, V);
+  UniqueSCEVs.InsertNode(S, IP);
+  return S;
+}
+
+//===----------------------------------------------------------------------===//
+//            Basic SCEV Analysis and PHI Idiom Recognition Code
+//
+
+/// isSCEVable - Test if values of the given type are analyzable within
+/// the SCEV framework. This primarily includes integer types, and it
+/// can optionally include pointer types if the ScalarEvolution class
+/// has access to target-specific information.
+bool ScalarEvolution::isSCEVable(const Type *Ty) const {
+  // Integers and pointers are always SCEVable.
+  return Ty->isInteger() || isa<PointerType>(Ty);
+}
+
+/// getTypeSizeInBits - Return the size in bits of the specified type,
+/// for which isSCEVable must return true.
+uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
+  assert(isSCEVable(Ty) && "Type is not SCEVable!");
+
+  // If we have a TargetData, use it!
+  if (TD)
+    return TD->getTypeSizeInBits(Ty);
+
+  // Integer types have fixed sizes.
+  if (Ty->isInteger())
+    return Ty->getPrimitiveSizeInBits();
+
+  // The only other support type is pointer. Without TargetData, conservatively
+  // assume pointers are 64-bit.
+  assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!");
+  return 64;
+}
+
+/// getEffectiveSCEVType - Return a type with the same bitwidth as
+/// the given type and which represents how SCEV will treat the given
+/// type, for which isSCEVable must return true. For pointer types,
+/// this is the pointer-sized integer type.
+const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
+  assert(isSCEVable(Ty) && "Type is not SCEVable!");
+
+  if (Ty->isInteger())
+    return Ty;
+
+  // The only other support type is pointer.
+  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
+  if (TD) return TD->getIntPtrType(getContext());
+
+  // Without TargetData, conservatively assume pointers are 64-bit.
+  return Type::getInt64Ty(getContext());
+}
+
+const SCEV *ScalarEvolution::getCouldNotCompute() {
+  return &CouldNotCompute;
+}
+
+/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
+/// expression and create a new one.
+const SCEV *ScalarEvolution::getSCEV(Value *V) {
+  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
+
+  std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
+  if (I != Scalars.end()) return I->second;
+  const SCEV *S = createSCEV(V);
+  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
+  return S;
+}
+
+/// getIntegerSCEV - Given a SCEVable type, create a constant for the
+/// specified signed integer value and return a SCEV for the constant.
+const SCEV *ScalarEvolution::getIntegerSCEV(int64_t Val, const Type *Ty) {
+  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
+  return getConstant(ConstantInt::get(ITy, Val));
+}
+
+/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
+///
+const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
+  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
+    return getConstant(
+               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
+
+  const Type *Ty = V->getType();
+  Ty = getEffectiveSCEVType(Ty);
+  return getMulExpr(V,
+                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
+}
+
+/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
+const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
+  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
+    return getConstant(
+                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
+
+  const Type *Ty = V->getType();
+  Ty = getEffectiveSCEVType(Ty);
+  const SCEV *AllOnes =
+                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
+  return getMinusSCEV(AllOnes, V);
+}
+
+/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
+///
+const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
+                                          const SCEV *RHS) {
+  // X - Y --> X + -Y
+  return getAddExpr(LHS, getNegativeSCEV(RHS));
+}
+
+/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
+/// input value to the specified type.  If the type must be extended, it is zero
+/// extended.
+const SCEV *
+ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
+                                         const Type *Ty) {
+  const Type *SrcTy = V->getType();
+  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
+         (Ty->isInteger() || isa<PointerType>(Ty)) &&
+         "Cannot truncate or zero extend with non-integer arguments!");
+  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
+    return V;  // No conversion
+  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
+    return getTruncateExpr(V, Ty);
+  return getZeroExtendExpr(V, Ty);
+}
+
+/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
+/// input value to the specified type.  If the type must be extended, it is sign
+/// extended.
+const SCEV *
+ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
+                                         const Type *Ty) {
+  const Type *SrcTy = V->getType();
+  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
+         (Ty->isInteger() || isa<PointerType>(Ty)) &&
+         "Cannot truncate or zero extend with non-integer arguments!");
+  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
+    return V;  // No conversion
+  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
+    return getTruncateExpr(V, Ty);
+  return getSignExtendExpr(V, Ty);
+}
+
+/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
+/// input value to the specified type.  If the type must be extended, it is zero
+/// extended.  The conversion must not be narrowing.
+const SCEV *
+ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
+  const Type *SrcTy = V->getType();
+  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
+         (Ty->isInteger() || isa<PointerType>(Ty)) &&
+         "Cannot noop or zero extend with non-integer arguments!");
+  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
+         "getNoopOrZeroExtend cannot truncate!");
+  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
+    return V;  // No conversion
+  return getZeroExtendExpr(V, Ty);
+}
+
+/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
+/// input value to the specified type.  If the type must be extended, it is sign
+/// extended.  The conversion must not be narrowing.
+const SCEV *
+ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
+  const Type *SrcTy = V->getType();
+  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
+         (Ty->isInteger() || isa<PointerType>(Ty)) &&
+         "Cannot noop or sign extend with non-integer arguments!");
+  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
+         "getNoopOrSignExtend cannot truncate!");
+  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
+    return V;  // No conversion
+  return getSignExtendExpr(V, Ty);
+}
+
+/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
+/// the input value to the specified type. If the type must be extended,
+/// it is extended with unspecified bits. The conversion must not be
+/// narrowing.
+const SCEV *
+ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
+  const Type *SrcTy = V->getType();
+  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
+         (Ty->isInteger() || isa<PointerType>(Ty)) &&
+         "Cannot noop or any extend with non-integer arguments!");
+  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
+         "getNoopOrAnyExtend cannot truncate!");
+  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
+    return V;  // No conversion
+  return getAnyExtendExpr(V, Ty);
+}
+
+/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
+/// input value to the specified type.  The conversion must not be widening.
+const SCEV *
+ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
+  const Type *SrcTy = V->getType();
+  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
+         (Ty->isInteger() || isa<PointerType>(Ty)) &&
+         "Cannot truncate or noop with non-integer arguments!");
+  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
+         "getTruncateOrNoop cannot extend!");
+  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
+    return V;  // No conversion
+  return getTruncateExpr(V, Ty);
+}
+
+/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
+/// the types using zero-extension, and then perform a umax operation
+/// with them.
+const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
+                                                        const SCEV *RHS) {
+  const SCEV *PromotedLHS = LHS;
+  const SCEV *PromotedRHS = RHS;
+
+  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
+    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
+  else
+    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
+
+  return getUMaxExpr(PromotedLHS, PromotedRHS);
+}
+
+/// getUMinFromMismatchedTypes - Promote the operands to the wider of
+/// the types using zero-extension, and then perform a umin operation
+/// with them.
+const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
+                                                        const SCEV *RHS) {
+  const SCEV *PromotedLHS = LHS;
+  const SCEV *PromotedRHS = RHS;
+
+  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
+    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
+  else
+    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
+
+  return getUMinExpr(PromotedLHS, PromotedRHS);
+}
+
+/// PushDefUseChildren - Push users of the given Instruction
+/// onto the given Worklist.
+static void
+PushDefUseChildren(Instruction *I,
+                   SmallVectorImpl<Instruction *> &Worklist) {
+  // Push the def-use children onto the Worklist stack.
+  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
+       UI != UE; ++UI)
+    Worklist.push_back(cast<Instruction>(UI));
+}
+
+/// ForgetSymbolicValue - This looks up computed SCEV values for all
+/// instructions that depend on the given instruction and removes them from
+/// the Scalars map if they reference SymName. This is used during PHI
+/// resolution.
+void
+ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) {
+  SmallVector<Instruction *, 16> Worklist;
+  PushDefUseChildren(I, Worklist);
+
+  SmallPtrSet<Instruction *, 8> Visited;
+  Visited.insert(I);
+  while (!Worklist.empty()) {
+    Instruction *I = Worklist.pop_back_val();
+    if (!Visited.insert(I)) continue;
+
+    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
+      Scalars.find(static_cast<Value *>(I));
+    if (It != Scalars.end()) {
+      // Short-circuit the def-use traversal if the symbolic name
+      // ceases to appear in expressions.
+      if (!It->second->hasOperand(SymName))
+        continue;
+
+      // SCEVUnknown for a PHI either means that it has an unrecognized
+      // structure, or it's a PHI that's in the progress of being computed
+      // by createNodeForPHI.  In the former case, additional loop trip
+      // count information isn't going to change anything. In the later
+      // case, createNodeForPHI will perform the necessary updates on its
+      // own when it gets to that point.
+      if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
+        ValuesAtScopes.erase(It->second);
+        Scalars.erase(It);
+      }
+    }
+
+    PushDefUseChildren(I, Worklist);
+  }
+}
+
+/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
+/// a loop header, making it a potential recurrence, or it doesn't.
+///
+const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
+  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
+    if (const Loop *L = LI->getLoopFor(PN->getParent()))
+      if (L->getHeader() == PN->getParent()) {
+        // If it lives in the loop header, it has two incoming values, one
+        // from outside the loop, and one from inside.
+        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
+        unsigned BackEdge     = IncomingEdge^1;
+
+        // While we are analyzing this PHI node, handle its value symbolically.
+        const SCEV *SymbolicName = getUnknown(PN);
+        assert(Scalars.find(PN) == Scalars.end() &&
+               "PHI node already processed?");
+        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
+
+        // Using this symbolic name for the PHI, analyze the value coming around
+        // the back-edge.
+        Value *BEValueV = PN->getIncomingValue(BackEdge);
+        const SCEV *BEValue = getSCEV(BEValueV);
+
+        // NOTE: If BEValue is loop invariant, we know that the PHI node just
+        // has a special value for the first iteration of the loop.
+
+        // If the value coming around the backedge is an add with the symbolic
+        // value we just inserted, then we found a simple induction variable!
+        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
+          // If there is a single occurrence of the symbolic value, replace it
+          // with a recurrence.
+          unsigned FoundIndex = Add->getNumOperands();
+          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
+            if (Add->getOperand(i) == SymbolicName)
+              if (FoundIndex == e) {
+                FoundIndex = i;
+                break;
+              }
+
+          if (FoundIndex != Add->getNumOperands()) {
+            // Create an add with everything but the specified operand.
+            SmallVector<const SCEV *, 8> Ops;
+            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
+              if (i != FoundIndex)
+                Ops.push_back(Add->getOperand(i));
+            const SCEV *Accum = getAddExpr(Ops);
+
+            // This is not a valid addrec if the step amount is varying each
+            // loop iteration, but is not itself an addrec in this loop.
+            if (Accum->isLoopInvariant(L) ||
+                (isa<SCEVAddRecExpr>(Accum) &&
+                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
+              bool HasNUW = false;
+              bool HasNSW = false;
+
+              // If the increment doesn't overflow, then neither the addrec nor
+              // the post-increment will overflow.
+              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
+                if (OBO->hasNoUnsignedWrap())
+                  HasNUW = true;
+                if (OBO->hasNoSignedWrap())
+                  HasNSW = true;
+              }
+
+              const SCEV *StartVal =
+                getSCEV(PN->getIncomingValue(IncomingEdge));
+              const SCEV *PHISCEV =
+                getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
+
+              // Since the no-wrap flags are on the increment, they apply to the
+              // post-incremented value as well.
+              if (Accum->isLoopInvariant(L))
+                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
+                                    Accum, L, HasNUW, HasNSW);
+
+              // Okay, for the entire analysis of this edge we assumed the PHI
+              // to be symbolic.  We now need to go back and purge all of the
+              // entries for the scalars that use the symbolic expression.
+              ForgetSymbolicName(PN, SymbolicName);
+              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
+              return PHISCEV;
+            }
+          }
+        } else if (const SCEVAddRecExpr *AddRec =
+                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
+          // Otherwise, this could be a loop like this:
+          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
+          // In this case, j = {1,+,1}  and BEValue is j.
+          // Because the other in-value of i (0) fits the evolution of BEValue
+          // i really is an addrec evolution.
+          if (AddRec->getLoop() == L && AddRec->isAffine()) {
+            const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
+
+            // If StartVal = j.start - j.stride, we can use StartVal as the
+            // initial step of the addrec evolution.
