Check in LLVM r95781.
diff --git a/lib/AsmParser/LLParser.cpp b/lib/AsmParser/LLParser.cpp
new file mode 100644
index 0000000..5dd6569
--- /dev/null
+++ b/lib/AsmParser/LLParser.cpp
@@ -0,0 +1,3846 @@
+//===-- LLParser.cpp - Parser Class ---------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//  This file defines the parser class for .ll files.
+//
+//===----------------------------------------------------------------------===//
+
+#include "LLParser.h"
+#include "llvm/AutoUpgrade.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
+#include "llvm/Module.h"
+#include "llvm/Operator.h"
+#include "llvm/ValueSymbolTable.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+/// Run: module ::= toplevelentity*
+bool LLParser::Run() {
+  // Prime the lexer.
+  Lex.Lex();
+
+  return ParseTopLevelEntities() ||
+         ValidateEndOfModule();
+}
+
+/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
+/// module.
+bool LLParser::ValidateEndOfModule() {
+  // Update auto-upgraded malloc calls to "malloc".
+  // FIXME: Remove in LLVM 3.0.
+  if (MallocF) {
+    MallocF->setName("malloc");
+    // If setName() does not set the name to "malloc", then there is already a 
+    // declaration of "malloc".  In that case, iterate over all calls to MallocF
+    // and get them to call the declared "malloc" instead.
+    if (MallocF->getName() != "malloc") {
+      Constant *RealMallocF = M->getFunction("malloc");
+      if (RealMallocF->getType() != MallocF->getType())
+        RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
+      MallocF->replaceAllUsesWith(RealMallocF);
+      MallocF->eraseFromParent();
+      MallocF = NULL;
+    }
+  }
+  
+  
+  // If there are entries in ForwardRefBlockAddresses at this point, they are
+  // references after the function was defined.  Resolve those now.
+  while (!ForwardRefBlockAddresses.empty()) {
+    // Okay, we are referencing an already-parsed function, resolve them now.
+    Function *TheFn = 0;
+    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
+    if (Fn.Kind == ValID::t_GlobalName)
+      TheFn = M->getFunction(Fn.StrVal);
+    else if (Fn.UIntVal < NumberedVals.size())
+      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
+    
+    if (TheFn == 0)
+      return Error(Fn.Loc, "unknown function referenced by blockaddress");
+    
+    // Resolve all these references.
+    if (ResolveForwardRefBlockAddresses(TheFn, 
+                                      ForwardRefBlockAddresses.begin()->second,
+                                        0))
+      return true;
+    
+    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
+  }
+  
+  
+  if (!ForwardRefTypes.empty())
+    return Error(ForwardRefTypes.begin()->second.second,
+                 "use of undefined type named '" +
+                 ForwardRefTypes.begin()->first + "'");
+  if (!ForwardRefTypeIDs.empty())
+    return Error(ForwardRefTypeIDs.begin()->second.second,
+                 "use of undefined type '%" +
+                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
+
+  if (!ForwardRefVals.empty())
+    return Error(ForwardRefVals.begin()->second.second,
+                 "use of undefined value '@" + ForwardRefVals.begin()->first +
+                 "'");
+
+  if (!ForwardRefValIDs.empty())
+    return Error(ForwardRefValIDs.begin()->second.second,
+                 "use of undefined value '@" +
+                 utostr(ForwardRefValIDs.begin()->first) + "'");
+
+  if (!ForwardRefMDNodes.empty())
+    return Error(ForwardRefMDNodes.begin()->second.second,
+                 "use of undefined metadata '!" +
+                 utostr(ForwardRefMDNodes.begin()->first) + "'");
+
+
+  // Look for intrinsic functions and CallInst that need to be upgraded
+  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
+    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
+
+  // Check debug info intrinsics.
+  CheckDebugInfoIntrinsics(M);
+  return false;
+}
+
+bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn, 
+                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
+                                               PerFunctionState *PFS) {
+  // Loop over all the references, resolving them.
+  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
+    BasicBlock *Res;
+    if (PFS) {
+      if (Refs[i].first.Kind == ValID::t_LocalName)
+        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
+      else
+        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
+    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
+      return Error(Refs[i].first.Loc,
+       "cannot take address of numeric label after the function is defined");
+    } else {
+      Res = dyn_cast_or_null<BasicBlock>(
+                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
+    }
+    
+    if (Res == 0)
+      return Error(Refs[i].first.Loc,
+                   "referenced value is not a basic block");
+    
+    // Get the BlockAddress for this and update references to use it.
+    BlockAddress *BA = BlockAddress::get(TheFn, Res);
+    Refs[i].second->replaceAllUsesWith(BA);
+    Refs[i].second->eraseFromParent();
+  }
+  return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Top-Level Entities
+//===----------------------------------------------------------------------===//
+
+bool LLParser::ParseTopLevelEntities() {
+  while (1) {
+    switch (Lex.getKind()) {
+    default:         return TokError("expected top-level entity");
+    case lltok::Eof: return false;
+    //case lltok::kw_define:
+    case lltok::kw_declare: if (ParseDeclare()) return true; break;
+    case lltok::kw_define:  if (ParseDefine()) return true; break;
+    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
+    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
+    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
+    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
+    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
+    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
+    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
+    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
+    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
+    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
+    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
+
+    // The Global variable production with no name can have many different
+    // optional leading prefixes, the production is:
+    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
+    //               OptionalAddrSpace ('constant'|'global') ...
+    case lltok::kw_private :       // OptionalLinkage
+    case lltok::kw_linker_private: // OptionalLinkage
+    case lltok::kw_internal:       // OptionalLinkage
+    case lltok::kw_weak:           // OptionalLinkage
+    case lltok::kw_weak_odr:       // OptionalLinkage
+    case lltok::kw_linkonce:       // OptionalLinkage
+    case lltok::kw_linkonce_odr:   // OptionalLinkage
+    case lltok::kw_appending:      // OptionalLinkage
+    case lltok::kw_dllexport:      // OptionalLinkage
+    case lltok::kw_common:         // OptionalLinkage
+    case lltok::kw_dllimport:      // OptionalLinkage
+    case lltok::kw_extern_weak:    // OptionalLinkage
+    case lltok::kw_external: {     // OptionalLinkage
+      unsigned Linkage, Visibility;
+      if (ParseOptionalLinkage(Linkage) ||
+          ParseOptionalVisibility(Visibility) ||
+          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
+        return true;
+      break;
+    }
+    case lltok::kw_default:       // OptionalVisibility
+    case lltok::kw_hidden:        // OptionalVisibility
+    case lltok::kw_protected: {   // OptionalVisibility
+      unsigned Visibility;
+      if (ParseOptionalVisibility(Visibility) ||
+          ParseGlobal("", SMLoc(), 0, false, Visibility))
+        return true;
+      break;
+    }
+
+    case lltok::kw_thread_local:  // OptionalThreadLocal
+    case lltok::kw_addrspace:     // OptionalAddrSpace
+    case lltok::kw_constant:      // GlobalType
+    case lltok::kw_global:        // GlobalType
+      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
+      break;
+    }
+  }
+}
+
+
+/// toplevelentity
+///   ::= 'module' 'asm' STRINGCONSTANT
+bool LLParser::ParseModuleAsm() {
+  assert(Lex.getKind() == lltok::kw_module);
+  Lex.Lex();
+
+  std::string AsmStr;
+  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
+      ParseStringConstant(AsmStr)) return true;
+
+  const std::string &AsmSoFar = M->getModuleInlineAsm();
+  if (AsmSoFar.empty())
+    M->setModuleInlineAsm(AsmStr);
+  else
+    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
+  return false;
+}
+
+/// toplevelentity
+///   ::= 'target' 'triple' '=' STRINGCONSTANT
+///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
+bool LLParser::ParseTargetDefinition() {
+  assert(Lex.getKind() == lltok::kw_target);
+  std::string Str;
+  switch (Lex.Lex()) {
+  default: return TokError("unknown target property");
+  case lltok::kw_triple:
+    Lex.Lex();
+    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
+        ParseStringConstant(Str))
+      return true;
+    M->setTargetTriple(Str);
+    return false;
+  case lltok::kw_datalayout:
+    Lex.Lex();
+    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
+        ParseStringConstant(Str))
+      return true;
+    M->setDataLayout(Str);
+    return false;
+  }
+}
+
+/// toplevelentity
+///   ::= 'deplibs' '=' '[' ']'
+///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
+bool LLParser::ParseDepLibs() {
+  assert(Lex.getKind() == lltok::kw_deplibs);
+  Lex.Lex();
+  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
+      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
+    return true;
+
+  if (EatIfPresent(lltok::rsquare))
+    return false;
+
+  std::string Str;
+  if (ParseStringConstant(Str)) return true;
+  M->addLibrary(Str);
+
+  while (EatIfPresent(lltok::comma)) {
+    if (ParseStringConstant(Str)) return true;
+    M->addLibrary(Str);
+  }
+
+  return ParseToken(lltok::rsquare, "expected ']' at end of list");
+}
+
+/// ParseUnnamedType:
+///   ::= 'type' type
+///   ::= LocalVarID '=' 'type' type
+bool LLParser::ParseUnnamedType() {
+  unsigned TypeID = NumberedTypes.size();
+
+  // Handle the LocalVarID form.
+  if (Lex.getKind() == lltok::LocalVarID) {
+    if (Lex.getUIntVal() != TypeID)
+      return Error(Lex.getLoc(), "type expected to be numbered '%" +
+                   utostr(TypeID) + "'");
+    Lex.Lex(); // eat LocalVarID;
+
+    if (ParseToken(lltok::equal, "expected '=' after name"))
+      return true;
+  }
+
+  assert(Lex.getKind() == lltok::kw_type);
+  LocTy TypeLoc = Lex.getLoc();
+  Lex.Lex(); // eat kw_type
+
+  PATypeHolder Ty(Type::getVoidTy(Context));
+  if (ParseType(Ty)) return true;
+
+  // See if this type was previously referenced.
+  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
+    FI = ForwardRefTypeIDs.find(TypeID);
+  if (FI != ForwardRefTypeIDs.end()) {
+    if (FI->second.first.get() == Ty)
+      return Error(TypeLoc, "self referential type is invalid");
+
+    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
+    Ty = FI->second.first.get();
+    ForwardRefTypeIDs.erase(FI);
+  }
+
+  NumberedTypes.push_back(Ty);
+
+  return false;
+}
+
+/// toplevelentity
+///   ::= LocalVar '=' 'type' type
+bool LLParser::ParseNamedType() {
+  std::string Name = Lex.getStrVal();
+  LocTy NameLoc = Lex.getLoc();
+  Lex.Lex();  // eat LocalVar.
+
+  PATypeHolder Ty(Type::getVoidTy(Context));
+
+  if (ParseToken(lltok::equal, "expected '=' after name") ||
+      ParseToken(lltok::kw_type, "expected 'type' after name") ||
+      ParseType(Ty))
+    return true;
+
+  // Set the type name, checking for conflicts as we do so.
+  bool AlreadyExists = M->addTypeName(Name, Ty);
+  if (!AlreadyExists) return false;
+
+  // See if this type is a forward reference.  We need to eagerly resolve
+  // types to allow recursive type redefinitions below.