+            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
+                                            AddRec->getOperand(1))) {
+              const SCEV *PHISCEV =
+                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
+
+              // Okay, for the entire analysis of this edge we assumed the PHI
+              // to be symbolic.  We now need to go back and purge all of the
+              // entries for the scalars that use the symbolic expression.
+              ForgetSymbolicName(PN, SymbolicName);
+              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
+              return PHISCEV;
+            }
+          }
+        }
+
+        return SymbolicName;
+      }
+
+  // It's tempting to recognize PHIs with a unique incoming value, however
+  // this leads passes like indvars to break LCSSA form. Fortunately, such
+  // PHIs are rare, as instcombine zaps them.
+
+  // If it's not a loop phi, we can't handle it yet.
+  return getUnknown(PN);
+}
+
+/// createNodeForGEP - Expand GEP instructions into add and multiply
+/// operations. This allows them to be analyzed by regular SCEV code.
+///
+const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
+
+  bool InBounds = GEP->isInBounds();
+  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
+  Value *Base = GEP->getOperand(0);
+  // Don't attempt to analyze GEPs over unsized objects.
+  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
+    return getUnknown(GEP);
+  const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
+  gep_type_iterator GTI = gep_type_begin(GEP);
+  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
+                                      E = GEP->op_end();
+       I != E; ++I) {
+    Value *Index = *I;
+    // Compute the (potentially symbolic) offset in bytes for this index.
+    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
+      // For a struct, add the member offset.
+      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
+      TotalOffset = getAddExpr(TotalOffset,
+                               getOffsetOfExpr(STy, FieldNo),
+                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
+    } else {
+      // For an array, add the element offset, explicitly scaled.
+      const SCEV *LocalOffset = getSCEV(Index);
+      // Getelementptr indicies are signed.
+      LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
+      // Lower "inbounds" GEPs to NSW arithmetic.
+      LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
+                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
+      TotalOffset = getAddExpr(TotalOffset, LocalOffset,
+                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
+    }
+  }
+  return getAddExpr(getSCEV(Base), TotalOffset,
+                    /*HasNUW=*/false, /*HasNSW=*/InBounds);
+}
+
+/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
+/// guaranteed to end in (at every loop iteration).  It is, at the same time,
+/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
+/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
+uint32_t
+ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
+  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
+    return C->getValue()->getValue().countTrailingZeros();
+
+  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
+    return std::min(GetMinTrailingZeros(T->getOperand()),
+                    (uint32_t)getTypeSizeInBits(T->getType()));
+
+  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
+    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
+    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
+             getTypeSizeInBits(E->getType()) : OpRes;
+  }
+
+  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
+    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
+    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
+             getTypeSizeInBits(E->getType()) : OpRes;
+  }
+
+  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
+    // The result is the min of all operands results.
+    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
+    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
+      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
+    return MinOpRes;
+  }
+
+  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
+    // The result is the sum of all operands results.
+    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
+    uint32_t BitWidth = getTypeSizeInBits(M->getType());
+    for (unsigned i = 1, e = M->getNumOperands();
+         SumOpRes != BitWidth && i != e; ++i)
+      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
+                          BitWidth);
+    return SumOpRes;
+  }
+
+  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
+    // The result is the min of all operands results.
+    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
+    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
+      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
+    return MinOpRes;
+  }
+
+  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
+    // The result is the min of all operands results.
+    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
+    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
+      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
+    return MinOpRes;
+  }
+
+  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
+    // The result is the min of all operands results.
+    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
+    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
+      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
+    return MinOpRes;
+  }
+
+  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
+    // For a SCEVUnknown, ask ValueTracking.
+    unsigned BitWidth = getTypeSizeInBits(U->getType());
+    APInt Mask = APInt::getAllOnesValue(BitWidth);
+    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
+    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
+    return Zeros.countTrailingOnes();
+  }
+
+  // SCEVUDivExpr
+  return 0;
+}
+
+/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
+///
+ConstantRange
+ScalarEvolution::getUnsignedRange(const SCEV *S) {
+
+  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
+    return ConstantRange(C->getValue()->getValue());
+
+  unsigned BitWidth = getTypeSizeInBits(S->getType());
+  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
+
+  // If the value has known zeros, the maximum unsigned value will have those
+  // known zeros as well.
+  uint32_t TZ = GetMinTrailingZeros(S);
+  if (TZ != 0)
+    ConservativeResult =
+      ConstantRange(APInt::getMinValue(BitWidth),
+                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
+
+  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+    ConstantRange X = getUnsignedRange(Add->getOperand(0));
+    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
+      X = X.add(getUnsignedRange(Add->getOperand(i)));
+    return ConservativeResult.intersectWith(X);
+  }
+
+  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
+    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
+    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
+      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
+    return ConservativeResult.intersectWith(X);
+  }
+
+  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
+    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
+    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
+      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
+    return ConservativeResult.intersectWith(X);
+  }
+
+  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
+    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
+    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
+      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
+    return ConservativeResult.intersectWith(X);
+  }
+
+  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
+    ConstantRange X = getUnsignedRange(UDiv->getLHS());
+    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
+    return ConservativeResult.intersectWith(X.udiv(Y));
+  }
+
+  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
+    ConstantRange X = getUnsignedRange(ZExt->getOperand());
+    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
+  }
+
+  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
+    ConstantRange X = getUnsignedRange(SExt->getOperand());
+    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
+  }
+
+  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
+    ConstantRange X = getUnsignedRange(Trunc->getOperand());
+    return ConservativeResult.intersectWith(X.truncate(BitWidth));
+  }
+
+  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
+    // If there's no unsigned wrap, the value will never be less than its
+    // initial value.
+    if (AddRec->hasNoUnsignedWrap())
+      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
+        ConservativeResult =
+          ConstantRange(C->getValue()->getValue(),
+                        APInt(getTypeSizeInBits(C->getType()), 0));
+
+    // TODO: non-affine addrec
+    if (AddRec->isAffine()) {
+      const Type *Ty = AddRec->getType();
+      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
+      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
+          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
+        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
+
+        const SCEV *Start = AddRec->getStart();
+        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
+
+        // Check for overflow.
+        if (!AddRec->hasNoUnsignedWrap())
+          return ConservativeResult;
+
+        ConstantRange StartRange = getUnsignedRange(Start);
+        ConstantRange EndRange = getUnsignedRange(End);
+        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
+                                   EndRange.getUnsignedMin());
+        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
+                                   EndRange.getUnsignedMax());
+        if (Min.isMinValue() && Max.isMaxValue())
+          return ConservativeResult;
+        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
+      }
+    }
+
+    return ConservativeResult;
+  }
+
+  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
+    // For a SCEVUnknown, ask ValueTracking.
+    unsigned BitWidth = getTypeSizeInBits(U->getType());
+    APInt Mask = APInt::getAllOnesValue(BitWidth);
+    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
+    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
+    if (Ones == ~Zeros + 1)
+      return ConservativeResult;
+    return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
+  }
+
+  return ConservativeResult;
+}
+
+/// getSignedRange - Determine the signed range for a particular SCEV.
+///
+ConstantRange
+ScalarEvolution::getSignedRange(const SCEV *S) {
+
+  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
+    return ConstantRange(C->getValue()->getValue());
+
+  unsigned BitWidth = getTypeSizeInBits(S->getType());
+  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
+
+  // If the value has known zeros, the maximum signed value will have those
+  // known zeros as well.
+  uint32_t TZ = GetMinTrailingZeros(S);
+  if (TZ != 0)
+    ConservativeResult =
+      ConstantRange(APInt::getSignedMinValue(BitWidth),
+                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
+
+  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+    ConstantRange X = getSignedRange(Add->getOperand(0));
+    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
+      X = X.add(getSignedRange(Add->getOperand(i)));
+    return ConservativeResult.intersectWith(X);
+  }
+
+  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
+    ConstantRange X = getSignedRange(Mul->getOperand(0));
+    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
+      X = X.multiply(getSignedRange(Mul->getOperand(i)));
+    return ConservativeResult.intersectWith(X);
+  }
+
+  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
+    ConstantRange X = getSignedRange(SMax->getOperand(0));
+    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
+      X = X.smax(getSignedRange(SMax->getOperand(i)));
+    return ConservativeResult.intersectWith(X);
+  }
+
+  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
+    ConstantRange X = getSignedRange(UMax->getOperand(0));
+    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
+      X = X.umax(getSignedRange(UMax->getOperand(i)));
+    return ConservativeResult.intersectWith(X);
+  }
+
+  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
+    ConstantRange X = getSignedRange(UDiv->getLHS());
+    ConstantRange Y = getSignedRange(UDiv->getRHS());
+    return ConservativeResult.intersectWith(X.udiv(Y));
+  }
+
+  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
+    ConstantRange X = getSignedRange(ZExt->getOperand());
+    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
+  }
+
+  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
+    ConstantRange X = getSignedRange(SExt->getOperand());
+    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
+  }
+
+  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
+    ConstantRange X = getSignedRange(Trunc->getOperand());
+    return ConservativeResult.intersectWith(X.truncate(BitWidth));
+  }
+
+  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
+    // If there's no signed wrap, and all the operands have the same sign or
+    // zero, the value won't ever change sign.
+    if (AddRec->hasNoSignedWrap()) {
+      bool AllNonNeg = true;
+      bool AllNonPos = true;
+      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
+        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
+        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
+      }
+      if (AllNonNeg)
+        ConservativeResult = ConservativeResult.intersectWith(
+          ConstantRange(APInt(BitWidth, 0),
+                        APInt::getSignedMinValue(BitWidth)));
+      else if (AllNonPos)
+        ConservativeResult = ConservativeResult.intersectWith(
+          ConstantRange(APInt::getSignedMinValue(BitWidth),
+                        APInt(BitWidth, 1)));
+    }
+
+    // TODO: non-affine addrec
+    if (AddRec->isAffine()) {
+      const Type *Ty = AddRec->getType();
+      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
+      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
+          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
+        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
+
+        const SCEV *Start = AddRec->getStart();
+        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
+
+        // Check for overflow.
+        if (!AddRec->hasNoSignedWrap())
+          return ConservativeResult;
+
+        ConstantRange StartRange = getSignedRange(Start);
+        ConstantRange EndRange = getSignedRange(End);
+        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
+                                   EndRange.getSignedMin());
+        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
+                                   EndRange.getSignedMax());
+        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
+          return ConservativeResult;
+        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
+      }
+    }
+
+    return ConservativeResult;
+  }
+
+  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
+    // For a SCEVUnknown, ask ValueTracking.
+    if (!U->getValue()->getType()->isInteger() && !TD)
+      return ConservativeResult;
+    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
+    if (NS == 1)
+      return ConservativeResult;
+    return ConservativeResult.intersectWith(
+      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
+                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
+  }
+
+  return ConservativeResult;
+}
+
+/// createSCEV - We know that there is no SCEV for the specified value.
+/// Analyze the expression.
+///
+const SCEV *ScalarEvolution::createSCEV(Value *V) {
+  if (!isSCEVable(V->getType()))
+    return getUnknown(V);
+
+  unsigned Opcode = Instruction::UserOp1;
+  if (Instruction *I = dyn_cast<Instruction>(V))
+    Opcode = I->getOpcode();
+  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+    Opcode = CE->getOpcode();
+  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
+    return getConstant(CI);
+  else if (isa<ConstantPointerNull>(V))
+    return getIntegerSCEV(0, V->getType());
+  else if (isa<UndefValue>(V))
+    return getIntegerSCEV(0, V->getType());
+  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
+    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
+  else
+    return getUnknown(V);
+
+  Operator *U = cast<Operator>(V);
+  switch (Opcode) {
+  case Instruction::Add:
+    // Don't transfer the NSW and NUW bits from the Add instruction to the
+    // Add expression, because the Instruction may be guarded by control
+    // flow and the no-overflow bits may not be valid for the expression in
+    // any context.
+    return getAddExpr(getSCEV(U->getOperand(0)),
+                      getSCEV(U->getOperand(1)));
+  case Instruction::Mul:
+    // Don't transfer the NSW and NUW bits from the Mul instruction to the
+    // Mul expression, as with Add.