+  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
+  FI = ForwardRefTypes.find(Name);
+  if (FI != ForwardRefTypes.end()) {
+    if (FI->second.first.get() == Ty)
+      return Error(NameLoc, "self referential type is invalid");
+
+    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
+    Ty = FI->second.first.get();
+    ForwardRefTypes.erase(FI);
+  }
+
+  // Inserting a name that is already defined, get the existing name.
+  const Type *Existing = M->getTypeByName(Name);
+  assert(Existing && "Conflict but no matching type?!");
+
+  // Otherwise, this is an attempt to redefine a type. That's okay if
+  // the redefinition is identical to the original.
+  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
+  if (Existing == Ty) return false;
+
+  // Any other kind of (non-equivalent) redefinition is an error.
+  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
+               Ty->getDescription() + "'");
+}
+
+
+/// toplevelentity
+///   ::= 'declare' FunctionHeader
+bool LLParser::ParseDeclare() {
+  assert(Lex.getKind() == lltok::kw_declare);
+  Lex.Lex();
+
+  Function *F;
+  return ParseFunctionHeader(F, false);
+}
+
+/// toplevelentity
+///   ::= 'define' FunctionHeader '{' ...
+bool LLParser::ParseDefine() {
+  assert(Lex.getKind() == lltok::kw_define);
+  Lex.Lex();
+
+  Function *F;
+  return ParseFunctionHeader(F, true) ||
+         ParseFunctionBody(*F);
+}
+
+/// ParseGlobalType
+///   ::= 'constant'
+///   ::= 'global'
+bool LLParser::ParseGlobalType(bool &IsConstant) {
+  if (Lex.getKind() == lltok::kw_constant)
+    IsConstant = true;
+  else if (Lex.getKind() == lltok::kw_global)
+    IsConstant = false;
+  else {
+    IsConstant = false;
+    return TokError("expected 'global' or 'constant'");
+  }
+  Lex.Lex();
+  return false;
+}
+
+/// ParseUnnamedGlobal:
+///   OptionalVisibility ALIAS ...
+///   OptionalLinkage OptionalVisibility ...   -> global variable
+///   GlobalID '=' OptionalVisibility ALIAS ...
+///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
+bool LLParser::ParseUnnamedGlobal() {
+  unsigned VarID = NumberedVals.size();
+  std::string Name;
+  LocTy NameLoc = Lex.getLoc();
+
+  // Handle the GlobalID form.
+  if (Lex.getKind() == lltok::GlobalID) {
+    if (Lex.getUIntVal() != VarID)
+      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
+                   utostr(VarID) + "'");
+    Lex.Lex(); // eat GlobalID;
+
+    if (ParseToken(lltok::equal, "expected '=' after name"))
+      return true;
+  }
+
+  bool HasLinkage;
+  unsigned Linkage, Visibility;
+  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
+      ParseOptionalVisibility(Visibility))
+    return true;
+
+  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
+    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
+  return ParseAlias(Name, NameLoc, Visibility);
+}
+
+/// ParseNamedGlobal:
+///   GlobalVar '=' OptionalVisibility ALIAS ...
+///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
+bool LLParser::ParseNamedGlobal() {
+  assert(Lex.getKind() == lltok::GlobalVar);
+  LocTy NameLoc = Lex.getLoc();
+  std::string Name = Lex.getStrVal();
+  Lex.Lex();
+
+  bool HasLinkage;
+  unsigned Linkage, Visibility;
+  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
+      ParseOptionalLinkage(Linkage, HasLinkage) ||
+      ParseOptionalVisibility(Visibility))
+    return true;
+
+  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
+    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
+  return ParseAlias(Name, NameLoc, Visibility);
+}
+
+// MDString:
+//   ::= '!' STRINGCONSTANT
+bool LLParser::ParseMDString(MDString *&Result) {
+  std::string Str;
+  if (ParseStringConstant(Str)) return true;
+  Result = MDString::get(Context, Str);
+  return false;
+}
+
+// MDNode:
+//   ::= '!' MDNodeNumber
+bool LLParser::ParseMDNodeID(MDNode *&Result) {
+  // !{ ..., !42, ... }
+  unsigned MID = 0;
+  if (ParseUInt32(MID)) return true;
+
+  // Check existing MDNode.
+  if (MID < NumberedMetadata.size() && NumberedMetadata[MID] != 0) {
+    Result = NumberedMetadata[MID];
+    return false;
+  }
+
+  // Create MDNode forward reference.
+
+  // FIXME: This is not unique enough!
+  std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
+  Value *V = MDString::get(Context, FwdRefName);
+  MDNode *FwdNode = MDNode::get(Context, &V, 1);
+  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
+  
+  if (NumberedMetadata.size() <= MID)
+    NumberedMetadata.resize(MID+1);
+  NumberedMetadata[MID] = FwdNode;
+  Result = FwdNode;
+  return false;
+}
+
+/// ParseNamedMetadata:
+///   !foo = !{ !1, !2 }
+bool LLParser::ParseNamedMetadata() {
+  assert(Lex.getKind() == lltok::MetadataVar);
+  std::string Name = Lex.getStrVal();
+  Lex.Lex();
+
+  if (ParseToken(lltok::equal, "expected '=' here") ||
+      ParseToken(lltok::exclaim, "Expected '!' here") ||
+      ParseToken(lltok::lbrace, "Expected '{' here"))
+    return true;
+
+  SmallVector<MDNode *, 8> Elts;
+  do {
+    // Null is a special case since it is typeless.
+    if (EatIfPresent(lltok::kw_null)) {
+      Elts.push_back(0);
+      continue;
+    }
+
+    if (ParseToken(lltok::exclaim, "Expected '!' here"))
+      return true;
+    
+    MDNode *N = 0;
+    if (ParseMDNodeID(N)) return true;
+    Elts.push_back(N);
+  } while (EatIfPresent(lltok::comma));
+
+  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
+    return true;
+
+  NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
+  return false;
+}
+
+/// ParseStandaloneMetadata:
+///   !42 = !{...}
+bool LLParser::ParseStandaloneMetadata() {
+  assert(Lex.getKind() == lltok::exclaim);
+  Lex.Lex();
+  unsigned MetadataID = 0;
+
+  LocTy TyLoc;
+  PATypeHolder Ty(Type::getVoidTy(Context));
+  SmallVector<Value *, 16> Elts;
+  if (ParseUInt32(MetadataID) ||
+      ParseToken(lltok::equal, "expected '=' here") ||
+      ParseType(Ty, TyLoc) ||
+      ParseToken(lltok::exclaim, "Expected '!' here") ||
+      ParseToken(lltok::lbrace, "Expected '{' here") ||
+      ParseMDNodeVector(Elts, NULL) ||
+      ParseToken(lltok::rbrace, "expected end of metadata node"))
+    return true;
+
+  MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
+  
+  // See if this was forward referenced, if so, handle it.
+  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
+    FI = ForwardRefMDNodes.find(MetadataID);
+  if (FI != ForwardRefMDNodes.end()) {
+    FI->second.first->replaceAllUsesWith(Init);
+    ForwardRefMDNodes.erase(FI);
+    
+    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
+  } else {
+    if (MetadataID >= NumberedMetadata.size())
+      NumberedMetadata.resize(MetadataID+1);
+
+    if (NumberedMetadata[MetadataID] != 0)
+      return TokError("Metadata id is already used");
+    NumberedMetadata[MetadataID] = Init;
+  }
+
+  return false;
+}
+
+/// ParseAlias:
+///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
+/// Aliasee
+///   ::= TypeAndValue
+///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
+///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
+///
+/// Everything through visibility has already been parsed.
+///
+bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
+                          unsigned Visibility) {
+  assert(Lex.getKind() == lltok::kw_alias);
+  Lex.Lex();
+  unsigned Linkage;
+  LocTy LinkageLoc = Lex.getLoc();
+  if (ParseOptionalLinkage(Linkage))
+    return true;
+
+  if (Linkage != GlobalValue::ExternalLinkage &&
+      Linkage != GlobalValue::WeakAnyLinkage &&
+      Linkage != GlobalValue::WeakODRLinkage &&
+      Linkage != GlobalValue::InternalLinkage &&
+      Linkage != GlobalValue::PrivateLinkage &&
+      Linkage != GlobalValue::LinkerPrivateLinkage)
+    return Error(LinkageLoc, "invalid linkage type for alias");
+
+  Constant *Aliasee;
+  LocTy AliaseeLoc = Lex.getLoc();
+  if (Lex.getKind() != lltok::kw_bitcast &&
+      Lex.getKind() != lltok::kw_getelementptr) {
+    if (ParseGlobalTypeAndValue(Aliasee)) return true;
+  } else {
+    // The bitcast dest type is not present, it is implied by the dest type.
+    ValID ID;
+    if (ParseValID(ID)) return true;
+    if (ID.Kind != ValID::t_Constant)
+      return Error(AliaseeLoc, "invalid aliasee");
+    Aliasee = ID.ConstantVal;
+  }
+
+  if (!isa<PointerType>(Aliasee->getType()))
+    return Error(AliaseeLoc, "alias must have pointer type");
+
+  // Okay, create the alias but do not insert it into the module yet.
+  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
+                                    (GlobalValue::LinkageTypes)Linkage, Name,
+                                    Aliasee);
+  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
+
+  // See if this value already exists in the symbol table.  If so, it is either
+  // a redefinition or a definition of a forward reference.
+  if (GlobalValue *Val = M->getNamedValue(Name)) {
+    // See if this was a redefinition.  If so, there is no entry in
+    // ForwardRefVals.
+    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
+      I = ForwardRefVals.find(Name);
+    if (I == ForwardRefVals.end())
+      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
+
+    // Otherwise, this was a definition of forward ref.  Verify that types
+    // agree.
+    if (Val->getType() != GA->getType())
+      return Error(NameLoc,
+              "forward reference and definition of alias have different types");
+
+    // If they agree, just RAUW the old value with the alias and remove the
+    // forward ref info.
+    Val->replaceAllUsesWith(GA);
+    Val->eraseFromParent();
+    ForwardRefVals.erase(I);
+  }
+
+  // Insert into the module, we know its name won't collide now.
+  M->getAliasList().push_back(GA);
+  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
+
+  return false;
+}
+
+/// ParseGlobal
+///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
+///       OptionalAddrSpace GlobalType Type Const
+///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
+///       OptionalAddrSpace GlobalType Type Const
+///
+/// Everything through visibility has been parsed already.
+///
+bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
+                           unsigned Linkage, bool HasLinkage,
+                           unsigned Visibility) {
+  unsigned AddrSpace;
+  bool ThreadLocal, IsConstant;
+  LocTy TyLoc;
+
+  PATypeHolder Ty(Type::getVoidTy(Context));
+  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
+      ParseOptionalAddrSpace(AddrSpace) ||
+      ParseGlobalType(IsConstant) ||
+      ParseType(Ty, TyLoc))
+    return true;
+
+  // If the linkage is specified and is external, then no initializer is
+  // present.
+  Constant *Init = 0;
+  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
+                      Linkage != GlobalValue::ExternalWeakLinkage &&
+                      Linkage != GlobalValue::ExternalLinkage)) {
+    if (ParseGlobalValue(Ty, Init))
+      return true;
+  }
+
+  if (isa<FunctionType>(Ty) || Ty->isLabelTy())
+    return Error(TyLoc, "invalid type for global variable");
+
+  GlobalVariable *GV = 0;
+
+  // See if the global was forward referenced, if so, use the global.