+    return getMulExpr(getSCEV(U->getOperand(0)),
+                      getSCEV(U->getOperand(1)));
+  case Instruction::UDiv:
+    return getUDivExpr(getSCEV(U->getOperand(0)),
+                       getSCEV(U->getOperand(1)));
+  case Instruction::Sub:
+    return getMinusSCEV(getSCEV(U->getOperand(0)),
+                        getSCEV(U->getOperand(1)));
+  case Instruction::And:
+    // For an expression like x&255 that merely masks off the high bits,
+    // use zext(trunc(x)) as the SCEV expression.
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
+      if (CI->isNullValue())
+        return getSCEV(U->getOperand(1));
+      if (CI->isAllOnesValue())
+        return getSCEV(U->getOperand(0));
+      const APInt &A = CI->getValue();
+
+      // Instcombine's ShrinkDemandedConstant may strip bits out of
+      // constants, obscuring what would otherwise be a low-bits mask.
+      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
+      // knew about to reconstruct a low-bits mask value.
+      unsigned LZ = A.countLeadingZeros();
+      unsigned BitWidth = A.getBitWidth();
+      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
+      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
+      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
+
+      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
+
+      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
+        return
+          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
+                                IntegerType::get(getContext(), BitWidth - LZ)),
+                            U->getType());
+    }
+    break;
+
+  case Instruction::Or:
+    // If the RHS of the Or is a constant, we may have something like:
+    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
+    // optimizations will transparently handle this case.
+    //
+    // In order for this transformation to be safe, the LHS must be of the
+    // form X*(2^n) and the Or constant must be less than 2^n.
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
+      const SCEV *LHS = getSCEV(U->getOperand(0));
+      const APInt &CIVal = CI->getValue();
+      if (GetMinTrailingZeros(LHS) >=
+          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
+        // Build a plain add SCEV.
+        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
+        // If the LHS of the add was an addrec and it has no-wrap flags,
+        // transfer the no-wrap flags, since an or won't introduce a wrap.
+        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
+          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
+          if (OldAR->hasNoUnsignedWrap())
+            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
+          if (OldAR->hasNoSignedWrap())
+            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
+        }
+        return S;
+      }
+    }
+    break;
+  case Instruction::Xor:
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
+      // If the RHS of the xor is a signbit, then this is just an add.
+      // Instcombine turns add of signbit into xor as a strength reduction step.
+      if (CI->getValue().isSignBit())
+        return getAddExpr(getSCEV(U->getOperand(0)),
+                          getSCEV(U->getOperand(1)));
+
+      // If the RHS of xor is -1, then this is a not operation.
+      if (CI->isAllOnesValue())
+        return getNotSCEV(getSCEV(U->getOperand(0)));
+
+      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
+      // This is a variant of the check for xor with -1, and it handles
+      // the case where instcombine has trimmed non-demanded bits out
+      // of an xor with -1.
+      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
+        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
+          if (BO->getOpcode() == Instruction::And &&
+              LCI->getValue() == CI->getValue())
+            if (const SCEVZeroExtendExpr *Z =
+                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
+              const Type *UTy = U->getType();
+              const SCEV *Z0 = Z->getOperand();
+              const Type *Z0Ty = Z0->getType();
+              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
+
+              // If C is a low-bits mask, the zero extend is zerving to
+              // mask off the high bits. Complement the operand and
+              // re-apply the zext.
+              if (APIntOps::isMask(Z0TySize, CI->getValue()))
+                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
+
+              // If C is a single bit, it may be in the sign-bit position
+              // before the zero-extend. In this case, represent the xor
+              // using an add, which is equivalent, and re-apply the zext.
+              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
+              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
+                  Trunc.isSignBit())
+                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
+                                         UTy);
+            }
+    }
+    break;
+
+  case Instruction::Shl:
+    // Turn shift left of a constant amount into a multiply.
+    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
+      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
+      Constant *X = ConstantInt::get(getContext(),
+        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
+      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
+    }
+    break;
+
+  case Instruction::LShr:
+    // Turn logical shift right of a constant into a unsigned divide.
+    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
+      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
+      Constant *X = ConstantInt::get(getContext(),
+        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
+      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
+    }
+    break;
+
+  case Instruction::AShr:
+    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
+      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
+        if (L->getOpcode() == Instruction::Shl &&
+            L->getOperand(1) == U->getOperand(1)) {
+          unsigned BitWidth = getTypeSizeInBits(U->getType());
+          uint64_t Amt = BitWidth - CI->getZExtValue();
+          if (Amt == BitWidth)
+            return getSCEV(L->getOperand(0));       // shift by zero --> noop
+          if (Amt > BitWidth)
+            return getIntegerSCEV(0, U->getType()); // value is undefined
+          return
+            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
+                                           IntegerType::get(getContext(), Amt)),
+                                 U->getType());
+        }
+    break;
+
+  case Instruction::Trunc:
+    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
+
+  case Instruction::ZExt:
+    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
+
+  case Instruction::SExt:
+    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
+
+  case Instruction::BitCast:
+    // BitCasts are no-op casts so we just eliminate the cast.
+    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
+      return getSCEV(U->getOperand(0));
+    break;
+
+  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
+  // lead to pointer expressions which cannot safely be expanded to GEPs,
+  // because ScalarEvolution doesn't respect the GEP aliasing rules when
+  // simplifying integer expressions.
+
+  case Instruction::GetElementPtr:
+    return createNodeForGEP(cast<GEPOperator>(U));
+
+  case Instruction::PHI:
+    return createNodeForPHI(cast<PHINode>(U));
+
+  case Instruction::Select:
+    // This could be a smax or umax that was lowered earlier.
+    // Try to recover it.
+    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
+      Value *LHS = ICI->getOperand(0);
+      Value *RHS = ICI->getOperand(1);
+      switch (ICI->getPredicate()) {
+      case ICmpInst::ICMP_SLT:
+      case ICmpInst::ICMP_SLE:
+        std::swap(LHS, RHS);
+        // fall through
+      case ICmpInst::ICMP_SGT:
+      case ICmpInst::ICMP_SGE:
+        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
+          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
+        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
+          return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
+        break;
+      case ICmpInst::ICMP_ULT:
+      case ICmpInst::ICMP_ULE:
+        std::swap(LHS, RHS);
+        // fall through
+      case ICmpInst::ICMP_UGT:
+      case ICmpInst::ICMP_UGE:
+        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
+          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
+        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
+          return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
+        break;
+      case ICmpInst::ICMP_NE:
+        // n != 0 ? n : 1  ->  umax(n, 1)
+        if (LHS == U->getOperand(1) &&
+            isa<ConstantInt>(U->getOperand(2)) &&
+            cast<ConstantInt>(U->getOperand(2))->isOne() &&
+            isa<ConstantInt>(RHS) &&
+            cast<ConstantInt>(RHS)->isZero())
+          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
+        break;
+      case ICmpInst::ICMP_EQ:
+        // n == 0 ? 1 : n  ->  umax(n, 1)
+        if (LHS == U->getOperand(2) &&
+            isa<ConstantInt>(U->getOperand(1)) &&
+            cast<ConstantInt>(U->getOperand(1))->isOne() &&
+            isa<ConstantInt>(RHS) &&
+            cast<ConstantInt>(RHS)->isZero())
+          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
+        break;
+      default:
+        break;
+      }
+    }
+
+  default: // We cannot analyze this expression.
+    break;
+  }
+
+  return getUnknown(V);
+}
+
+
+
+//===----------------------------------------------------------------------===//
+//                   Iteration Count Computation Code
+//
+
+/// getBackedgeTakenCount - If the specified loop has a predictable
+/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
+/// object. The backedge-taken count is the number of times the loop header
+/// will be branched to from within the loop. This is one less than the
+/// trip count of the loop, since it doesn't count the first iteration,
+/// when the header is branched to from outside the loop.
+///
+/// Note that it is not valid to call this method on a loop without a
+/// loop-invariant backedge-taken count (see
+/// hasLoopInvariantBackedgeTakenCount).
+///
+const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
+  return getBackedgeTakenInfo(L).Exact;
+}
+
+/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
+/// return the least SCEV value that is known never to be less than the
+/// actual backedge taken count.
+const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
+  return getBackedgeTakenInfo(L).Max;
+}
+
+/// PushLoopPHIs - Push PHI nodes in the header of the given loop
+/// onto the given Worklist.
+static void
+PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
+  BasicBlock *Header = L->getHeader();
+
+  // Push all Loop-header PHIs onto the Worklist stack.
+  for (BasicBlock::iterator I = Header->begin();
+       PHINode *PN = dyn_cast<PHINode>(I); ++I)
+    Worklist.push_back(PN);
+}
+
+const ScalarEvolution::BackedgeTakenInfo &
+ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
+  // Initially insert a CouldNotCompute for this loop. If the insertion
+  // succeeds, procede to actually compute a backedge-taken count and
+  // update the value. The temporary CouldNotCompute value tells SCEV
+  // code elsewhere that it shouldn't attempt to request a new
+  // backedge-taken count, which could result in infinite recursion.
+  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
+    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
+  if (Pair.second) {
+    BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
+    if (BECount.Exact != getCouldNotCompute()) {
+      assert(BECount.Exact->isLoopInvariant(L) &&
+             BECount.Max->isLoopInvariant(L) &&
+             "Computed backedge-taken count isn't loop invariant for loop!");
+      ++NumTripCountsComputed;
+
+      // Update the value in the map.
+      Pair.first->second = BECount;
+    } else {
+      if (BECount.Max != getCouldNotCompute())
+        // Update the value in the map.
+        Pair.first->second = BECount;
+      if (isa<PHINode>(L->getHeader()->begin()))
+        // Only count loops that have phi nodes as not being computable.
+        ++NumTripCountsNotComputed;
+    }
+
+    // Now that we know more about the trip count for this loop, forget any
+    // existing SCEV values for PHI nodes in this loop since they are only
+    // conservative estimates made without the benefit of trip count
+    // information. This is similar to the code in forgetLoop, except that
+    // it handles SCEVUnknown PHI nodes specially.
+    if (BECount.hasAnyInfo()) {
+      SmallVector<Instruction *, 16> Worklist;
+      PushLoopPHIs(L, Worklist);
+
+      SmallPtrSet<Instruction *, 8> Visited;
+      while (!Worklist.empty()) {
+        Instruction *I = Worklist.pop_back_val();
+        if (!Visited.insert(I)) continue;
+
+        std::map<SCEVCallbackVH, const SCEV *>::iterator It =
+          Scalars.find(static_cast<Value *>(I));
+        if (It != Scalars.end()) {
+          // SCEVUnknown for a PHI either means that it has an unrecognized
+          // structure, or it's a PHI that's in the progress of being computed
+          // by createNodeForPHI.  In the former case, additional loop trip
+          // count information isn't going to change anything. In the later
+          // case, createNodeForPHI will perform the necessary updates on its
+          // own when it gets to that point.
+          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
+            ValuesAtScopes.erase(It->second);
+            Scalars.erase(It);
+          }
+          if (PHINode *PN = dyn_cast<PHINode>(I))
+            ConstantEvolutionLoopExitValue.erase(PN);
+        }
+
+        PushDefUseChildren(I, Worklist);
+      }
+    }
+  }
+  return Pair.first->second;
+}
+
+/// forgetLoop - This method should be called by the client when it has
+/// changed a loop in a way that may effect ScalarEvolution's ability to
+/// compute a trip count, or if the loop is deleted.
+void ScalarEvolution::forgetLoop(const Loop *L) {
+  // Drop any stored trip count value.
+  BackedgeTakenCounts.erase(L);
+
+  // Drop information about expressions based on loop-header PHIs.
+  SmallVector<Instruction *, 16> Worklist;
+  PushLoopPHIs(L, Worklist);
+
+  SmallPtrSet<Instruction *, 8> Visited;
+  while (!Worklist.empty()) {
+    Instruction *I = Worklist.pop_back_val();
+    if (!Visited.insert(I)) continue;
+
+    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
+      Scalars.find(static_cast<Value *>(I));
+    if (It != Scalars.end()) {
+      ValuesAtScopes.erase(It->second);
+      Scalars.erase(It);
+      if (PHINode *PN = dyn_cast<PHINode>(I))
+        ConstantEvolutionLoopExitValue.erase(PN);
+    }
+
+    PushDefUseChildren(I, Worklist);
+  }
+}
+
+/// ComputeBackedgeTakenCount - Compute the number of times the backedge
+/// of the specified loop will execute.
+ScalarEvolution::BackedgeTakenInfo
+ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
+  SmallVector<BasicBlock *, 8> ExitingBlocks;
+  L->getExitingBlocks(ExitingBlocks);
+
+  // Examine all exits and pick the most conservative values.
+  const SCEV *BECount = getCouldNotCompute();
+  const SCEV *MaxBECount = getCouldNotCompute();
+  bool CouldNotComputeBECount = false;
+  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
+    BackedgeTakenInfo NewBTI =
+      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
+
+    if (NewBTI.Exact == getCouldNotCompute()) {
+      // We couldn't compute an exact value for this exit, so
+      // we won't be able to compute an exact value for the loop.
+      CouldNotComputeBECount = true;
+      BECount = getCouldNotCompute();
+    } else if (!CouldNotComputeBECount) {
+      if (BECount == getCouldNotCompute())
+        BECount = NewBTI.Exact;
+      else
+        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
+    }
+    if (MaxBECount == getCouldNotCompute())
+      MaxBECount = NewBTI.Max;
+    else if (NewBTI.Max != getCouldNotCompute())
+      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
+  }
+
+  return BackedgeTakenInfo(BECount, MaxBECount);
+}
+
+/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
+/// of the specified loop will execute if it exits via the specified block.
+ScalarEvolution::BackedgeTakenInfo
+ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
+                                                   BasicBlock *ExitingBlock) {
+
+  // Okay, we've chosen an exiting block.  See what condition causes us to
+  // exit at this block.
+  //
+  // FIXME: we should be able to handle switch instructions (with a single exit)
+  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
+  if (ExitBr == 0) return getCouldNotCompute();
+  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
+
+  // At this point, we know we have a conditional branch that determines whether
+  // the loop is exited.  However, we don't know if the branch is executed each
+  // time through the loop.  If not, then the execution count of the branch will
+  // not be equal to the trip count of the loop.
+  //
+  // Currently we check for this by checking to see if the Exit branch goes to
+  // the loop header.  If so, we know it will always execute the same number of
+  // times as the loop.  We also handle the case where the exit block *is* the
+  // loop header.  This is common for un-rotated loops.
+  //
+  // If both of those tests fail, walk up the unique predecessor chain to the
+  // header, stopping if there is an edge that doesn't exit the loop. If the
+  // header is reached, the execution count of the branch will be equal to the
+  // trip count of the loop.
+  //
+  //  More extensive analysis could be done to handle more cases here.
+  //
+  if (ExitBr->getSuccessor(0) != L->getHeader() &&
+      ExitBr->getSuccessor(1) != L->getHeader() &&
+      ExitBr->getParent() != L->getHeader()) {
+    // The simple checks failed, try climbing the unique predecessor chain
+    // up to the header.
+    bool Ok = false;
+    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
+      BasicBlock *Pred = BB->getUniquePredecessor();
+      if (!Pred)
+        return getCouldNotCompute();
+      TerminatorInst *PredTerm = Pred->getTerminator();
+      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
+        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
+        if (PredSucc == BB)
+          continue;
+        // If the predecessor has a successor that isn't BB and isn't
+        // outside the loop, assume the worst.
+        if (L->contains(PredSucc))
+          return getCouldNotCompute();
+      }
+      if (Pred == L->getHeader()) {
+        Ok = true;
+        break;
+      }
+      BB = Pred;
+    }
+    if (!Ok)
+      return getCouldNotCompute();
+  }
+
+  // Procede to the next level to examine the exit condition expression.
+  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
+                                               ExitBr->getSuccessor(0),
+                                               ExitBr->getSuccessor(1));
+}
+
+/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
+/// backedge of the specified loop will execute if its exit condition
+/// were a conditional branch of ExitCond, TBB, and FBB.
+ScalarEvolution::BackedgeTakenInfo
+ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
+                                                       Value *ExitCond,
+                                                       BasicBlock *TBB,
+                                                       BasicBlock *FBB) {
+  // Check if the controlling expression for this loop is an And or Or.
+  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
+    if (BO->getOpcode() == Instruction::And) {
+      // Recurse on the operands of the and.
+      BackedgeTakenInfo BTI0 =
+        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
+      BackedgeTakenInfo BTI1 =
+        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
+      const SCEV *BECount = getCouldNotCompute();
+      const SCEV *MaxBECount = getCouldNotCompute();
+      if (L->contains(TBB)) {
+        // Both conditions must be true for the loop to continue executing.
+        // Choose the less conservative count.
+        if (BTI0.Exact == getCouldNotCompute() ||
+            BTI1.Exact == getCouldNotCompute())
+          BECount = getCouldNotCompute();
+        else
+          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
+        if (BTI0.Max == getCouldNotCompute())
+          MaxBECount = BTI1.Max;
+        else if (BTI1.Max == getCouldNotCompute())
+          MaxBECount = BTI0.Max;
+        else
+          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
+      } else {
+        // Both conditions must be true for the loop to exit.
+        assert(L->contains(FBB) && "Loop block has no successor in loop!");
+        if (BTI0.Exact != getCouldNotCompute() &&
+            BTI1.Exact != getCouldNotCompute())
+          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
+        if (BTI0.Max != getCouldNotCompute() &&
+            BTI1.Max != getCouldNotCompute())
+          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
+      }
+
+      return BackedgeTakenInfo(BECount, MaxBECount);
+    }
+    if (BO->getOpcode() == Instruction::Or) {
+      // Recurse on the operands of the or.
+      BackedgeTakenInfo BTI0 =
+        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
+      BackedgeTakenInfo BTI1 =
+        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
+      const SCEV *BECount = getCouldNotCompute();
+      const SCEV *MaxBECount = getCouldNotCompute();
+      if (L->contains(FBB)) {
+        // Both conditions must be false for the loop to continue executing.
+        // Choose the less conservative count.
+        if (BTI0.Exact == getCouldNotCompute() ||
+            BTI1.Exact == getCouldNotCompute())
+          BECount = getCouldNotCompute();
+        else
+          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
+        if (BTI0.Max == getCouldNotCompute())
+          MaxBECount = BTI1.Max;
+        else if (BTI1.Max == getCouldNotCompute())
+          MaxBECount = BTI0.Max;
+        else
+          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
+      } else {
+        // Both conditions must be false for the loop to exit.
+        assert(L->contains(TBB) && "Loop block has no successor in loop!");
+        if (BTI0.Exact != getCouldNotCompute() &&
+            BTI1.Exact != getCouldNotCompute())
+          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
+        if (BTI0.Max != getCouldNotCompute() &&
+            BTI1.Max != getCouldNotCompute())
+          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
+      }
+
+      return BackedgeTakenInfo(BECount, MaxBECount);
+    }
+  }
+
+  // With an icmp, it may be feasible to compute an exact backedge-taken count.
+  // Procede to the next level to examine the icmp.
+  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
+    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
+
+  // If it's not an integer or pointer comparison then compute it the hard way.
+  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
+}
+
+/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
+/// backedge of the specified loop will execute if its exit condition
+/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
+ScalarEvolution::BackedgeTakenInfo
+ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
+                                                           ICmpInst *ExitCond,
+                                                           BasicBlock *TBB,
+                                                           BasicBlock *FBB) {
+
+  // If the condition was exit on true, convert the condition to exit on false
+  ICmpInst::Predicate Cond;
+  if (!L->contains(FBB))
+    Cond = ExitCond->getPredicate();
+  else
+    Cond = ExitCond->getInversePredicate();
+
+  // Handle common loops like: for (X = "string"; *X; ++X)
+  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
+    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
+      const SCEV *ItCnt =
+        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
+      if (!isa<SCEVCouldNotCompute>(ItCnt)) {
+        unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
+        return BackedgeTakenInfo(ItCnt,
+                                 isa<SCEVConstant>(ItCnt) ? ItCnt :
+                                   getConstant(APInt::getMaxValue(BitWidth)-1));
+      }
+    }
+
+  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
+  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
+
+  // Try to evaluate any dependencies out of the loop.
+  LHS = getSCEVAtScope(LHS, L);
+  RHS = getSCEVAtScope(RHS, L);
+
+  // At this point, we would like to compute how many iterations of the
+  // loop the predicate will return true for these inputs.
+  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
+    // If there is a loop-invariant, force it into the RHS.
+    std::swap(LHS, RHS);
+    Cond = ICmpInst::getSwappedPredicate(Cond);
+  }
+
+  // If we have a comparison of a chrec against a constant, try to use value
+  // ranges to answer this query.
+  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
+    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
+      if (AddRec->getLoop() == L) {
+        // Form the constant range.
+        ConstantRange CompRange(
+            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
+
+        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
+        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
+      }
+
+  switch (Cond) {
+  case ICmpInst::ICMP_NE: {                     // while (X != Y)
+    // Convert to: while (X-Y != 0)
+    const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
+    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
+    break;
+  }
+  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
+    // Convert to: while (X-Y == 0)
+    const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
+    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
+    break;
+  }
+  case ICmpInst::ICMP_SLT: {
+    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
+    if (BTI.hasAnyInfo()) return BTI;
+    break;
+  }
+  case ICmpInst::ICMP_SGT: {
+    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
+                                             getNotSCEV(RHS), L, true);
+    if (BTI.hasAnyInfo()) return BTI;
+    break;
+  }
+  case ICmpInst::ICMP_ULT: {
+    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
+    if (BTI.hasAnyInfo()) return BTI;
+    break;
+  }
+  case ICmpInst::ICMP_UGT: {
+    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
+                                             getNotSCEV(RHS), L, false);
+    if (BTI.hasAnyInfo()) return BTI;
+    break;
+  }
+  default:
+#if 0
+    dbgs() << "ComputeBackedgeTakenCount ";
+    if (ExitCond->getOperand(0)->getType()->isUnsigned())
+      dbgs() << "[unsigned] ";
+    dbgs() << *LHS << "   "
+         << Instruction::getOpcodeName(Instruction::ICmp)
+         << "   " << *RHS << "\n";
+#endif
+    break;
+  }
+  return
+    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
+}
+
+static ConstantInt *
+EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
+                                ScalarEvolution &SE) {
+  const SCEV *InVal = SE.getConstant(C);
+  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
+  assert(isa<SCEVConstant>(Val) &&
+         "Evaluation of SCEV at constant didn't fold correctly?");
+  return cast<SCEVConstant>(Val)->getValue();
+}
+
+/// GetAddressedElementFromGlobal - Given a global variable with an initializer
+/// and a GEP expression (missing the pointer index) indexing into it, return
+/// the addressed element of the initializer or null if the index expression is
+/// invalid.
+static Constant *
+GetAddressedElementFromGlobal(GlobalVariable *GV,
+                              const std::vector<ConstantInt*> &Indices) {
+  Constant *Init = GV->getInitializer();
+  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
+    uint64_t Idx = Indices[i]->getZExtValue();
+    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
+      assert(Idx < CS->getNumOperands() && "Bad struct index!");
+      Init = cast<Constant>(CS->getOperand(Idx));
+    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
+      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
+      Init = cast<Constant>(CA->getOperand(Idx));
+    } else if (isa<ConstantAggregateZero>(Init)) {
+      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
+        assert(Idx < STy->getNumElements() && "Bad struct index!");
+        Init = Constant::getNullValue(STy->getElementType(Idx));
+      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
+        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
+        Init = Constant::getNullValue(ATy->getElementType());
+      } else {
+        llvm_unreachable("Unknown constant aggregate type!");
+      }
+      return 0;
+    } else {
+      return 0; // Unknown initializer type
+    }
+  }
+  return Init;
+}
+
+/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
+/// 'icmp op load X, cst', try to see if we can compute the backedge
+/// execution count.
+const SCEV *
+ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
+                                                LoadInst *LI,
+                                                Constant *RHS,
+                                                const Loop *L,
+                                                ICmpInst::Predicate predicate) {
+  if (LI->isVolatile()) return getCouldNotCompute();
+
+  // Check to see if the loaded pointer is a getelementptr of a global.
+  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
+  if (!GEP) return getCouldNotCompute();
+
+  // Make sure that it is really a constant global we are gepping, with an
+  // initializer, and make sure the first IDX is really 0.
+  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
+  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
+      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
+      !cast<Constant>(GEP->getOperand(1))->isNullValue())
+    return getCouldNotCompute();
+
+  // Okay, we allow one non-constant index into the GEP instruction.