+  if (!Name.empty()) {
+    if (GlobalValue *GVal = M->getNamedValue(Name)) {
+      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
+        return Error(NameLoc, "redefinition of global '@" + Name + "'");
+      GV = cast<GlobalVariable>(GVal);
+    }
+  } else {
+    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
+      I = ForwardRefValIDs.find(NumberedVals.size());
+    if (I != ForwardRefValIDs.end()) {
+      GV = cast<GlobalVariable>(I->second.first);
+      ForwardRefValIDs.erase(I);
+    }
+  }
+
+  if (GV == 0) {
+    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
+                            Name, 0, false, AddrSpace);
+  } else {
+    if (GV->getType()->getElementType() != Ty)
+      return Error(TyLoc,
+            "forward reference and definition of global have different types");
+
+    // Move the forward-reference to the correct spot in the module.
+    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
+  }
+
+  if (Name.empty())
+    NumberedVals.push_back(GV);
+
+  // Set the parsed properties on the global.
+  if (Init)
+    GV->setInitializer(Init);
+  GV->setConstant(IsConstant);
+  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
+  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
+  GV->setThreadLocal(ThreadLocal);
+
+  // Parse attributes on the global.
+  while (Lex.getKind() == lltok::comma) {
+    Lex.Lex();
+
+    if (Lex.getKind() == lltok::kw_section) {
+      Lex.Lex();
+      GV->setSection(Lex.getStrVal());
+      if (ParseToken(lltok::StringConstant, "expected global section string"))
+        return true;
+    } else if (Lex.getKind() == lltok::kw_align) {
+      unsigned Alignment;
+      if (ParseOptionalAlignment(Alignment)) return true;
+      GV->setAlignment(Alignment);
+    } else {
+      TokError("unknown global variable property!");
+    }
+  }
+
+  return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// GlobalValue Reference/Resolution Routines.
+//===----------------------------------------------------------------------===//
+
+/// GetGlobalVal - Get a value with the specified name or ID, creating a
+/// forward reference record if needed.  This can return null if the value
+/// exists but does not have the right type.
+GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
+                                    LocTy Loc) {
+  const PointerType *PTy = dyn_cast<PointerType>(Ty);
+  if (PTy == 0) {
+    Error(Loc, "global variable reference must have pointer type");
+    return 0;
+  }
+
+  // Look this name up in the normal function symbol table.
+  GlobalValue *Val =
+    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
+
+  // If this is a forward reference for the value, see if we already created a
+  // forward ref record.
+  if (Val == 0) {
+    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
+      I = ForwardRefVals.find(Name);
+    if (I != ForwardRefVals.end())
+      Val = I->second.first;
+  }
+
+  // If we have the value in the symbol table or fwd-ref table, return it.
+  if (Val) {
+    if (Val->getType() == Ty) return Val;
+    Error(Loc, "'@" + Name + "' defined with type '" +
+          Val->getType()->getDescription() + "'");
+    return 0;
+  }
+
+  // Otherwise, create a new forward reference for this value and remember it.
+  GlobalValue *FwdVal;
+  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
+    // Function types can return opaque but functions can't.
+    if (isa<OpaqueType>(FT->getReturnType())) {
+      Error(Loc, "function may not return opaque type");
+      return 0;
+    }
+
+    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
+  } else {
+    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
+                                GlobalValue::ExternalWeakLinkage, 0, Name);
+  }
+
+  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
+  return FwdVal;
+}
+
+GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
+  const PointerType *PTy = dyn_cast<PointerType>(Ty);
+  if (PTy == 0) {
+    Error(Loc, "global variable reference must have pointer type");
+    return 0;
+  }
+
+  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
+
+  // If this is a forward reference for the value, see if we already created a
+  // forward ref record.
+  if (Val == 0) {
+    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
+      I = ForwardRefValIDs.find(ID);
+    if (I != ForwardRefValIDs.end())
+      Val = I->second.first;
+  }
+
+  // If we have the value in the symbol table or fwd-ref table, return it.
+  if (Val) {
+    if (Val->getType() == Ty) return Val;
+    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
+          Val->getType()->getDescription() + "'");
+    return 0;
+  }
+
+  // Otherwise, create a new forward reference for this value and remember it.
+  GlobalValue *FwdVal;
+  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
+    // Function types can return opaque but functions can't.
+    if (isa<OpaqueType>(FT->getReturnType())) {
+      Error(Loc, "function may not return opaque type");
+      return 0;
+    }
+    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
+  } else {
+    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
+                                GlobalValue::ExternalWeakLinkage, 0, "");
+  }
+
+  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
+  return FwdVal;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Helper Routines.
+//===----------------------------------------------------------------------===//
+
+/// ParseToken - If the current token has the specified kind, eat it and return
+/// success.  Otherwise, emit the specified error and return failure.
+bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
+  if (Lex.getKind() != T)
+    return TokError(ErrMsg);
+  Lex.Lex();
+  return false;
+}
+
+/// ParseStringConstant
+///   ::= StringConstant
+bool LLParser::ParseStringConstant(std::string &Result) {
+  if (Lex.getKind() != lltok::StringConstant)
+    return TokError("expected string constant");
+  Result = Lex.getStrVal();
+  Lex.Lex();
+  return false;
+}
+
+/// ParseUInt32
+///   ::= uint32
+bool LLParser::ParseUInt32(unsigned &Val) {
+  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
+    return TokError("expected integer");
+  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
+  if (Val64 != unsigned(Val64))
+    return TokError("expected 32-bit integer (too large)");
+  Val = Val64;
+  Lex.Lex();
+  return false;
+}
+
+
+/// ParseOptionalAddrSpace
+///   := /*empty*/
+///   := 'addrspace' '(' uint32 ')'
+bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
+  AddrSpace = 0;
+  if (!EatIfPresent(lltok::kw_addrspace))
+    return false;
+  return ParseToken(lltok::lparen, "expected '(' in address space") ||
+         ParseUInt32(AddrSpace) ||
+         ParseToken(lltok::rparen, "expected ')' in address space");
+}
+
+/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
+/// indicates what kind of attribute list this is: 0: function arg, 1: result,
+/// 2: function attr.
+/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
+bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
+  Attrs = Attribute::None;
+  LocTy AttrLoc = Lex.getLoc();
+
+  while (1) {
+    switch (Lex.getKind()) {
+    case lltok::kw_sext:
+    case lltok::kw_zext:
+      // Treat these as signext/zeroext if they occur in the argument list after
+      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
+      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
+      // expr.
+      // FIXME: REMOVE THIS IN LLVM 3.0
+      if (AttrKind == 3) {
+        if (Lex.getKind() == lltok::kw_sext)
+          Attrs |= Attribute::SExt;
+        else
+          Attrs |= Attribute::ZExt;
+        break;
+      }
+      // FALL THROUGH.
+    default:  // End of attributes.
+      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
+        return Error(AttrLoc, "invalid use of function-only attribute");
+
+      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
+        return Error(AttrLoc, "invalid use of parameter-only attribute");
+
+      return false;
+    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
+    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
+    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
+    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
+    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
+    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
+    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
+    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
+
+    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
+    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
+    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
+    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
+    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
+    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
+    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
+    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
+    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
+    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
+    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
+    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
+    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
+
+    case lltok::kw_align: {
+      unsigned Alignment;
+      if (ParseOptionalAlignment(Alignment))
+        return true;
+      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
+      continue;
+    }
+    }
+    Lex.Lex();
+  }
+}
+
+/// ParseOptionalLinkage
+///   ::= /*empty*/
+///   ::= 'private'
+///   ::= 'linker_private'
+///   ::= 'internal'
+///   ::= 'weak'
+///   ::= 'weak_odr'
+///   ::= 'linkonce'
+///   ::= 'linkonce_odr'
+///   ::= 'appending'
+///   ::= 'dllexport'
+///   ::= 'common'
+///   ::= 'dllimport'
+///   ::= 'extern_weak'
+///   ::= 'external'
+bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
+  HasLinkage = false;
+  switch (Lex.getKind()) {
+  default:                       Res=GlobalValue::ExternalLinkage; return false;
+  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
+  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
+  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
+  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
+  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
+  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
+  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
+  case lltok::kw_available_externally:
+    Res = GlobalValue::AvailableExternallyLinkage;
+    break;
+  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
+  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
+  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
+  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
+  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
+  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
+  }
+  Lex.Lex();
+  HasLinkage = true;
+  return false;
+}
+
+/// ParseOptionalVisibility
+///   ::= /*empty*/
+///   ::= 'default'
+///   ::= 'hidden'
+///   ::= 'protected'
+///
+bool LLParser::ParseOptionalVisibility(unsigned &Res) {
+  switch (Lex.getKind()) {
+  default:                  Res = GlobalValue::DefaultVisibility; return false;
+  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
+  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
+  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
+  }
+  Lex.Lex();
+  return false;
+}
+
+/// ParseOptionalCallingConv
+///   ::= /*empty*/
+///   ::= 'ccc'
+///   ::= 'fastcc'
+///   ::= 'coldcc'
+///   ::= 'x86_stdcallcc'
+///   ::= 'x86_fastcallcc'
+///   ::= 'arm_apcscc'
+///   ::= 'arm_aapcscc'
+///   ::= 'arm_aapcs_vfpcc'
+///   ::= 'msp430_intrcc'
+///   ::= 'cc' UINT
+///
+bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
+  switch (Lex.getKind()) {
+  default:                       CC = CallingConv::C; return false;
+  case lltok::kw_ccc:            CC = CallingConv::C; break;
+  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
+  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
+  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
+  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
+  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
+  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
+  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
+  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
+  case lltok::kw_cc: {
+      unsigned ArbitraryCC;
+      Lex.Lex();
+      if (ParseUInt32(ArbitraryCC)) {
+        return true;
+      } else
+        CC = static_cast<CallingConv::ID>(ArbitraryCC);
+        return false;
+    }
+    break;
+  }
+
+  Lex.Lex();
+  return false;
+}
+
+/// ParseInstructionMetadata
+///   ::= !dbg !42 (',' !dbg !57)*
+bool LLParser::
+ParseInstructionMetadata(SmallVectorImpl<std::pair<unsigned,
+                                                 MDNode *> > &Result){
+  do {
+    if (Lex.getKind() != lltok::MetadataVar)
+      return TokError("expected metadata after comma");
+
+    std::string Name = Lex.getStrVal();
+    Lex.Lex();
+
+    MDNode *Node;
+    if (ParseToken(lltok::exclaim, "expected '!' here") ||
+        ParseMDNodeID(Node))
+      return true;
+
+    unsigned MDK = M->getMDKindID(Name.c_str());
+    Result.push_back(std::make_pair(MDK, Node));
+
+    // If this is the end of the list, we're done.
+  } while (EatIfPresent(lltok::comma));
+  return false;
+}
+
+/// ParseOptionalAlignment
+///   ::= /* empty */
+///   ::= 'align' 4
+bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
+  Alignment = 0;
+  if (!EatIfPresent(lltok::kw_align))
+    return false;
+  LocTy AlignLoc = Lex.getLoc();
+  if (ParseUInt32(Alignment)) return true;
+  if (!isPowerOf2_32(Alignment))
+    return Error(AlignLoc, "alignment is not a power of two");
+  return false;
+}
+
+/// ParseOptionalCommaAlign
+///   ::= 
+///   ::= ',' align 4
+///
+/// This returns with AteExtraComma set to true if it ate an excess comma at the
+/// end.
+bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
+                                       bool &AteExtraComma) {
+  AteExtraComma = false;
+  while (EatIfPresent(lltok::comma)) {
+    // Metadata at the end is an early exit.
+    if (Lex.getKind() == lltok::MetadataVar) {
+      AteExtraComma = true;
+      return false;
+    }
+    
+    if (Lex.getKind() == lltok::kw_align) {
+      if (ParseOptionalAlignment(Alignment)) return true;
+    } else
+      return true;
+  }
+
+  return false;
+}
+
+
+/// ParseIndexList - This parses the index list for an insert/extractvalue
+/// instruction.  This sets AteExtraComma in the case where we eat an extra
+/// comma at the end of the line and find that it is followed by metadata.
+/// Clients that don't allow metadata can call the version of this function that
+/// only takes one argument.
+///
+/// ParseIndexList
+///    ::=  (',' uint32)+
+///
+bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
+                              bool &AteExtraComma) {
+  AteExtraComma = false;
+  
+  if (Lex.getKind() != lltok::comma)
+    return TokError("expected ',' as start of index list");
+
+  while (EatIfPresent(lltok::comma)) {
+    if (Lex.getKind() == lltok::MetadataVar) {
+      AteExtraComma = true;
+      return false;
+    }
+    unsigned Idx;
+    if (ParseUInt32(Idx)) return true;
+    Indices.push_back(Idx);
+  }
+
+  return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Type Parsing.
+//===----------------------------------------------------------------------===//
+
+/// ParseType - Parse and resolve a full type.
+bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
+  LocTy TypeLoc = Lex.getLoc();
+  if (ParseTypeRec(Result)) return true;
+
+  // Verify no unresolved uprefs.
+  if (!UpRefs.empty())
+    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
+
+  if (!AllowVoid && Result.get()->isVoidTy())
+    return Error(TypeLoc, "void type only allowed for function results");
+
+  return false;
+}
+
+/// HandleUpRefs - Every time we finish a new layer of types, this function is
+/// called.  It loops through the UpRefs vector, which is a list of the
+/// currently active types.  For each type, if the up-reference is contained in
+/// the newly completed type, we decrement the level count.  When the level
+/// count reaches zero, the up-referenced type is the type that is passed in:
+/// thus we can complete the cycle.
+///
+PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
+  // If Ty isn't abstract, or if there are no up-references in it, then there is
+  // nothing to resolve here.
+  if (!ty->isAbstract() || UpRefs.empty()) return ty;
+
+  PATypeHolder Ty(ty);
+#if 0
+  dbgs() << "Type '" << Ty->getDescription()
+         << "' newly formed.  Resolving upreferences.\n"
+         << UpRefs.size() << " upreferences active!\n";
+#endif
+
+  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
+  // to zero), we resolve them all together before we resolve them to Ty.  At
+  // the end of the loop, if there is anything to resolve to Ty, it will be in
+  // this variable.
+  OpaqueType *TypeToResolve = 0;
+
+  for (unsigned i = 0; i != UpRefs.size(); ++i) {
+    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
+    bool ContainsType =
+      std::find(Ty->subtype_begin(), Ty->subtype_end(),
+                UpRefs[i].LastContainedTy) != Ty->subtype_end();
+
+#if 0
+    dbgs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
+           << UpRefs[i].LastContainedTy->getDescription() << ") = "
+           << (ContainsType ? "true" : "false")
+           << " level=" << UpRefs[i].NestingLevel << "\n";
+#endif
+    if (!ContainsType)
+      continue;
+
+    // Decrement level of upreference
+    unsigned Level = --UpRefs[i].NestingLevel;
+    UpRefs[i].LastContainedTy = Ty;
+
+    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
+    if (Level != 0)
+      continue;
+
+#if 0
+    dbgs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
+#endif
+    if (!TypeToResolve)
+      TypeToResolve = UpRefs[i].UpRefTy;
+    else
+      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
+    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
+    --i;                                // Do not skip the next element.
+  }
+
+  if (TypeToResolve)
+    TypeToResolve->refineAbstractTypeTo(Ty);
+
+  return Ty;
+}
+
+
+/// ParseTypeRec - The recursive function used to process the internal
+/// implementation details of types.
+bool LLParser::ParseTypeRec(PATypeHolder &Result) {
+  switch (Lex.getKind()) {
+  default:
+    return TokError("expected type");
+  case lltok::Type:
+    // TypeRec ::= 'float' | 'void' (etc)
+    Result = Lex.getTyVal();
+    Lex.Lex();
+    break;
+  case lltok::kw_opaque:
+    // TypeRec ::= 'opaque'
+    Result = OpaqueType::get(Context);
+    Lex.Lex();
+    break;
+  case lltok::lbrace:
+    // TypeRec ::= '{' ... '}'
+    if (ParseStructType(Result, false))
+      return true;
+    break;
+  case lltok::lsquare:
+    // TypeRec ::= '[' ... ']'
+    Lex.Lex(); // eat the lsquare.
+    if (ParseArrayVectorType(Result, false))
+      return true;
+    break;
+  case lltok::less: // Either vector or packed struct.
+    // TypeRec ::= '<' ... '>'
+    Lex.Lex();
+    if (Lex.getKind() == lltok::lbrace) {
+      if (ParseStructType(Result, true) ||
+          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
+        return true;
+    } else if (ParseArrayVectorType(Result, true))
+      return true;
+    break;
+  case lltok::LocalVar:
+  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
+    // TypeRec ::= %foo
+    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
+      Result = T;
+    } else {
+      Result = OpaqueType::get(Context);
+      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
+                                            std::make_pair(Result,
+                                                           Lex.getLoc())));
+      M->addTypeName(Lex.getStrVal(), Result.get());
+    }
+    Lex.Lex();
+    break;
+
+  case lltok::LocalVarID:
+    // TypeRec ::= %4
+    if (Lex.getUIntVal() < NumberedTypes.size())
+      Result = NumberedTypes[Lex.getUIntVal()];
+    else {
+      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
+        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
+      if (I != ForwardRefTypeIDs.end())
+        Result = I->second.first;
+      else {
+        Result = OpaqueType::get(Context);
+        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
+                                                std::make_pair(Result,
+                                                               Lex.getLoc())));
+      }
+    }
+    Lex.Lex();
+    break;
+  case lltok::backslash: {
+    // TypeRec ::= '\' 4
+    Lex.Lex();
+    unsigned Val;
+    if (ParseUInt32(Val)) return true;
+    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
+    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
+    Result = OT;
+    break;
+  }
+  }
+
+  // Parse the type suffixes.
+  while (1) {
+    switch (Lex.getKind()) {
+    // End of type.
+    default: return false;
+
+    // TypeRec ::= TypeRec '*'
+    case lltok::star:
+      if (Result.get()->isLabelTy())
+        return TokError("basic block pointers are invalid");
+      if (Result.get()->isVoidTy())
+        return TokError("pointers to void are invalid; use i8* instead");
+      if (!PointerType::isValidElementType(Result.get()))
+        return TokError("pointer to this type is invalid");
+      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
+      Lex.Lex();
+      break;
+
+    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
+    case lltok::kw_addrspace: {
+      if (Result.get()->isLabelTy())
+        return TokError("basic block pointers are invalid");
+      if (Result.get()->isVoidTy())
+        return TokError("pointers to void are invalid; use i8* instead");
+      if (!PointerType::isValidElementType(Result.get()))
+        return TokError("pointer to this type is invalid");
+      unsigned AddrSpace;
+      if (ParseOptionalAddrSpace(AddrSpace) ||
+          ParseToken(lltok::star, "expected '*' in address space"))
+        return true;
+
+      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
+      break;
+    }
+
+    /// Types '(' ArgTypeListI ')' OptFuncAttrs
+    case lltok::lparen:
+      if (ParseFunctionType(Result))
+        return true;
+      break;
+    }
+  }
+}
+
+/// ParseParameterList
+///    ::= '(' ')'
+///    ::= '(' Arg (',' Arg)* ')'
+///  Arg
+///    ::= Type OptionalAttributes Value OptionalAttributes
+bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
+                                  PerFunctionState &PFS) {
+  if (ParseToken(lltok::lparen, "expected '(' in call"))
+    return true;
+
+  while (Lex.getKind() != lltok::rparen) {
+    // If this isn't the first argument, we need a comma.
+    if (!ArgList.empty() &&
+        ParseToken(lltok::comma, "expected ',' in argument list"))
+      return true;
+
+    // Parse the argument.
+    LocTy ArgLoc;
+    PATypeHolder ArgTy(Type::getVoidTy(Context));
+    unsigned ArgAttrs1 = Attribute::None;
+    unsigned ArgAttrs2 = Attribute::None;
+    Value *V;
+    if (ParseType(ArgTy, ArgLoc))
+      return true;
+
+    // Otherwise, handle normal operands.
+    if (ParseOptionalAttrs(ArgAttrs1, 0) ||
+        ParseValue(ArgTy, V, PFS) ||
+        // FIXME: Should not allow attributes after the argument, remove this
+        // in LLVM 3.0.
+        ParseOptionalAttrs(ArgAttrs2, 3))
+      return true;
+    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
+  }
+
+  Lex.Lex();  // Lex the ')'.
+  return false;
+}
+
+
+
+/// ParseArgumentList - Parse the argument list for a function type or function
+/// prototype.  If 'inType' is true then we are parsing a FunctionType.
+///   ::= '(' ArgTypeListI ')'
+/// ArgTypeListI
+///   ::= /*empty*/
+///   ::= '...'
+///   ::= ArgTypeList ',' '...'
+///   ::= ArgType (',' ArgType)*
+///
+bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
+                                 bool &isVarArg, bool inType) {
+  isVarArg = false;
+  assert(Lex.getKind() == lltok::lparen);
+  Lex.Lex(); // eat the (.
+
+  if (Lex.getKind() == lltok::rparen) {
+    // empty
+  } else if (Lex.getKind() == lltok::dotdotdot) {
+    isVarArg = true;
+    Lex.Lex();
+  } else {
+    LocTy TypeLoc = Lex.getLoc();
+    PATypeHolder ArgTy(Type::getVoidTy(Context));
+    unsigned Attrs;
+    std::string Name;
+
+    // If we're parsing a type, use ParseTypeRec, because we allow recursive
+    // types (such as a function returning a pointer to itself).  If parsing a
+    // function prototype, we require fully resolved types.
+    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
+        ParseOptionalAttrs(Attrs, 0)) return true;
+
+    if (ArgTy->isVoidTy())
+      return Error(TypeLoc, "argument can not have void type");
+
+    if (Lex.getKind() == lltok::LocalVar ||
+        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
+      Name = Lex.getStrVal();
+      Lex.Lex();
+    }
+
+    if (!FunctionType::isValidArgumentType(ArgTy))
+      return Error(TypeLoc, "invalid type for function argument");
+
+    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
+
+    while (EatIfPresent(lltok::comma)) {
+      // Handle ... at end of arg list.