+  Value *VarIdx = 0;
+  std::vector<ConstantInt*> Indexes;
+  unsigned VarIdxNum = 0;
+  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
+      Indexes.push_back(CI);
+    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
+      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
+      VarIdx = GEP->getOperand(i);
+      VarIdxNum = i-2;
+      Indexes.push_back(0);
+    }
+
+  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
+  // Check to see if X is a loop variant variable value now.
+  const SCEV *Idx = getSCEV(VarIdx);
+  Idx = getSCEVAtScope(Idx, L);
+
+  // We can only recognize very limited forms of loop index expressions, in
+  // particular, only affine AddRec's like {C1,+,C2}.
+  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
+  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
+      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
+      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
+    return getCouldNotCompute();
+
+  unsigned MaxSteps = MaxBruteForceIterations;
+  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
+    ConstantInt *ItCst = ConstantInt::get(
+                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
+    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
+
+    // Form the GEP offset.
+    Indexes[VarIdxNum] = Val;
+
+    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
+    if (Result == 0) break;  // Cannot compute!
+
+    // Evaluate the condition for this iteration.
+    Result = ConstantExpr::getICmp(predicate, Result, RHS);
+    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
+    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
+#if 0
+      dbgs() << "\n***\n*** Computed loop count " << *ItCst
+             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
+             << "***\n";
+#endif
+      ++NumArrayLenItCounts;
+      return getConstant(ItCst);   // Found terminating iteration!
+    }
+  }
+  return getCouldNotCompute();
+}
+
+
+/// CanConstantFold - Return true if we can constant fold an instruction of the
+/// specified type, assuming that all operands were constants.
+static bool CanConstantFold(const Instruction *I) {
+  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
+      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
+    return true;
+
+  if (const CallInst *CI = dyn_cast<CallInst>(I))
+    if (const Function *F = CI->getCalledFunction())
+      return canConstantFoldCallTo(F);
+  return false;
+}
+
+/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
+/// in the loop that V is derived from.  We allow arbitrary operations along the
+/// way, but the operands of an operation must either be constants or a value
+/// derived from a constant PHI.  If this expression does not fit with these
+/// constraints, return null.
+static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
+  // If this is not an instruction, or if this is an instruction outside of the
+  // loop, it can't be derived from a loop PHI.
+  Instruction *I = dyn_cast<Instruction>(V);
+  if (I == 0 || !L->contains(I)) return 0;
+
+  if (PHINode *PN = dyn_cast<PHINode>(I)) {
+    if (L->getHeader() == I->getParent())
+      return PN;
+    else
+      // We don't currently keep track of the control flow needed to evaluate
+      // PHIs, so we cannot handle PHIs inside of loops.
+      return 0;
+  }
+
+  // If we won't be able to constant fold this expression even if the operands
+  // are constants, return early.
+  if (!CanConstantFold(I)) return 0;
+
+  // Otherwise, we can evaluate this instruction if all of its operands are
+  // constant or derived from a PHI node themselves.
+  PHINode *PHI = 0;
+  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
+    if (!(isa<Constant>(I->getOperand(Op)) ||
+          isa<GlobalValue>(I->getOperand(Op)))) {
+      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
+      if (P == 0) return 0;  // Not evolving from PHI
+      if (PHI == 0)
+        PHI = P;
+      else if (PHI != P)
+        return 0;  // Evolving from multiple different PHIs.
+    }
+
+  // This is a expression evolving from a constant PHI!
+  return PHI;
+}
+
+/// EvaluateExpression - Given an expression that passes the
+/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
+/// in the loop has the value PHIVal.  If we can't fold this expression for some
+/// reason, return null.
+static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
+                                    const TargetData *TD) {
+  if (isa<PHINode>(V)) return PHIVal;
+  if (Constant *C = dyn_cast<Constant>(V)) return C;
+  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
+  Instruction *I = cast<Instruction>(V);
+
+  std::vector<Constant*> Operands;
+  Operands.resize(I->getNumOperands());
+
+  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
+    if (Operands[i] == 0) return 0;
+  }
+
+  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
+    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
+                                           Operands[1], TD);
+  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
+                                  &Operands[0], Operands.size(), TD);
+}
+
+/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
+/// in the header of its containing loop, we know the loop executes a
+/// constant number of times, and the PHI node is just a recurrence
+/// involving constants, fold it.
+Constant *
+ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
+                                                   const APInt &BEs,
+                                                   const Loop *L) {
+  std::map<PHINode*, Constant*>::iterator I =
+    ConstantEvolutionLoopExitValue.find(PN);
+  if (I != ConstantEvolutionLoopExitValue.end())
+    return I->second;
+
+  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
+    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
+
+  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
+
+  // Since the loop is canonicalized, the PHI node must have two entries.  One
+  // entry must be a constant (coming in from outside of the loop), and the
+  // second must be derived from the same PHI.
+  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
+  Constant *StartCST =
+    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
+  if (StartCST == 0)
+    return RetVal = 0;  // Must be a constant.
+
+  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
+  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
+  if (PN2 != PN)
+    return RetVal = 0;  // Not derived from same PHI.
+
+  // Execute the loop symbolically to determine the exit value.
+  if (BEs.getActiveBits() >= 32)
+    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
+
+  unsigned NumIterations = BEs.getZExtValue(); // must be in range
+  unsigned IterationNum = 0;
+  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
+    if (IterationNum == NumIterations)
+      return RetVal = PHIVal;  // Got exit value!
+
+    // Compute the value of the PHI node for the next iteration.
+    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
+    if (NextPHI == PHIVal)
+      return RetVal = NextPHI;  // Stopped evolving!
+    if (NextPHI == 0)
+      return 0;        // Couldn't evaluate!
+    PHIVal = NextPHI;
+  }
+}
+
+/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
+/// constant number of times (the condition evolves only from constants),
+/// try to evaluate a few iterations of the loop until we get the exit
+/// condition gets a value of ExitWhen (true or false).  If we cannot
+/// evaluate the trip count of the loop, return getCouldNotCompute().
+const SCEV *
+ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
+                                                       Value *Cond,
+                                                       bool ExitWhen) {
+  PHINode *PN = getConstantEvolvingPHI(Cond, L);
+  if (PN == 0) return getCouldNotCompute();
+
+  // Since the loop is canonicalized, the PHI node must have two entries.  One
+  // entry must be a constant (coming in from outside of the loop), and the
+  // second must be derived from the same PHI.
+  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
+  Constant *StartCST =
+    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
+  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
+
+  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
+  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
+  if (PN2 != PN) return getCouldNotCompute();  // Not derived from same PHI.
+
+  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
+  // the loop symbolically to determine when the condition gets a value of
+  // "ExitWhen".
+  unsigned IterationNum = 0;
+  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
+  for (Constant *PHIVal = StartCST;
+       IterationNum != MaxIterations; ++IterationNum) {
+    ConstantInt *CondVal =
+      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
+
+    // Couldn't symbolically evaluate.
+    if (!CondVal) return getCouldNotCompute();
+
+    if (CondVal->getValue() == uint64_t(ExitWhen)) {
+      ++NumBruteForceTripCountsComputed;
+      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
+    }
+
+    // Compute the value of the PHI node for the next iteration.
+    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
+    if (NextPHI == 0 || NextPHI == PHIVal)
+      return getCouldNotCompute();// Couldn't evaluate or not making progress...
+    PHIVal = NextPHI;
+  }
+
+  // Too many iterations were needed to evaluate.
+  return getCouldNotCompute();
+}
+
+/// getSCEVAtScope - Return a SCEV expression for the specified value
+/// at the specified scope in the program.  The L value specifies a loop
+/// nest to evaluate the expression at, where null is the top-level or a
+/// specified loop is immediately inside of the loop.
+///
+/// This method can be used to compute the exit value for a variable defined
+/// in a loop by querying what the value will hold in the parent loop.
+///
+/// In the case that a relevant loop exit value cannot be computed, the
+/// original value V is returned.
+const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
+  // Check to see if we've folded this expression at this loop before.
+  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
+  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
+    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
+  if (!Pair.second)
+    return Pair.first->second ? Pair.first->second : V;
+
+  // Otherwise compute it.
+  const SCEV *C = computeSCEVAtScope(V, L);
+  ValuesAtScopes[V][L] = C;
+  return C;
+}
+
+const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
+  if (isa<SCEVConstant>(V)) return V;
+
+  // If this instruction is evolved from a constant-evolving PHI, compute the
+  // exit value from the loop without using SCEVs.
+  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
+    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
+      const Loop *LI = (*this->LI)[I->getParent()];
+      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
+        if (PHINode *PN = dyn_cast<PHINode>(I))
+          if (PN->getParent() == LI->getHeader()) {
+            // Okay, there is no closed form solution for the PHI node.  Check
+            // to see if the loop that contains it has a known backedge-taken
+            // count.  If so, we may be able to force computation of the exit
+            // value.
+            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
+            if (const SCEVConstant *BTCC =
+                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
+              // Okay, we know how many times the containing loop executes.  If
+              // this is a constant evolving PHI node, get the final value at
+              // the specified iteration number.
+              Constant *RV = getConstantEvolutionLoopExitValue(PN,
+                                                   BTCC->getValue()->getValue(),
+                                                               LI);
+              if (RV) return getSCEV(RV);
+            }
+          }
+
+      // Okay, this is an expression that we cannot symbolically evaluate
+      // into a SCEV.  Check to see if it's possible to symbolically evaluate
+      // the arguments into constants, and if so, try to constant propagate the
+      // result.  This is particularly useful for computing loop exit values.
+      if (CanConstantFold(I)) {
+        std::vector<Constant*> Operands;
+        Operands.reserve(I->getNumOperands());
+        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+          Value *Op = I->getOperand(i);
+          if (Constant *C = dyn_cast<Constant>(Op)) {
+            Operands.push_back(C);
+          } else {
+            // If any of the operands is non-constant and if they are
+            // non-integer and non-pointer, don't even try to analyze them
+            // with scev techniques.
+            if (!isSCEVable(Op->getType()))
+              return V;
+
+            const SCEV *OpV = getSCEVAtScope(Op, L);
+            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
+              Constant *C = SC->getValue();
+              if (C->getType() != Op->getType())
+                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+                                                                  Op->getType(),
+                                                                  false),
+                                          C, Op->getType());
+              Operands.push_back(C);
+            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
+              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
+                if (C->getType() != Op->getType())
+                  C =
+                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+                                                                  Op->getType(),
+                                                                  false),
+                                          C, Op->getType());
+                Operands.push_back(C);
+              } else
+                return V;
+            } else {
+              return V;
+            }
+          }
+        }
+
+        Constant *C;
+        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
+          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
+                                              Operands[0], Operands[1], TD);
+        else
+          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
+                                       &Operands[0], Operands.size(), TD);
+        return getSCEV(C);
+      }
+    }
+
+    // This is some other type of SCEVUnknown, just return it.
+    return V;
+  }
+
+  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
+    // Avoid performing the look-up in the common case where the specified
+    // expression has no loop-variant portions.
+    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
+      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
+      if (OpAtScope != Comm->getOperand(i)) {
+        // Okay, at least one of these operands is loop variant but might be
+        // foldable.  Build a new instance of the folded commutative expression.
+        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
+                                            Comm->op_begin()+i);
+        NewOps.push_back(OpAtScope);
+
+        for (++i; i != e; ++i) {
+          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
+          NewOps.push_back(OpAtScope);
+        }
+        if (isa<SCEVAddExpr>(Comm))
+          return getAddExpr(NewOps);
+        if (isa<SCEVMulExpr>(Comm))
+          return getMulExpr(NewOps);
+        if (isa<SCEVSMaxExpr>(Comm))
+          return getSMaxExpr(NewOps);
+        if (isa<SCEVUMaxExpr>(Comm))
+          return getUMaxExpr(NewOps);
+        llvm_unreachable("Unknown commutative SCEV type!");
+      }
+    }
+    // If we got here, all operands are loop invariant.
+    return Comm;
+  }
+
+  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
+    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
+    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
+    if (LHS == Div->getLHS() && RHS == Div->getRHS())
+      return Div;   // must be loop invariant
+    return getUDivExpr(LHS, RHS);
+  }
+
+  // If this is a loop recurrence for a loop that does not contain L, then we
+  // are dealing with the final value computed by the loop.
+  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
+    if (!L || !AddRec->getLoop()->contains(L)) {
+      // To evaluate this recurrence, we need to know how many times the AddRec
+      // loop iterates.  Compute this now.
+      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
+      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
+
+      // Then, evaluate the AddRec.
+      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
+    }
+    return AddRec;
+  }
+
+  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
+    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
+    if (Op == Cast->getOperand())
+      return Cast;  // must be loop invariant
+    return getZeroExtendExpr(Op, Cast->getType());
+  }
+
+  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
+    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
+    if (Op == Cast->getOperand())
+      return Cast;  // must be loop invariant
+    return getSignExtendExpr(Op, Cast->getType());
+  }
+
+  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
+    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
+    if (Op == Cast->getOperand())
+      return Cast;  // must be loop invariant
+    return getTruncateExpr(Op, Cast->getType());
+  }
+
+  llvm_unreachable("Unknown SCEV type!");
+  return 0;
+}
+
+/// getSCEVAtScope - This is a convenience function which does
+/// getSCEVAtScope(getSCEV(V), L).
+const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
+  return getSCEVAtScope(getSCEV(V), L);
+}
+
+/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
+/// following equation:
+///
+///     A * X = B (mod N)
+///
+/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
+/// A and B isn't important.
+///
+/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
+static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
+                                               ScalarEvolution &SE) {
+  uint32_t BW = A.getBitWidth();
+  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
+  assert(A != 0 && "A must be non-zero.");
+
+  // 1. D = gcd(A, N)
+  //
+  // The gcd of A and N may have only one prime factor: 2. The number of
+  // trailing zeros in A is its multiplicity
+  uint32_t Mult2 = A.countTrailingZeros();
+  // D = 2^Mult2
+
+  // 2. Check if B is divisible by D.
+  //
+  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
+  // is not less than multiplicity of this prime factor for D.
+  if (B.countTrailingZeros() < Mult2)
+    return SE.getCouldNotCompute();
+
+  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
+  // modulo (N / D).
+  //
+  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
+  // bit width during computations.
+  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
+  APInt Mod(BW + 1, 0);
+  Mod.set(BW - Mult2);  // Mod = N / D
+  APInt I = AD.multiplicativeInverse(Mod);
+
+  // 4. Compute the minimum unsigned root of the equation:
+  // I * (B / D) mod (N / D)
+  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
+
+  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
+  // bits.
+  return SE.getConstant(Result.trunc(BW));
+}
+
+/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
+/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
+/// might be the same) or two SCEVCouldNotCompute objects.
+///
+static std::pair<const SCEV *,const SCEV *>
+SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
+  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
+  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
+  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
+  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
+
+  // We currently can only solve this if the coefficients are constants.
+  if (!LC || !MC || !NC) {
+    const SCEV *CNC = SE.getCouldNotCompute();
+    return std::make_pair(CNC, CNC);
+  }
+
+  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
+  const APInt &L = LC->getValue()->getValue();
+  const APInt &M = MC->getValue()->getValue();
+  const APInt &N = NC->getValue()->getValue();
+  APInt Two(BitWidth, 2);
+  APInt Four(BitWidth, 4);
+
+  {
+    using namespace APIntOps;
+    const APInt& C = L;
+    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
+    // The B coefficient is M-N/2
+    APInt B(M);
+    B -= sdiv(N,Two);
+
+    // The A coefficient is N/2
+    APInt A(N.sdiv(Two));
+
+    // Compute the B^2-4ac term.
+    APInt SqrtTerm(B);
+    SqrtTerm *= B;
+    SqrtTerm -= Four * (A * C);
+
+    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
+    // integer value or else APInt::sqrt() will assert.
+    APInt SqrtVal(SqrtTerm.sqrt());
+
+    // Compute the two solutions for the quadratic formula.
+    // The divisions must be performed as signed divisions.
+    APInt NegB(-B);
+    APInt TwoA( A << 1 );
+    if (TwoA.isMinValue()) {
+      const SCEV *CNC = SE.getCouldNotCompute();
+      return std::make_pair(CNC, CNC);
+    }
+
+    LLVMContext &Context = SE.getContext();
+
+    ConstantInt *Solution1 =
+      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
+    ConstantInt *Solution2 =
+      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
+
+    return std::make_pair(SE.getConstant(Solution1),
+                          SE.getConstant(Solution2));
+    } // end APIntOps namespace
+}
+
+/// HowFarToZero - Return the number of times a backedge comparing the specified
+/// value to zero will execute.  If not computable, return CouldNotCompute.
+const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
+  // If the value is a constant
+  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
+    // If the value is already zero, the branch will execute zero times.
+    if (C->getValue()->isZero()) return C;
+    return getCouldNotCompute();  // Otherwise it will loop infinitely.
+  }
+
+  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
+  if (!AddRec || AddRec->getLoop() != L)
+    return getCouldNotCompute();
+
+  if (AddRec->isAffine()) {
+    // If this is an affine expression, the execution count of this branch is
+    // the minimum unsigned root of the following equation:
+    //
+    //     Start + Step*N = 0 (mod 2^BW)
+    //
+    // equivalent to:
+    //
+    //             Step*N = -Start (mod 2^BW)
+    //
+    // where BW is the common bit width of Start and Step.
+
+    // Get the initial value for the loop.
+    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
+                                       L->getParentLoop());
+    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
+                                      L->getParentLoop());
+
+    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
+      // For now we handle only constant steps.
+
+      // First, handle unitary steps.
+      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
+        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
+      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
+        return Start;                           //    N = Start (as unsigned)
+
+      // Then, try to solve the above equation provided that Start is constant.
+      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
+        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
+                                            -StartC->getValue()->getValue(),
+                                            *this);
+    }
+  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
+    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
+    // the quadratic equation to solve it.
+    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
+                                                                    *this);
+    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
+    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
+    if (R1) {
+#if 0
+      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
+             << "  sol#2: " << *R2 << "\n";
+#endif
+      // Pick the smallest positive root value.
+      if (ConstantInt *CB =
+          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
+                                   R1->getValue(), R2->getValue()))) {
+        if (CB->getZExtValue() == false)
+          std::swap(R1, R2);   // R1 is the minimum root now.
+
+        // We can only use this value if the chrec ends up with an exact zero
+        // value at this index.  When solving for "X*X != 5", for example, we
+        // should not accept a root of 2.
+        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
+        if (Val->isZero())
+          return R1;  // We found a quadratic root!
+      }
+    }
+  }
+
+  return getCouldNotCompute();
+}
+
+/// HowFarToNonZero - Return the number of times a backedge checking the
+/// specified value for nonzero will execute.  If not computable, return
+/// CouldNotCompute
+const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
+  // Loops that look like: while (X == 0) are very strange indeed.  We don't
+  // handle them yet except for the trivial case.  This could be expanded in the
+  // future as needed.
+
+  // If the value is a constant, check to see if it is known to be non-zero
+  // already.  If so, the backedge will execute zero times.
+  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
+    if (!C->getValue()->isNullValue())
+      return getIntegerSCEV(0, C->getType());
+    return getCouldNotCompute();  // Otherwise it will loop infinitely.
+  }
+
+  // We could implement others, but I really doubt anyone writes loops like
+  // this, and if they did, they would already be constant folded.
+  return getCouldNotCompute();
+}
+
+/// getLoopPredecessor - If the given loop's header has exactly one unique
+/// predecessor outside the loop, return it. Otherwise return null.
+///
+BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
+  BasicBlock *Header = L->getHeader();
+  BasicBlock *Pred = 0;
+  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
+       PI != E; ++PI)
+    if (!L->contains(*PI)) {
+      if (Pred && Pred != *PI) return 0; // Multiple predecessors.
+      Pred = *PI;
+    }
+  return Pred;
+}
+
+/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
+/// (which may not be an immediate predecessor) which has exactly one
+/// successor from which BB is reachable, or null if no such block is
+/// found.
+///
+BasicBlock *
+ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
+  // If the block has a unique predecessor, then there is no path from the
+  // predecessor to the block that does not go through the direct edge
+  // from the predecessor to the block.
+  if (BasicBlock *Pred = BB->getSinglePredecessor())
+    return Pred;
+
+  // A loop's header is defined to be a block that dominates the loop.
+  // If the header has a unique predecessor outside the loop, it must be
+  // a block that has exactly one successor that can reach the loop.
+  if (Loop *L = LI->getLoopFor(BB))
+    return getLoopPredecessor(L);
+
+  return 0;
+}
+
+/// HasSameValue - SCEV structural equivalence is usually sufficient for
+/// testing whether two expressions are equal, however for the purposes of
+/// looking for a condition guarding a loop, it can be useful to be a little
+/// more general, since a front-end may have replicated the controlling
+/// expression.
+///
+static bool HasSameValue(const SCEV *A, const SCEV *B) {
+  // Quick check to see if they are the same SCEV.
+  if (A == B) return true;
+
+  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
+  // two different instructions with the same value. Check for this case.
+  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
+    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
+      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
+        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
+          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
+            return true;
+
+  // Otherwise assume they may have a different value.
+  return false;
+}
+
+bool ScalarEvolution::isKnownNegative(const SCEV *S) {
+  return getSignedRange(S).getSignedMax().isNegative();
+}
+
+bool ScalarEvolution::isKnownPositive(const SCEV *S) {
+  return getSignedRange(S).getSignedMin().isStrictlyPositive();
+}
+
+bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
+  return !getSignedRange(S).getSignedMin().isNegative();
+}
+
+bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
+  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
+}
+
+bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
+  return isKnownNegative(S) || isKnownPositive(S);
+}
+
+bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
+                                       const SCEV *LHS, const SCEV *RHS) {
+
+  if (HasSameValue(LHS, RHS))
+    return ICmpInst::isTrueWhenEqual(Pred);
+
+  switch (Pred) {
+  default:
+    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
+    break;
+  case ICmpInst::ICMP_SGT:
+    Pred = ICmpInst::ICMP_SLT;
+    std::swap(LHS, RHS);
+  case ICmpInst::ICMP_SLT: {
+    ConstantRange LHSRange = getSignedRange(LHS);
+    ConstantRange RHSRange = getSignedRange(RHS);
+    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
+      return true;
+    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
+      return false;
+    break;
+  }
+  case ICmpInst::ICMP_SGE:
+    Pred = ICmpInst::ICMP_SLE;
+    std::swap(LHS, RHS);
+  case ICmpInst::ICMP_SLE: {
+    ConstantRange LHSRange = getSignedRange(LHS);
+    ConstantRange RHSRange = getSignedRange(RHS);
+    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
+      return true;
+    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
+      return false;
+    break;
+  }
+  case ICmpInst::ICMP_UGT:
+    Pred = ICmpInst::ICMP_ULT;
+    std::swap(LHS, RHS);
+  case ICmpInst::ICMP_ULT: {
+    ConstantRange LHSRange = getUnsignedRange(LHS);
+    ConstantRange RHSRange = getUnsignedRange(RHS);
+    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
+      return true;
+    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
+      return false;
+    break;
+  }
+  case ICmpInst::ICMP_UGE:
+    Pred = ICmpInst::ICMP_ULE;
+    std::swap(LHS, RHS);
+  case ICmpInst::ICMP_ULE: {
+    ConstantRange LHSRange = getUnsignedRange(LHS);
+    ConstantRange RHSRange = getUnsignedRange(RHS);
+    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
+      return true;
+    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
+      return false;
+    break;
+  }
+  case ICmpInst::ICMP_NE: {
+    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
+      return true;
+    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
+      return true;
+
+    const SCEV *Diff = getMinusSCEV(LHS, RHS);
+    if (isKnownNonZero(Diff))
+      return true;
+    break;
+  }
+  case ICmpInst::ICMP_EQ:
+    // The check at the top of the function catches the case where
+    // the values are known to be equal.
+    break;
+  }
+  return false;
+}
+
+/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
+/// protected by a conditional between LHS and RHS.  This is used to
+/// to eliminate casts.
+bool
+ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
+                                             ICmpInst::Predicate Pred,
+                                             const SCEV *LHS, const SCEV *RHS) {
+  // Interpret a null as meaning no loop, where there is obviously no guard
+  // (interprocedural conditions notwithstanding).