+      if (EatIfPresent(lltok::dotdotdot)) {
+        isVarArg = true;
+        break;
+      }
+
+      // Otherwise must be an argument type.
+      TypeLoc = Lex.getLoc();
+      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
+          ParseOptionalAttrs(Attrs, 0)) return true;
+
+      if (ArgTy->isVoidTy())
+        return Error(TypeLoc, "argument can not have void type");
+
+      if (Lex.getKind() == lltok::LocalVar ||
+          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
+        Name = Lex.getStrVal();
+        Lex.Lex();
+      } else {
+        Name = "";
+      }
+
+      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
+        return Error(TypeLoc, "invalid type for function argument");
+
+      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
+    }
+  }
+
+  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
+}
+
+/// ParseFunctionType
+///  ::= Type ArgumentList OptionalAttrs
+bool LLParser::ParseFunctionType(PATypeHolder &Result) {
+  assert(Lex.getKind() == lltok::lparen);
+
+  if (!FunctionType::isValidReturnType(Result))
+    return TokError("invalid function return type");
+
+  std::vector<ArgInfo> ArgList;
+  bool isVarArg;
+  unsigned Attrs;
+  if (ParseArgumentList(ArgList, isVarArg, true) ||
+      // FIXME: Allow, but ignore attributes on function types!
+      // FIXME: Remove in LLVM 3.0
+      ParseOptionalAttrs(Attrs, 2))
+    return true;
+
+  // Reject names on the arguments lists.
+  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
+    if (!ArgList[i].Name.empty())
+      return Error(ArgList[i].Loc, "argument name invalid in function type");
+    if (!ArgList[i].Attrs != 0) {
+      // Allow but ignore attributes on function types; this permits
+      // auto-upgrade.
+      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
+    }
+  }
+
+  std::vector<const Type*> ArgListTy;
+  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
+    ArgListTy.push_back(ArgList[i].Type);
+
+  Result = HandleUpRefs(FunctionType::get(Result.get(),
+                                                ArgListTy, isVarArg));
+  return false;
+}
+
+/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
+///   TypeRec
+///     ::= '{' '}'
+///     ::= '{' TypeRec (',' TypeRec)* '}'
+///     ::= '<' '{' '}' '>'
+///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
+bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
+  assert(Lex.getKind() == lltok::lbrace);
+  Lex.Lex(); // Consume the '{'
+
+  if (EatIfPresent(lltok::rbrace)) {
+    Result = StructType::get(Context, Packed);
+    return false;
+  }
+
+  std::vector<PATypeHolder> ParamsList;
+  LocTy EltTyLoc = Lex.getLoc();
+  if (ParseTypeRec(Result)) return true;
+  ParamsList.push_back(Result);
+
+  if (Result->isVoidTy())
+    return Error(EltTyLoc, "struct element can not have void type");
+  if (!StructType::isValidElementType(Result))
+    return Error(EltTyLoc, "invalid element type for struct");
+
+  while (EatIfPresent(lltok::comma)) {
+    EltTyLoc = Lex.getLoc();
+    if (ParseTypeRec(Result)) return true;
+
+    if (Result->isVoidTy())
+      return Error(EltTyLoc, "struct element can not have void type");
+    if (!StructType::isValidElementType(Result))
+      return Error(EltTyLoc, "invalid element type for struct");
+
+    ParamsList.push_back(Result);
+  }
+
+  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
+    return true;
+
+  std::vector<const Type*> ParamsListTy;
+  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
+    ParamsListTy.push_back(ParamsList[i].get());
+  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
+  return false;
+}
+
+/// ParseArrayVectorType - Parse an array or vector type, assuming the first
+/// token has already been consumed.
+///   TypeRec
+///     ::= '[' APSINTVAL 'x' Types ']'
+///     ::= '<' APSINTVAL 'x' Types '>'
+bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
+  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
+      Lex.getAPSIntVal().getBitWidth() > 64)
+    return TokError("expected number in address space");
+
+  LocTy SizeLoc = Lex.getLoc();
+  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
+  Lex.Lex();
+
+  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
+      return true;
+
+  LocTy TypeLoc = Lex.getLoc();
+  PATypeHolder EltTy(Type::getVoidTy(Context));
+  if (ParseTypeRec(EltTy)) return true;
+
+  if (EltTy->isVoidTy())
+    return Error(TypeLoc, "array and vector element type cannot be void");
+
+  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
+                 "expected end of sequential type"))
+    return true;
+
+  if (isVector) {
+    if (Size == 0)
+      return Error(SizeLoc, "zero element vector is illegal");
+    if ((unsigned)Size != Size)
+      return Error(SizeLoc, "size too large for vector");
+    if (!VectorType::isValidElementType(EltTy))
+      return Error(TypeLoc, "vector element type must be fp or integer");
+    Result = VectorType::get(EltTy, unsigned(Size));
+  } else {
+    if (!ArrayType::isValidElementType(EltTy))
+      return Error(TypeLoc, "invalid array element type");
+    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
+  }
+  return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Function Semantic Analysis.
+//===----------------------------------------------------------------------===//
+
+LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
+                                             int functionNumber)
+  : P(p), F(f), FunctionNumber(functionNumber) {
+
+  // Insert unnamed arguments into the NumberedVals list.
+  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
+       AI != E; ++AI)
+    if (!AI->hasName())
+      NumberedVals.push_back(AI);
+}
+
+LLParser::PerFunctionState::~PerFunctionState() {
+  // If there were any forward referenced non-basicblock values, delete them.
+  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
+       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
+    if (!isa<BasicBlock>(I->second.first)) {
+      I->second.first->replaceAllUsesWith(
+                           UndefValue::get(I->second.first->getType()));
+      delete I->second.first;
+      I->second.first = 0;
+    }
+
+  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
+       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
+    if (!isa<BasicBlock>(I->second.first)) {
+      I->second.first->replaceAllUsesWith(
+                           UndefValue::get(I->second.first->getType()));
+      delete I->second.first;
+      I->second.first = 0;
+    }
+}
+
+bool LLParser::PerFunctionState::FinishFunction() {
+  // Check to see if someone took the address of labels in this block.
+  if (!P.ForwardRefBlockAddresses.empty()) {
+    ValID FunctionID;
+    if (!F.getName().empty()) {
+      FunctionID.Kind = ValID::t_GlobalName;
+      FunctionID.StrVal = F.getName();
+    } else {
+      FunctionID.Kind = ValID::t_GlobalID;
+      FunctionID.UIntVal = FunctionNumber;
+    }
+  
+    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
+      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
+    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
+      // Resolve all these references.
+      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
+        return true;
+      
+      P.ForwardRefBlockAddresses.erase(FRBAI);
+    }
+  }
+  
+  if (!ForwardRefVals.empty())
+    return P.Error(ForwardRefVals.begin()->second.second,
+                   "use of undefined value '%" + ForwardRefVals.begin()->first +
+                   "'");
+  if (!ForwardRefValIDs.empty())
+    return P.Error(ForwardRefValIDs.begin()->second.second,
+                   "use of undefined value '%" +
+                   utostr(ForwardRefValIDs.begin()->first) + "'");
+  return false;
+}
+
+
+/// GetVal - Get a value with the specified name or ID, creating a
+/// forward reference record if needed.  This can return null if the value
+/// exists but does not have the right type.
+Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
+                                          const Type *Ty, LocTy Loc) {
+  // Look this name up in the normal function symbol table.
+  Value *Val = F.getValueSymbolTable().lookup(Name);
+
+  // If this is a forward reference for the value, see if we already created a
+  // forward ref record.
+  if (Val == 0) {
+    std::map<std::string, std::pair<Value*, LocTy> >::iterator
+      I = ForwardRefVals.find(Name);
+    if (I != ForwardRefVals.end())
+      Val = I->second.first;
+  }
+
+  // If we have the value in the symbol table or fwd-ref table, return it.
+  if (Val) {
+    if (Val->getType() == Ty) return Val;
+    if (Ty->isLabelTy())
+      P.Error(Loc, "'%" + Name + "' is not a basic block");
+    else
+      P.Error(Loc, "'%" + Name + "' defined with type '" +
+              Val->getType()->getDescription() + "'");
+    return 0;
+  }
+
+  // Don't make placeholders with invalid type.
+  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && !Ty->isLabelTy()) {
+    P.Error(Loc, "invalid use of a non-first-class type");
+    return 0;
+  }
+
+  // Otherwise, create a new forward reference for this value and remember it.
+  Value *FwdVal;
+  if (Ty->isLabelTy())
+    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
+  else
+    FwdVal = new Argument(Ty, Name);
+
+  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
+  return FwdVal;
+}
+
+Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
+                                          LocTy Loc) {
+  // Look this name up in the normal function symbol table.
+  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
+
+  // If this is a forward reference for the value, see if we already created a
+  // forward ref record.
+  if (Val == 0) {
+    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
+      I = ForwardRefValIDs.find(ID);
+    if (I != ForwardRefValIDs.end())
+      Val = I->second.first;
+  }
+
+  // If we have the value in the symbol table or fwd-ref table, return it.
+  if (Val) {
+    if (Val->getType() == Ty) return Val;
+    if (Ty->isLabelTy())
+      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
+    else
+      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
+              Val->getType()->getDescription() + "'");
+    return 0;
+  }
+
+  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && !Ty->isLabelTy()) {
+    P.Error(Loc, "invalid use of a non-first-class type");
+    return 0;
+  }
+
+  // Otherwise, create a new forward reference for this value and remember it.
+  Value *FwdVal;
+  if (Ty->isLabelTy())
+    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
+  else
+    FwdVal = new Argument(Ty);
+
+  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
+  return FwdVal;
+}
+
+/// SetInstName - After an instruction is parsed and inserted into its
+/// basic block, this installs its name.
+bool LLParser::PerFunctionState::SetInstName(int NameID,
+                                             const std::string &NameStr,
+                                             LocTy NameLoc, Instruction *Inst) {
+  // If this instruction has void type, it cannot have a name or ID specified.
+  if (Inst->getType()->isVoidTy()) {
+    if (NameID != -1 || !NameStr.empty())
+      return P.Error(NameLoc, "instructions returning void cannot have a name");
+    return false;
+  }
+
+  // If this was a numbered instruction, verify that the instruction is the
+  // expected value and resolve any forward references.
+  if (NameStr.empty()) {
+    // If neither a name nor an ID was specified, just use the next ID.
+    if (NameID == -1)
+      NameID = NumberedVals.size();
+
+    if (unsigned(NameID) != NumberedVals.size())
+      return P.Error(NameLoc, "instruction expected to be numbered '%" +
+                     utostr(NumberedVals.size()) + "'");
+
+    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
+      ForwardRefValIDs.find(NameID);
+    if (FI != ForwardRefValIDs.end()) {
+      if (FI->second.first->getType() != Inst->getType())
+        return P.Error(NameLoc, "instruction forward referenced with type '" +
+                       FI->second.first->getType()->getDescription() + "'");
+      FI->second.first->replaceAllUsesWith(Inst);
+      delete FI->second.first;
+      ForwardRefValIDs.erase(FI);
+    }
+
+    NumberedVals.push_back(Inst);
+    return false;
+  }
+
+  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
+  std::map<std::string, std::pair<Value*, LocTy> >::iterator
+    FI = ForwardRefVals.find(NameStr);
+  if (FI != ForwardRefVals.end()) {
+    if (FI->second.first->getType() != Inst->getType())
+      return P.Error(NameLoc, "instruction forward referenced with type '" +
+                     FI->second.first->getType()->getDescription() + "'");
+    FI->second.first->replaceAllUsesWith(Inst);
+    delete FI->second.first;
+    ForwardRefVals.erase(FI);
+  }
+
+  // Set the name on the instruction.
+  Inst->setName(NameStr);
+
+  if (Inst->getNameStr() != NameStr)
+    return P.Error(NameLoc, "multiple definition of local value named '" +
+                   NameStr + "'");
+  return false;
+}
+
+/// GetBB - Get a basic block with the specified name or ID, creating a
+/// forward reference record if needed.
+BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
+                                              LocTy Loc) {
+  return cast_or_null<BasicBlock>(GetVal(Name,
+                                        Type::getLabelTy(F.getContext()), Loc));
+}
+
+BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
+  return cast_or_null<BasicBlock>(GetVal(ID,
+                                        Type::getLabelTy(F.getContext()), Loc));
+}
+
+/// DefineBB - Define the specified basic block, which is either named or
+/// unnamed.  If there is an error, this returns null otherwise it returns
+/// the block being defined.
+BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
+                                                 LocTy Loc) {
+  BasicBlock *BB;
+  if (Name.empty())
+    BB = GetBB(NumberedVals.size(), Loc);
+  else
+    BB = GetBB(Name, Loc);
+  if (BB == 0) return 0; // Already diagnosed error.
+
+  // Move the block to the end of the function.  Forward ref'd blocks are
+  // inserted wherever they happen to be referenced.
+  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
+
+  // Remove the block from forward ref sets.
+  if (Name.empty()) {
+    ForwardRefValIDs.erase(NumberedVals.size());
+    NumberedVals.push_back(BB);
+  } else {
+    // BB forward references are already in the function symbol table.
+    ForwardRefVals.erase(Name);
+  }
+
+  return BB;
+}
+
+//===----------------------------------------------------------------------===//
+// Constants.
+//===----------------------------------------------------------------------===//
+
+/// ParseValID - Parse an abstract value that doesn't necessarily have a
+/// type implied.  For example, if we parse "4" we don't know what integer type
+/// it has.  The value will later be combined with its type and checked for
+/// sanity.  PFS is used to convert function-local operands of metadata (since
+/// metadata operands are not just parsed here but also converted to values).
+/// PFS can be null when we are not parsing metadata values inside a function.
+bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
+  ID.Loc = Lex.getLoc();
+  switch (Lex.getKind()) {
+  default: return TokError("expected value token");
+  case lltok::GlobalID:  // @42
+    ID.UIntVal = Lex.getUIntVal();
+    ID.Kind = ValID::t_GlobalID;
+    break;
+  case lltok::GlobalVar:  // @foo
+    ID.StrVal = Lex.getStrVal();
+    ID.Kind = ValID::t_GlobalName;
+    break;
+  case lltok::LocalVarID:  // %42
+    ID.UIntVal = Lex.getUIntVal();
+    ID.Kind = ValID::t_LocalID;
+    break;
+  case lltok::LocalVar:  // %foo
+  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
+    ID.StrVal = Lex.getStrVal();
+    ID.Kind = ValID::t_LocalName;
+    break;
+  case lltok::exclaim:   // !{...} MDNode, !"foo" MDString
+    Lex.Lex();
+    
+    if (EatIfPresent(lltok::lbrace)) {
+      SmallVector<Value*, 16> Elts;
+      if (ParseMDNodeVector(Elts, PFS) ||
+          ParseToken(lltok::rbrace, "expected end of metadata node"))
+        return true;
+
+      ID.MDNodeVal = MDNode::get(Context, Elts.data(), Elts.size());
+      ID.Kind = ValID::t_MDNode;
+      return false;
+    }
+
+    // Standalone metadata reference
+    // !{ ..., !42, ... }
+    if (Lex.getKind() == lltok::APSInt) {
+      if (ParseMDNodeID(ID.MDNodeVal)) return true;
+      ID.Kind = ValID::t_MDNode;
+      return false;
+    }
+    
+    // MDString:
+    //   ::= '!' STRINGCONSTANT
+    if (ParseMDString(ID.MDStringVal)) return true;
+    ID.Kind = ValID::t_MDString;
+    return false;
+  case lltok::APSInt:
+    ID.APSIntVal = Lex.getAPSIntVal();
+    ID.Kind = ValID::t_APSInt;
+    break;
+  case lltok::APFloat:
+    ID.APFloatVal = Lex.getAPFloatVal();
+    ID.Kind = ValID::t_APFloat;
+    break;
+  case lltok::kw_true:
+    ID.ConstantVal = ConstantInt::getTrue(Context);
+    ID.Kind = ValID::t_Constant;
+    break;
+  case lltok::kw_false:
+    ID.ConstantVal = ConstantInt::getFalse(Context);
+    ID.Kind = ValID::t_Constant;
+    break;
+  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
+  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
+  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
+
+  case lltok::lbrace: {
+    // ValID ::= '{' ConstVector '}'
+    Lex.Lex();
+    SmallVector<Constant*, 16> Elts;
+    if (ParseGlobalValueVector(Elts) ||
+        ParseToken(lltok::rbrace, "expected end of struct constant"))
+      return true;
+
+    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
+                                         Elts.size(), false);
+    ID.Kind = ValID::t_Constant;
+    return false;
+  }
+  case lltok::less: {
+    // ValID ::= '<' ConstVector '>'         --> Vector.
+    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
+    Lex.Lex();
+    bool isPackedStruct = EatIfPresent(lltok::lbrace);
+
+    SmallVector<Constant*, 16> Elts;
+    LocTy FirstEltLoc = Lex.getLoc();
+    if (ParseGlobalValueVector(Elts) ||
+        (isPackedStruct &&
+         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
+        ParseToken(lltok::greater, "expected end of constant"))
+      return true;
+
+    if (isPackedStruct) {
+      ID.ConstantVal =
+        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
+      ID.Kind = ValID::t_Constant;
+      return false;
+    }
+
+    if (Elts.empty())
+      return Error(ID.Loc, "constant vector must not be empty");
+
+    if (!Elts[0]->getType()->isInteger() &&
+        !Elts[0]->getType()->isFloatingPoint())
+      return Error(FirstEltLoc,
+                   "vector elements must have integer or floating point type");
+
+    // Verify that all the vector elements have the same type.
+    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
+      if (Elts[i]->getType() != Elts[0]->getType())
+        return Error(FirstEltLoc,
+                     "vector element #" + utostr(i) +
+                    " is not of type '" + Elts[0]->getType()->getDescription());
+
+    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
+    ID.Kind = ValID::t_Constant;
+    return false;
+  }
+  case lltok::lsquare: {   // Array Constant
+    Lex.Lex();
+    SmallVector<Constant*, 16> Elts;
+    LocTy FirstEltLoc = Lex.getLoc();
+    if (ParseGlobalValueVector(Elts) ||
+        ParseToken(lltok::rsquare, "expected end of array constant"))
+      return true;
+
+    // Handle empty element.
+    if (Elts.empty()) {
+      // Use undef instead of an array because it's inconvenient to determine
+      // the element type at this point, there being no elements to examine.
+      ID.Kind = ValID::t_EmptyArray;
+      return false;
+    }
+
+    if (!Elts[0]->getType()->isFirstClassType())
+      return Error(FirstEltLoc, "invalid array element type: " +
+                   Elts[0]->getType()->getDescription());
+
+    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
+
+    // Verify all elements are correct type!
+    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
+      if (Elts[i]->getType() != Elts[0]->getType())
+        return Error(FirstEltLoc,
+                     "array element #" + utostr(i) +
+                     " is not of type '" +Elts[0]->getType()->getDescription());
+    }
+
+    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
+    ID.Kind = ValID::t_Constant;
+    return false;
+  }
+  case lltok::kw_c:  // c "foo"
+    Lex.Lex();
+    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
+    if (ParseToken(lltok::StringConstant, "expected string")) return true;
+    ID.Kind = ValID::t_Constant;
+    return false;
+
+  case lltok::kw_asm: {
+    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
+    bool HasSideEffect, AlignStack;
+    Lex.Lex();
+    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
+        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
+        ParseStringConstant(ID.StrVal) ||
+        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
+        ParseToken(lltok::StringConstant, "expected constraint string"))
+      return true;
+    ID.StrVal2 = Lex.getStrVal();
+    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
+    ID.Kind = ValID::t_InlineAsm;
+    return false;
+  }
+
+  case lltok::kw_blockaddress: {
+    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
+    Lex.Lex();
+
+    ValID Fn, Label;
+    LocTy FnLoc, LabelLoc;
+    
+    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
+        ParseValID(Fn) ||
+        ParseToken(lltok::comma, "expected comma in block address expression")||
+        ParseValID(Label) ||
+        ParseToken(lltok::rparen, "expected ')' in block address expression"))
+      return true;
+    
+    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
+      return Error(Fn.Loc, "expected function name in blockaddress");
+    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
+      return Error(Label.Loc, "expected basic block name in blockaddress");
+    
+    // Make a global variable as a placeholder for this reference.
+    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
+                                           false, GlobalValue::InternalLinkage,
+                                                0, "");
+    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
+    ID.ConstantVal = FwdRef;
+    ID.Kind = ValID::t_Constant;
+    return false;
+  }
+      
+  case lltok::kw_trunc:
+  case lltok::kw_zext:
+  case lltok::kw_sext:
+  case lltok::kw_fptrunc:
+  case lltok::kw_fpext:
+  case lltok::kw_bitcast:
+  case lltok::kw_uitofp:
+  case lltok::kw_sitofp:
+  case lltok::kw_fptoui:
+  case lltok::kw_fptosi:
+  case lltok::kw_inttoptr:
+  case lltok::kw_ptrtoint: {
+    unsigned Opc = Lex.getUIntVal();
+    PATypeHolder DestTy(Type::getVoidTy(Context));
+    Constant *SrcVal;
+    Lex.Lex();
+    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
+        ParseGlobalTypeAndValue(SrcVal) ||
+        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
+        ParseType(DestTy) ||
+        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
+      return true;
+    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
+      return Error(ID.Loc, "invalid cast opcode for cast from '" +
+                   SrcVal->getType()->getDescription() + "' to '" +
+                   DestTy->getDescription() + "'");
+    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
+                                                 SrcVal, DestTy);
+    ID.Kind = ValID::t_Constant;
+    return false;
+  }
+  case lltok::kw_extractvalue: {
+    Lex.Lex();
+    Constant *Val;
+    SmallVector<unsigned, 4> Indices;
+    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
+        ParseGlobalTypeAndValue(Val) ||
+        ParseIndexList(Indices) ||
+        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
+      return true;
+
+    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
+      return Error(ID.Loc, "extractvalue operand must be array or struct");
+    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
+                                          Indices.end()))
+      return Error(ID.Loc, "invalid indices for extractvalue");
+    ID.ConstantVal =
+      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
+    ID.Kind = ValID::t_Constant;
+    return false;
+  }
+  case lltok::kw_insertvalue: {
+    Lex.Lex();
+    Constant *Val0, *Val1;
+    SmallVector<unsigned, 4> Indices;
+    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
+        ParseGlobalTypeAndValue(Val0) ||
+        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
+        ParseGlobalTypeAndValue(Val1) ||
+        ParseIndexList(Indices) ||
+        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
+      return true;
+    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
+      return Error(ID.Loc, "extractvalue operand must be array or struct");
+    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
+                                          Indices.end()))
+      return Error(ID.Loc, "invalid indices for insertvalue");
+    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
+                       Indices.data(), Indices.size());
+    ID.Kind = ValID::t_Constant;
+    return false;
+  }
+  case lltok::kw_icmp:
+  case lltok::kw_fcmp: {
+    unsigned PredVal, Opc = Lex.getUIntVal();
+    Constant *Val0, *Val1;
+    Lex.Lex();
+    if (ParseCmpPredicate(PredVal, Opc) ||
+        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
+        ParseGlobalTypeAndValue(Val0) ||
+        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
+        ParseGlobalTypeAndValue(Val1) ||
+        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
+      return true;
+
+    if (Val0->getType() != Val1->getType())
+      return Error(ID.Loc, "compare operands must have the same type");
+
+    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
+
+    if (Opc == Instruction::FCmp) {
+      if (!Val0->getType()->isFPOrFPVector())
+        return Error(ID.Loc, "fcmp requires floating point operands");
+      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
+    } else {
+      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
+      if (!Val0->getType()->isIntOrIntVector() &&
+          !isa<PointerType>(Val0->getType()))
+        return Error(ID.Loc, "icmp requires pointer or integer operands");
+      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
+    }
+    ID.Kind = ValID::t_Constant;
+    return false;
+  }
+
+  // Binary Operators.