+  if (!L) return true;
+
+  BasicBlock *Latch = L->getLoopLatch();
+  if (!Latch)
+    return false;
+
+  BranchInst *LoopContinuePredicate =
+    dyn_cast<BranchInst>(Latch->getTerminator());
+  if (!LoopContinuePredicate ||
+      LoopContinuePredicate->isUnconditional())
+    return false;
+
+  return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
+                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
+}
+
+/// isLoopGuardedByCond - Test whether entry to the loop is protected
+/// by a conditional between LHS and RHS.  This is used to help avoid max
+/// expressions in loop trip counts, and to eliminate casts.
+bool
+ScalarEvolution::isLoopGuardedByCond(const Loop *L,
+                                     ICmpInst::Predicate Pred,
+                                     const SCEV *LHS, const SCEV *RHS) {
+  // Interpret a null as meaning no loop, where there is obviously no guard
+  // (interprocedural conditions notwithstanding).
+  if (!L) return false;
+
+  BasicBlock *Predecessor = getLoopPredecessor(L);
+  BasicBlock *PredecessorDest = L->getHeader();
+
+  // Starting at the loop predecessor, climb up the predecessor chain, as long
+  // as there are predecessors that can be found that have unique successors
+  // leading to the original header.
+  for (; Predecessor;
+       PredecessorDest = Predecessor,
+       Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
+
+    BranchInst *LoopEntryPredicate =
+      dyn_cast<BranchInst>(Predecessor->getTerminator());
+    if (!LoopEntryPredicate ||
+        LoopEntryPredicate->isUnconditional())
+      continue;
+
+    if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
+                      LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
+      return true;
+  }
+
+  return false;
+}
+
+/// isImpliedCond - Test whether the condition described by Pred, LHS,
+/// and RHS is true whenever the given Cond value evaluates to true.
+bool ScalarEvolution::isImpliedCond(Value *CondValue,
+                                    ICmpInst::Predicate Pred,
+                                    const SCEV *LHS, const SCEV *RHS,
+                                    bool Inverse) {
+  // Recursivly handle And and Or conditions.
+  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
+    if (BO->getOpcode() == Instruction::And) {
+      if (!Inverse)
+        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
+               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
+    } else if (BO->getOpcode() == Instruction::Or) {
+      if (Inverse)
+        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
+               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
+    }
+  }
+
+  ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
+  if (!ICI) return false;
+
+  // Bail if the ICmp's operands' types are wider than the needed type
+  // before attempting to call getSCEV on them. This avoids infinite
+  // recursion, since the analysis of widening casts can require loop
+  // exit condition information for overflow checking, which would
+  // lead back here.
+  if (getTypeSizeInBits(LHS->getType()) <
+      getTypeSizeInBits(ICI->getOperand(0)->getType()))
+    return false;
+
+  // Now that we found a conditional branch that dominates the loop, check to
+  // see if it is the comparison we are looking for.
+  ICmpInst::Predicate FoundPred;
+  if (Inverse)
+    FoundPred = ICI->getInversePredicate();
+  else
+    FoundPred = ICI->getPredicate();
+
+  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
+  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
+
+  // Balance the types. The case where FoundLHS' type is wider than
+  // LHS' type is checked for above.
+  if (getTypeSizeInBits(LHS->getType()) >
+      getTypeSizeInBits(FoundLHS->getType())) {
+    if (CmpInst::isSigned(Pred)) {
+      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
+      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
+    } else {
+      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
+      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
+    }
+  }
+
+  // Canonicalize the query to match the way instcombine will have
+  // canonicalized the comparison.
+  // First, put a constant operand on the right.
+  if (isa<SCEVConstant>(LHS)) {
+    std::swap(LHS, RHS);
+    Pred = ICmpInst::getSwappedPredicate(Pred);
+  }
+  // Then, canonicalize comparisons with boundary cases.
+  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
+    const APInt &RA = RC->getValue()->getValue();
+    switch (Pred) {
+    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
+    case ICmpInst::ICMP_EQ:
+    case ICmpInst::ICMP_NE:
+      break;
+    case ICmpInst::ICMP_UGE:
+      if ((RA - 1).isMinValue()) {
+        Pred = ICmpInst::ICMP_NE;
+        RHS = getConstant(RA - 1);
+        break;
+      }
+      if (RA.isMaxValue()) {
+        Pred = ICmpInst::ICMP_EQ;
+        break;
+      }
+      if (RA.isMinValue()) return true;
+      break;
+    case ICmpInst::ICMP_ULE:
+      if ((RA + 1).isMaxValue()) {
+        Pred = ICmpInst::ICMP_NE;
+        RHS = getConstant(RA + 1);
+        break;
+      }
+      if (RA.isMinValue()) {
+        Pred = ICmpInst::ICMP_EQ;
+        break;
+      }
+      if (RA.isMaxValue()) return true;
+      break;
+    case ICmpInst::ICMP_SGE:
+      if ((RA - 1).isMinSignedValue()) {
+        Pred = ICmpInst::ICMP_NE;
+        RHS = getConstant(RA - 1);
+        break;
+      }
+      if (RA.isMaxSignedValue()) {
+        Pred = ICmpInst::ICMP_EQ;
+        break;
+      }
+      if (RA.isMinSignedValue()) return true;
+      break;
+    case ICmpInst::ICMP_SLE:
+      if ((RA + 1).isMaxSignedValue()) {
+        Pred = ICmpInst::ICMP_NE;
+        RHS = getConstant(RA + 1);
+        break;
+      }
+      if (RA.isMinSignedValue()) {
+        Pred = ICmpInst::ICMP_EQ;
+        break;
+      }
+      if (RA.isMaxSignedValue()) return true;
+      break;
+    case ICmpInst::ICMP_UGT:
+      if (RA.isMinValue()) {
+        Pred = ICmpInst::ICMP_NE;
+        break;
+      }
+      if ((RA + 1).isMaxValue()) {
+        Pred = ICmpInst::ICMP_EQ;
+        RHS = getConstant(RA + 1);
+        break;
+      }
+      if (RA.isMaxValue()) return false;
+      break;
+    case ICmpInst::ICMP_ULT:
+      if (RA.isMaxValue()) {
+        Pred = ICmpInst::ICMP_NE;
+        break;
+      }
+      if ((RA - 1).isMinValue()) {
+        Pred = ICmpInst::ICMP_EQ;
+        RHS = getConstant(RA - 1);
+        break;
+      }
+      if (RA.isMinValue()) return false;
+      break;
+    case ICmpInst::ICMP_SGT:
+      if (RA.isMinSignedValue()) {
+        Pred = ICmpInst::ICMP_NE;
+        break;
+      }
+      if ((RA + 1).isMaxSignedValue()) {
+        Pred = ICmpInst::ICMP_EQ;
+        RHS = getConstant(RA + 1);
+        break;
+      }
+      if (RA.isMaxSignedValue()) return false;
+      break;
+    case ICmpInst::ICMP_SLT:
+      if (RA.isMaxSignedValue()) {
+        Pred = ICmpInst::ICMP_NE;
+        break;
+      }
+      if ((RA - 1).isMinSignedValue()) {
+       Pred = ICmpInst::ICMP_EQ;
+       RHS = getConstant(RA - 1);
+       break;
+      }
+      if (RA.isMinSignedValue()) return false;
+      break;
+    }
+  }
+
+  // Check to see if we can make the LHS or RHS match.
+  if (LHS == FoundRHS || RHS == FoundLHS) {
+    if (isa<SCEVConstant>(RHS)) {
+      std::swap(FoundLHS, FoundRHS);
+      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
+    } else {
+      std::swap(LHS, RHS);
+      Pred = ICmpInst::getSwappedPredicate(Pred);
+    }
+  }
+
+  // Check whether the found predicate is the same as the desired predicate.
+  if (FoundPred == Pred)
+    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
+
+  // Check whether swapping the found predicate makes it the same as the
+  // desired predicate.
+  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
+    if (isa<SCEVConstant>(RHS))
+      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
+    else
+      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
+                                   RHS, LHS, FoundLHS, FoundRHS);
+  }
+
+  // Check whether the actual condition is beyond sufficient.
+  if (FoundPred == ICmpInst::ICMP_EQ)
+    if (ICmpInst::isTrueWhenEqual(Pred))
+      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
+        return true;
+  if (Pred == ICmpInst::ICMP_NE)
+    if (!ICmpInst::isTrueWhenEqual(FoundPred))
+      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
+        return true;
+
+  // Otherwise assume the worst.
+  return false;
+}
+
+/// isImpliedCondOperands - Test whether the condition described by Pred,
+/// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
+/// and FoundRHS is true.
+bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
+                                            const SCEV *LHS, const SCEV *RHS,
+                                            const SCEV *FoundLHS,
+                                            const SCEV *FoundRHS) {
+  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
+                                     FoundLHS, FoundRHS) ||
+         // ~x < ~y --> x > y
+         isImpliedCondOperandsHelper(Pred, LHS, RHS,
+                                     getNotSCEV(FoundRHS),
+                                     getNotSCEV(FoundLHS));
+}
+
+/// isImpliedCondOperandsHelper - Test whether the condition described by
+/// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
+/// FoundLHS, and FoundRHS is true.
+bool
+ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
+                                             const SCEV *LHS, const SCEV *RHS,
+                                             const SCEV *FoundLHS,
+                                             const SCEV *FoundRHS) {
+  switch (Pred) {
+  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
+  case ICmpInst::ICMP_EQ:
+  case ICmpInst::ICMP_NE:
+    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
+      return true;
+    break;
+  case ICmpInst::ICMP_SLT:
+  case ICmpInst::ICMP_SLE:
+    if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
+        isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
+      return true;
+    break;
+  case ICmpInst::ICMP_SGT:
+  case ICmpInst::ICMP_SGE:
+    if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
+        isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
+      return true;
+    break;
+  case ICmpInst::ICMP_ULT:
+  case ICmpInst::ICMP_ULE:
+    if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
+        isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
+      return true;
+    break;
+  case ICmpInst::ICMP_UGT:
+  case ICmpInst::ICMP_UGE:
+    if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
+        isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
+      return true;
+    break;
+  }
+
+  return false;
+}
+
+/// getBECount - Subtract the end and start values and divide by the step,
+/// rounding up, to get the number of times the backedge is executed. Return
+/// CouldNotCompute if an intermediate computation overflows.
+const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
+                                        const SCEV *End,
+                                        const SCEV *Step,
+                                        bool NoWrap) {
+  assert(!isKnownNegative(Step) &&
+         "This code doesn't handle negative strides yet!");
+
+  const Type *Ty = Start->getType();
+  const SCEV *NegOne = getIntegerSCEV(-1, Ty);
+  const SCEV *Diff = getMinusSCEV(End, Start);
+  const SCEV *RoundUp = getAddExpr(Step, NegOne);
+
+  // Add an adjustment to the difference between End and Start so that
+  // the division will effectively round up.
+  const SCEV *Add = getAddExpr(Diff, RoundUp);
+
+  if (!NoWrap) {
+    // Check Add for unsigned overflow.
+    // TODO: More sophisticated things could be done here.
+    const Type *WideTy = IntegerType::get(getContext(),
+                                          getTypeSizeInBits(Ty) + 1);
+    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
+    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
+    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
+    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
+      return getCouldNotCompute();
+  }
+
+  return getUDivExpr(Add, Step);
+}
+
+/// HowManyLessThans - Return the number of times a backedge containing the
+/// specified less-than comparison will execute.  If not computable, return
+/// CouldNotCompute.
+ScalarEvolution::BackedgeTakenInfo
+ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
+                                  const Loop *L, bool isSigned) {
+  // Only handle:  "ADDREC < LoopInvariant".
+  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
+
+  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
+  if (!AddRec || AddRec->getLoop() != L)
+    return getCouldNotCompute();
+
+  // Check to see if we have a flag which makes analysis easy.
+  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
+                           AddRec->hasNoUnsignedWrap();
+
+  if (AddRec->isAffine()) {
+    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
+    const SCEV *Step = AddRec->getStepRecurrence(*this);
+
+    if (Step->isZero())
+      return getCouldNotCompute();
+    if (Step->isOne()) {
+      // With unit stride, the iteration never steps past the limit value.
+    } else if (isKnownPositive(Step)) {
+      // Test whether a positive iteration can step past the limit
+      // value and past the maximum value for its type in a single step.