+  case lltok::kw_add:
+  case lltok::kw_fadd:
+  case lltok::kw_sub:
+  case lltok::kw_fsub:
+  case lltok::kw_mul:
+  case lltok::kw_fmul:
+  case lltok::kw_udiv:
+  case lltok::kw_sdiv:
+  case lltok::kw_fdiv:
+  case lltok::kw_urem:
+  case lltok::kw_srem:
+  case lltok::kw_frem: {
+    bool NUW = false;
+    bool NSW = false;
+    bool Exact = false;
+    unsigned Opc = Lex.getUIntVal();
+    Constant *Val0, *Val1;
+    Lex.Lex();
+    LocTy ModifierLoc = Lex.getLoc();
+    if (Opc == Instruction::Add ||
+        Opc == Instruction::Sub ||
+        Opc == Instruction::Mul) {
+      if (EatIfPresent(lltok::kw_nuw))
+        NUW = true;
+      if (EatIfPresent(lltok::kw_nsw)) {
+        NSW = true;
+        if (EatIfPresent(lltok::kw_nuw))
+          NUW = true;
+      }
+    } else if (Opc == Instruction::SDiv) {
+      if (EatIfPresent(lltok::kw_exact))
+        Exact = true;
+    }
+    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
+        ParseGlobalTypeAndValue(Val0) ||
+        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
+        ParseGlobalTypeAndValue(Val1) ||
+        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
+      return true;
+    if (Val0->getType() != Val1->getType())
+      return Error(ID.Loc, "operands of constexpr must have same type");
+    if (!Val0->getType()->isIntOrIntVector()) {
+      if (NUW)
+        return Error(ModifierLoc, "nuw only applies to integer operations");
+      if (NSW)
+        return Error(ModifierLoc, "nsw only applies to integer operations");
+    }
+    // API compatibility: Accept either integer or floating-point types with
+    // add, sub, and mul.
+    if (!Val0->getType()->isIntOrIntVector() &&
+        !Val0->getType()->isFPOrFPVector())
+      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
+    unsigned Flags = 0;
+    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
+    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
+    if (Exact) Flags |= SDivOperator::IsExact;
+    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
+    ID.ConstantVal = C;
+    ID.Kind = ValID::t_Constant;
+    return false;
+  }
+
+  // Logical Operations
+  case lltok::kw_shl:
+  case lltok::kw_lshr:
+  case lltok::kw_ashr:
+  case lltok::kw_and:
+  case lltok::kw_or:
+  case lltok::kw_xor: {
+    unsigned Opc = Lex.getUIntVal();
+    Constant *Val0, *Val1;
+    Lex.Lex();
+    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
+        ParseGlobalTypeAndValue(Val0) ||
+        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
+        ParseGlobalTypeAndValue(Val1) ||
+        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
+      return true;
+    if (Val0->getType() != Val1->getType())
+      return Error(ID.Loc, "operands of constexpr must have same type");
+    if (!Val0->getType()->isIntOrIntVector())
+      return Error(ID.Loc,
+                   "constexpr requires integer or integer vector operands");
+    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
+    ID.Kind = ValID::t_Constant;
+    return false;
+  }
+
+  case lltok::kw_getelementptr:
+  case lltok::kw_shufflevector:
+  case lltok::kw_insertelement:
+  case lltok::kw_extractelement:
+  case lltok::kw_select: {
+    unsigned Opc = Lex.getUIntVal();
+    SmallVector<Constant*, 16> Elts;
+    bool InBounds = false;
+    Lex.Lex();
+    if (Opc == Instruction::GetElementPtr)
+      InBounds = EatIfPresent(lltok::kw_inbounds);
+    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
+        ParseGlobalValueVector(Elts) ||
+        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
+      return true;
+
+    if (Opc == Instruction::GetElementPtr) {
+      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
+        return Error(ID.Loc, "getelementptr requires pointer operand");
+
+      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
+                                             (Value**)(Elts.data() + 1),
+                                             Elts.size() - 1))
+        return Error(ID.Loc, "invalid indices for getelementptr");
+      ID.ConstantVal = InBounds ?
+        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
+                                               Elts.data() + 1,
+                                               Elts.size() - 1) :
+        ConstantExpr::getGetElementPtr(Elts[0],
+                                       Elts.data() + 1, Elts.size() - 1);
+    } else if (Opc == Instruction::Select) {
+      if (Elts.size() != 3)
+        return Error(ID.Loc, "expected three operands to select");
+      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
+                                                              Elts[2]))
+        return Error(ID.Loc, Reason);
+      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
+    } else if (Opc == Instruction::ShuffleVector) {
+      if (Elts.size() != 3)
+        return Error(ID.Loc, "expected three operands to shufflevector");
+      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
+        return Error(ID.Loc, "invalid operands to shufflevector");
+      ID.ConstantVal =
+                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
+    } else if (Opc == Instruction::ExtractElement) {
+      if (Elts.size() != 2)
+        return Error(ID.Loc, "expected two operands to extractelement");
+      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
+        return Error(ID.Loc, "invalid extractelement operands");
+      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
+    } else {
+      assert(Opc == Instruction::InsertElement && "Unknown opcode");
+      if (Elts.size() != 3)
+      return Error(ID.Loc, "expected three operands to insertelement");
+      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
+        return Error(ID.Loc, "invalid insertelement operands");
+      ID.ConstantVal =
+                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
+    }
+
+    ID.Kind = ValID::t_Constant;
+    return false;
+  }
+  }
+
+  Lex.Lex();
+  return false;
+}
+
+/// ParseGlobalValue - Parse a global value with the specified type.
+bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&C) {
+  C = 0;
+  ValID ID;
+  Value *V = NULL;
+  bool Parsed = ParseValID(ID) ||
+                ConvertValIDToValue(Ty, ID, V, NULL);
+  if (V && !(C = dyn_cast<Constant>(V)))
+    return Error(ID.Loc, "global values must be constants");
+  return Parsed;
+}
+
+bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
+  PATypeHolder Type(Type::getVoidTy(Context));
+  return ParseType(Type) ||
+         ParseGlobalValue(Type, V);
+}
+
+/// ParseGlobalValueVector
+///   ::= /*empty*/
+///   ::= TypeAndValue (',' TypeAndValue)*
+bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
+  // Empty list.
+  if (Lex.getKind() == lltok::rbrace ||
+      Lex.getKind() == lltok::rsquare ||
+      Lex.getKind() == lltok::greater ||
+      Lex.getKind() == lltok::rparen)
+    return false;
+
+  Constant *C;
+  if (ParseGlobalTypeAndValue(C)) return true;
+  Elts.push_back(C);
+
+  while (EatIfPresent(lltok::comma)) {
+    if (ParseGlobalTypeAndValue(C)) return true;
+    Elts.push_back(C);
+  }
+
+  return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Function Parsing.
+//===----------------------------------------------------------------------===//
+
+bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
+                                   PerFunctionState *PFS) {
+  if (isa<FunctionType>(Ty))
+    return Error(ID.Loc, "functions are not values, refer to them as pointers");
+
+  switch (ID.Kind) {
+  default: llvm_unreachable("Unknown ValID!");
+  case ValID::t_LocalID:
+    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
+    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
+    return (V == 0);
+  case ValID::t_LocalName:
+    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
+    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
+    return (V == 0);
+  case ValID::t_InlineAsm: {
+    const PointerType *PTy = dyn_cast<PointerType>(Ty);
+    const FunctionType *FTy = 
+      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
+    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
+      return Error(ID.Loc, "invalid type for inline asm constraint string");
+    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
+    return false;
+  }
+  case ValID::t_MDNode:
+    if (!Ty->isMetadataTy())
+      return Error(ID.Loc, "metadata value must have metadata type");
+    V = ID.MDNodeVal;
+    return false;
+  case ValID::t_MDString:
+    if (!Ty->isMetadataTy())
+      return Error(ID.Loc, "metadata value must have metadata type");
+    V = ID.MDStringVal;
+    return false;
+  case ValID::t_GlobalName:
+    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
+    return V == 0;
+  case ValID::t_GlobalID:
+    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
+    return V == 0;
+  case ValID::t_APSInt:
+    if (!isa<IntegerType>(Ty))
+      return Error(ID.Loc, "integer constant must have integer type");
+    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
+    V = ConstantInt::get(Context, ID.APSIntVal);
+    return false;
+  case ValID::t_APFloat:
+    if (!Ty->isFloatingPoint() ||
+        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
+      return Error(ID.Loc, "floating point constant invalid for type");
+
+    // The lexer has no type info, so builds all float and double FP constants
+    // as double.  Fix this here.  Long double does not need this.
+    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
+        Ty->isFloatTy()) {
+      bool Ignored;
+      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
+                            &Ignored);
+    }
+    V = ConstantFP::get(Context, ID.APFloatVal);
+
+    if (V->getType() != Ty)
+      return Error(ID.Loc, "floating point constant does not have type '" +
+                   Ty->getDescription() + "'");
+
+    return false;
+  case ValID::t_Null:
+    if (!isa<PointerType>(Ty))
+      return Error(ID.Loc, "null must be a pointer type");
+    V = ConstantPointerNull::get(cast<PointerType>(Ty));
+    return false;
+  case ValID::t_Undef:
+    // FIXME: LabelTy should not be a first-class type.
+    if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
+        !isa<OpaqueType>(Ty))
+      return Error(ID.Loc, "invalid type for undef constant");
+    V = UndefValue::get(Ty);
+    return false;
+  case ValID::t_EmptyArray:
+    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
+      return Error(ID.Loc, "invalid empty array initializer");
+    V = UndefValue::get(Ty);
+    return false;
+  case ValID::t_Zero:
+    // FIXME: LabelTy should not be a first-class type.