+      // Note that it's not sufficient to check NoWrap here, because even
+      // though the value after a wrap is undefined, it's not undefined
+      // behavior, so if wrap does occur, the loop could either terminate or
+      // loop infinitely, but in either case, the loop is guaranteed to
+      // iterate at least until the iteration where the wrapping occurs.
+      const SCEV *One = getIntegerSCEV(1, Step->getType());
+      if (isSigned) {
+        APInt Max = APInt::getSignedMaxValue(BitWidth);
+        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
+              .slt(getSignedRange(RHS).getSignedMax()))
+          return getCouldNotCompute();
+      } else {
+        APInt Max = APInt::getMaxValue(BitWidth);
+        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
+              .ult(getUnsignedRange(RHS).getUnsignedMax()))
+          return getCouldNotCompute();
+      }
+    } else
+      // TODO: Handle negative strides here and below.
+      return getCouldNotCompute();
+
+    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
+    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
+    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
+    // treat m-n as signed nor unsigned due to overflow possibility.
+
+    // First, we get the value of the LHS in the first iteration: n
+    const SCEV *Start = AddRec->getOperand(0);
+
+    // Determine the minimum constant start value.
+    const SCEV *MinStart = getConstant(isSigned ?
+      getSignedRange(Start).getSignedMin() :
+      getUnsignedRange(Start).getUnsignedMin());
+
+    // If we know that the condition is true in order to enter the loop,
+    // then we know that it will run exactly (m-n)/s times. Otherwise, we
+    // only know that it will execute (max(m,n)-n)/s times. In both cases,
+    // the division must round up.
+    const SCEV *End = RHS;
+    if (!isLoopGuardedByCond(L,
+                             isSigned ? ICmpInst::ICMP_SLT :
+                                        ICmpInst::ICMP_ULT,
+                             getMinusSCEV(Start, Step), RHS))
+      End = isSigned ? getSMaxExpr(RHS, Start)
+                     : getUMaxExpr(RHS, Start);
+
+    // Determine the maximum constant end value.
+    const SCEV *MaxEnd = getConstant(isSigned ?
+      getSignedRange(End).getSignedMax() :
+      getUnsignedRange(End).getUnsignedMax());
+
+    // If MaxEnd is within a step of the maximum integer value in its type,
+    // adjust it down to the minimum value which would produce the same effect.
+    // This allows the subsequent ceiling divison of (N+(step-1))/step to
+    // compute the correct value.
+    const SCEV *StepMinusOne = getMinusSCEV(Step,
+                                            getIntegerSCEV(1, Step->getType()));
+    MaxEnd = isSigned ?
+      getSMinExpr(MaxEnd,
+                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
+                               StepMinusOne)) :
+      getUMinExpr(MaxEnd,
+                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
+                               StepMinusOne));
+
+    // Finally, we subtract these two values and divide, rounding up, to get
+    // the number of times the backedge is executed.
+    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
+
+    // The maximum backedge count is similar, except using the minimum start
+    // value and the maximum end value.
+    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
+
+    return BackedgeTakenInfo(BECount, MaxBECount);
+  }
+
+  return getCouldNotCompute();
+}
+
+/// getNumIterationsInRange - Return the number of iterations of this loop that
+/// produce values in the specified constant range.  Another way of looking at
+/// this is that it returns the first iteration number where the value is not in
+/// the condition, thus computing the exit count. If the iteration count can't
+/// be computed, an instance of SCEVCouldNotCompute is returned.
+const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
+                                                    ScalarEvolution &SE) const {
+  if (Range.isFullSet())  // Infinite loop.
+    return SE.getCouldNotCompute();
+
+  // If the start is a non-zero constant, shift the range to simplify things.
+  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
+    if (!SC->getValue()->isZero()) {
+      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
+      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
+      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
+      if (const SCEVAddRecExpr *ShiftedAddRec =
+            dyn_cast<SCEVAddRecExpr>(Shifted))
+        return ShiftedAddRec->getNumIterationsInRange(
+                           Range.subtract(SC->getValue()->getValue()), SE);
+      // This is strange and shouldn't happen.
+      return SE.getCouldNotCompute();
+    }
+
+  // The only time we can solve this is when we have all constant indices.
+  // Otherwise, we cannot determine the overflow conditions.
+  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+    if (!isa<SCEVConstant>(getOperand(i)))
+      return SE.getCouldNotCompute();
+
+
+  // Okay at this point we know that all elements of the chrec are constants and
+  // that the start element is zero.
+
+  // First check to see if the range contains zero.  If not, the first
+  // iteration exits.
+  unsigned BitWidth = SE.getTypeSizeInBits(getType());
+  if (!Range.contains(APInt(BitWidth, 0)))
+    return SE.getIntegerSCEV(0, getType());
+
+  if (isAffine()) {
+    // If this is an affine expression then we have this situation:
+    //   Solve {0,+,A} in Range  ===  Ax in Range
+
+    // We know that zero is in the range.  If A is positive then we know that
+    // the upper value of the range must be the first possible exit value.
+    // If A is negative then the lower of the range is the last possible loop
+    // value.  Also note that we already checked for a full range.
+    APInt One(BitWidth,1);
+    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
+    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
+
+    // The exit value should be (End+A)/A.
+    APInt ExitVal = (End + A).udiv(A);
+    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
+
+    // Evaluate at the exit value.  If we really did fall out of the valid
+    // range, then we computed our trip count, otherwise wrap around or other
+    // things must have happened.
+    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
+    if (Range.contains(Val->getValue()))
+      return SE.getCouldNotCompute();  // Something strange happened
+
+    // Ensure that the previous value is in the range.  This is a sanity check.
+    assert(Range.contains(
+           EvaluateConstantChrecAtConstant(this,
+           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
+           "Linear scev computation is off in a bad way!");
+    return SE.getConstant(ExitValue);
+  } else if (isQuadratic()) {
+    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
+    // quadratic equation to solve it.  To do this, we must frame our problem in
+    // terms of figuring out when zero is crossed, instead of when
+    // Range.getUpper() is crossed.
+    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
+    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
+    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
+
+    // Next, solve the constructed addrec
+    std::pair<const SCEV *,const SCEV *> Roots =
+      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
+    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
+    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
+    if (R1) {
+      // Pick the smallest positive root value.
+      if (ConstantInt *CB =
+          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
+                         R1->getValue(), R2->getValue()))) {
+        if (CB->getZExtValue() == false)
+          std::swap(R1, R2);   // R1 is the minimum root now.
+
+        // Make sure the root is not off by one.  The returned iteration should
+        // not be in the range, but the previous one should be.  When solving
+        // for "X*X < 5", for example, we should not return a root of 2.
+        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
+                                                             R1->getValue(),
+                                                             SE);
+        if (Range.contains(R1Val->getValue())) {
+          // The next iteration must be out of the range...
+          ConstantInt *NextVal =
+                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
+
+          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
+          if (!Range.contains(R1Val->getValue()))
+            return SE.getConstant(NextVal);
+          return SE.getCouldNotCompute();  // Something strange happened
+        }
+
+        // If R1 was not in the range, then it is a good return value.  Make
+        // sure that R1-1 WAS in the range though, just in case.
+        ConstantInt *NextVal =
+               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
+        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
+        if (Range.contains(R1Val->getValue()))
+          return R1;
+        return SE.getCouldNotCompute();  // Something strange happened
+      }
+    }
+  }
+
+  return SE.getCouldNotCompute();
+}
+
+
+
+//===----------------------------------------------------------------------===//
+//                   SCEVCallbackVH Class Implementation
+//===----------------------------------------------------------------------===//
+
+void ScalarEvolution::SCEVCallbackVH::deleted() {
+  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
+  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
+    SE->ConstantEvolutionLoopExitValue.erase(PN);
+  SE->Scalars.erase(getValPtr());
+  // this now dangles!
+}
+
+void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
+  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
+
+  // Forget all the expressions associated with users of the old value,
+  // so that future queries will recompute the expressions using the new
+  // value.
+  SmallVector<User *, 16> Worklist;
+  SmallPtrSet<User *, 8> Visited;
+  Value *Old = getValPtr();
+  bool DeleteOld = false;
+  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
+       UI != UE; ++UI)
+    Worklist.push_back(*UI);
+  while (!Worklist.empty()) {
+    User *U = Worklist.pop_back_val();
+    // Deleting the Old value will cause this to dangle. Postpone
+    // that until everything else is done.
+    if (U == Old) {
+      DeleteOld = true;
+      continue;
+    }
+    if (!Visited.insert(U))
+      continue;
+    if (PHINode *PN = dyn_cast<PHINode>(U))
+      SE->ConstantEvolutionLoopExitValue.erase(PN);
+    SE->Scalars.erase(U);
+    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
+         UI != UE; ++UI)
+      Worklist.push_back(*UI);
+  }
+  // Delete the Old value if it (indirectly) references itself.
+  if (DeleteOld) {
+    if (PHINode *PN = dyn_cast<PHINode>(Old))
+      SE->ConstantEvolutionLoopExitValue.erase(PN);
+    SE->Scalars.erase(Old);
+    // this now dangles!
+  }
+  // this may dangle!
+}
+
+ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
+  : CallbackVH(V), SE(se) {}
+
+//===----------------------------------------------------------------------===//
+//                   ScalarEvolution Class Implementation
+//===----------------------------------------------------------------------===//
+
+ScalarEvolution::ScalarEvolution()
+  : FunctionPass(&ID) {
+}
+
+bool ScalarEvolution::runOnFunction(Function &F) {
+  this->F = &F;
+  LI = &getAnalysis<LoopInfo>();
+  DT = &getAnalysis<DominatorTree>();
+  TD = getAnalysisIfAvailable<TargetData>();
+  return false;
+}
+
+void ScalarEvolution::releaseMemory() {
+  Scalars.clear();
+  BackedgeTakenCounts.clear();
+  ConstantEvolutionLoopExitValue.clear();
+  ValuesAtScopes.clear();
+  UniqueSCEVs.clear();
+  SCEVAllocator.Reset();
+}
+
+void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
+  AU.setPreservesAll();
+  AU.addRequiredTransitive<LoopInfo>();
+  AU.addRequiredTransitive<DominatorTree>();
+}
+
+bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
+  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
+}
+
+static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
+                          const Loop *L) {
+  // Print all inner loops first
+  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
+    PrintLoopInfo(OS, SE, *I);
+
+  OS << "Loop ";
+  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
+  OS << ": ";
+
+  SmallVector<BasicBlock *, 8> ExitBlocks;
+  L->getExitBlocks(ExitBlocks);
+  if (ExitBlocks.size() != 1)
+    OS << "<multiple exits> ";
+
+  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
+    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
+  } else {
+    OS << "Unpredictable backedge-taken count. ";
+  }
+
+  OS << "\n"
+        "Loop ";
+  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
+  OS << ": ";
+
+  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
+    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
+  } else {
+    OS << "Unpredictable max backedge-taken count. ";
+  }
+
+  OS << "\n";
+}
+
+void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
+  // ScalarEvolution's implementaiton of the print method is to print
+  // out SCEV values of all instructions that are interesting. Doing
+  // this potentially causes it to create new SCEV objects though,
+  // which technically conflicts with the const qualifier. This isn't
+  // observable from outside the class though, so casting away the
+  // const isn't dangerous.
+  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
+
+  OS << "Classifying expressions for: ";
+  WriteAsOperand(OS, F, /*PrintType=*/false);
+  OS << "\n";
+  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
+    if (isSCEVable(I->getType())) {
+      OS << *I << '\n';
+      OS << "  -->  ";
+      const SCEV *SV = SE.getSCEV(&*I);
+      SV->print(OS);
+
+      const Loop *L = LI->getLoopFor((*I).getParent());
+
+      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
+      if (AtUse != SV) {
+        OS << "  -->  ";
+        AtUse->print(OS);
+      }
+
+      if (L) {
+        OS << "\t\t" "Exits: ";
+        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
+        if (!ExitValue->isLoopInvariant(L)) {
+          OS << "<<Unknown>>";
+        } else {
+          OS << *ExitValue;
+        }
+      }
+
+      OS << "\n";
+    }
+
+  OS << "Determining loop execution counts for: ";
+  WriteAsOperand(OS, F, /*PrintType=*/false);
+  OS << "\n";
+  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
+    PrintLoopInfo(OS, &SE, *I);
+}
+