+    if (!Ty->isFirstClassType() || Ty->isLabelTy())
+      return Error(ID.Loc, "invalid type for null constant");
+    V = Constant::getNullValue(Ty);
+    return false;
+  case ValID::t_Constant:
+    if (ID.ConstantVal->getType() != Ty)
+      return Error(ID.Loc, "constant expression type mismatch");
+    V = ID.ConstantVal;
+    return false;
+  }
+}
+
+bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
+  V = 0;
+  ValID ID;
+  return ParseValID(ID, &PFS) ||
+         ConvertValIDToValue(Ty, ID, V, &PFS);
+}
+
+bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
+  PATypeHolder T(Type::getVoidTy(Context));
+  return ParseType(T) ||
+         ParseValue(T, V, PFS);
+}
+
+bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
+                                      PerFunctionState &PFS) {
+  Value *V;
+  Loc = Lex.getLoc();
+  if (ParseTypeAndValue(V, PFS)) return true;
+  if (!isa<BasicBlock>(V))
+    return Error(Loc, "expected a basic block");
+  BB = cast<BasicBlock>(V);
+  return false;
+}
+
+
+/// FunctionHeader
+///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
+///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
+///       OptionalAlign OptGC
+bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
+  // Parse the linkage.
+  LocTy LinkageLoc = Lex.getLoc();
+  unsigned Linkage;
+
+  unsigned Visibility, RetAttrs;
+  CallingConv::ID CC;
+  PATypeHolder RetType(Type::getVoidTy(Context));
+  LocTy RetTypeLoc = Lex.getLoc();
+  if (ParseOptionalLinkage(Linkage) ||
+      ParseOptionalVisibility(Visibility) ||
+      ParseOptionalCallingConv(CC) ||
+      ParseOptionalAttrs(RetAttrs, 1) ||
+      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
+    return true;
+
+  // Verify that the linkage is ok.
+  switch ((GlobalValue::LinkageTypes)Linkage) {
+  case GlobalValue::ExternalLinkage:
+    break; // always ok.
+  case GlobalValue::DLLImportLinkage:
+  case GlobalValue::ExternalWeakLinkage:
+    if (isDefine)
+      return Error(LinkageLoc, "invalid linkage for function definition");
+    break;
+  case GlobalValue::PrivateLinkage:
+  case GlobalValue::LinkerPrivateLinkage:
+  case GlobalValue::InternalLinkage:
+  case GlobalValue::AvailableExternallyLinkage:
+  case GlobalValue::LinkOnceAnyLinkage:
+  case GlobalValue::LinkOnceODRLinkage:
+  case GlobalValue::WeakAnyLinkage:
+  case GlobalValue::WeakODRLinkage:
+  case GlobalValue::DLLExportLinkage:
+    if (!isDefine)
+      return Error(LinkageLoc, "invalid linkage for function declaration");
+    break;
+  case GlobalValue::AppendingLinkage:
+  case GlobalValue::CommonLinkage:
+    return Error(LinkageLoc, "invalid function linkage type");
+  }
+
+  if (!FunctionType::isValidReturnType(RetType) ||
+      isa<OpaqueType>(RetType))
+    return Error(RetTypeLoc, "invalid function return type");
+
+  LocTy NameLoc = Lex.getLoc();
+
+  std::string FunctionName;
+  if (Lex.getKind() == lltok::GlobalVar) {
+    FunctionName = Lex.getStrVal();
+  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
+    unsigned NameID = Lex.getUIntVal();
+
+    if (NameID != NumberedVals.size())
+      return TokError("function expected to be numbered '%" +
+                      utostr(NumberedVals.size()) + "'");
+  } else {
+    return TokError("expected function name");
+  }
+
+  Lex.Lex();
+
+  if (Lex.getKind() != lltok::lparen)
+    return TokError("expected '(' in function argument list");
+
+  std::vector<ArgInfo> ArgList;
+  bool isVarArg;
+  unsigned FuncAttrs;
+  std::string Section;
+  unsigned Alignment;
+  std::string GC;
+
+  if (ParseArgumentList(ArgList, isVarArg, false) ||
+      ParseOptionalAttrs(FuncAttrs, 2) ||
+      (EatIfPresent(lltok::kw_section) &&
+       ParseStringConstant(Section)) ||
+      ParseOptionalAlignment(Alignment) ||
+      (EatIfPresent(lltok::kw_gc) &&
+       ParseStringConstant(GC)))
+    return true;
+
+  // If the alignment was parsed as an attribute, move to the alignment field.
+  if (FuncAttrs & Attribute::Alignment) {
+    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
+    FuncAttrs &= ~Attribute::Alignment;
+  }
+
+  // Okay, if we got here, the function is syntactically valid.  Convert types
+  // and do semantic checks.
+  std::vector<const Type*> ParamTypeList;
+  SmallVector<AttributeWithIndex, 8> Attrs;
+  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
+  // attributes.
+  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
+  if (FuncAttrs & ObsoleteFuncAttrs) {
+    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
+    FuncAttrs &= ~ObsoleteFuncAttrs;
+  }
+
+  if (RetAttrs != Attribute::None)
+    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
+
+  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
+    ParamTypeList.push_back(ArgList[i].Type);
+    if (ArgList[i].Attrs != Attribute::None)
+      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
+  }
+
+  if (FuncAttrs != Attribute::None)
+    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
+
+  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
+
+  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
+    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
+
+  const FunctionType *FT =
+    FunctionType::get(RetType, ParamTypeList, isVarArg);
+  const PointerType *PFT = PointerType::getUnqual(FT);
+
+  Fn = 0;
+  if (!FunctionName.empty()) {
+    // If this was a definition of a forward reference, remove the definition
+    // from the forward reference table and fill in the forward ref.
+    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
+      ForwardRefVals.find(FunctionName);
+    if (FRVI != ForwardRefVals.end()) {
+      Fn = M->getFunction(FunctionName);
+      ForwardRefVals.erase(FRVI);
+    } else if ((Fn = M->getFunction(FunctionName))) {
+      // If this function already exists in the symbol table, then it is
+      // multiply defined.  We accept a few cases for old backwards compat.
+      // FIXME: Remove this stuff for LLVM 3.0.
+      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
+          (!Fn->isDeclaration() && isDefine)) {
+        // If the redefinition has different type or different attributes,
+        // reject it.  If both have bodies, reject it.
+        return Error(NameLoc, "invalid redefinition of function '" +
+                     FunctionName + "'");
+      } else if (Fn->isDeclaration()) {
+        // Make sure to strip off any argument names so we can't get conflicts.
+        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
+             AI != AE; ++AI)
+          AI->setName("");
+      }
+    } else if (M->getNamedValue(FunctionName)) {
+      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
+    }
+
+  } else {
+    // If this is a definition of a forward referenced function, make sure the
+    // types agree.
+    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
+      = ForwardRefValIDs.find(NumberedVals.size());
+    if (I != ForwardRefValIDs.end()) {
+      Fn = cast<Function>(I->second.first);
+      if (Fn->getType() != PFT)
+        return Error(NameLoc, "type of definition and forward reference of '@" +
+                     utostr(NumberedVals.size()) +"' disagree");
+      ForwardRefValIDs.erase(I);
+    }
+  }
+
+  if (Fn == 0)
+    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
+  else // Move the forward-reference to the correct spot in the module.
+    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
+
+  if (FunctionName.empty())
+    NumberedVals.push_back(Fn);
+
+  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
+  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
+  Fn->setCallingConv(CC);
+  Fn->setAttributes(PAL);
+  Fn->setAlignment(Alignment);
+  Fn->setSection(Section);
+  if (!GC.empty()) Fn->setGC(GC.c_str());
+
+  // Add all of the arguments we parsed to the function.
+  Function::arg_iterator ArgIt = Fn->arg_begin();
+  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
+    // If we run out of arguments in the Function prototype, exit early.
+    // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
+    if (ArgIt == Fn->arg_end()) break;
+    
+    // If the argument has a name, insert it into the argument symbol table.
+    if (ArgList[i].Name.empty()) continue;
+
+    // Set the name, if it conflicted, it will be auto-renamed.
+    ArgIt->setName(ArgList[i].Name);
+
+    if (ArgIt->getNameStr() != ArgList[i].Name)
+      return Error(ArgList[i].Loc, "redefinition of argument '%" +
+                   ArgList[i].Name + "'");
+  }
+
+  return false;
+}
+
+
+/// ParseFunctionBody
+///   ::= '{' BasicBlock+ '}'
+///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
+///
+bool LLParser::ParseFunctionBody(Function &Fn) {
+  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
+    return TokError("expected '{' in function body");
+  Lex.Lex();  // eat the {.
+
+  int FunctionNumber = -1;
+  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
+  
+  PerFunctionState PFS(*this, Fn, FunctionNumber);
+
+  // We need at least one basic block.
+  if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_end)
+    return TokError("function body requires at least one basic block");
+  
+  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
+    if (ParseBasicBlock(PFS)) return true;
+
+  // Eat the }.
+  Lex.Lex();
+
+  // Verify function is ok.
+  return PFS.FinishFunction();
+}
+
+/// ParseBasicBlock
+///   ::= LabelStr? Instruction*
+bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
+  // If this basic block starts out with a name, remember it.
+  std::string Name;
+  LocTy NameLoc = Lex.getLoc();
+  if (Lex.getKind() == lltok::LabelStr) {
+    Name = Lex.getStrVal();
+    Lex.Lex();
+  }
+
+  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
+  if (BB == 0) return true;
+
+  std::string NameStr;
+
+  // Parse the instructions in this block until we get a terminator.
+  Instruction *Inst;
+  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
+  do {
+    // This instruction may have three possibilities for a name: a) none
+    // specified, b) name specified "%foo =", c) number specified: "%4 =".
+    LocTy NameLoc = Lex.getLoc();
+    int NameID = -1;
+    NameStr = "";
+
+    if (Lex.getKind() == lltok::LocalVarID) {
+      NameID = Lex.getUIntVal();
+      Lex.Lex();
+      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
+        return true;
+    } else if (Lex.getKind() == lltok::LocalVar ||
+               // FIXME: REMOVE IN LLVM 3.0
+               Lex.getKind() == lltok::StringConstant) {
+      NameStr = Lex.getStrVal();
+      Lex.Lex();
+      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
+        return true;
+    }
+
+    switch (ParseInstruction(Inst, BB, PFS)) {
+    default: assert(0 && "Unknown ParseInstruction result!");
+    case InstError: return true;
+    case InstNormal:
+      // With a normal result, we check to see if the instruction is followed by
+      // a comma and metadata.
+      if (EatIfPresent(lltok::comma))
+        if (ParseInstructionMetadata(MetadataOnInst))
+          return true;
+      break;
+    case InstExtraComma:
+      // If the instruction parser ate an extra comma at the end of it, it
+      // *must* be followed by metadata.
+      if (ParseInstructionMetadata(MetadataOnInst))
+        return true;
+      break;        
+    }
+
+    // Set metadata attached with this instruction.
+    for (unsigned i = 0, e = MetadataOnInst.size(); i != e; ++i)
+      Inst->setMetadata(MetadataOnInst[i].first, MetadataOnInst[i].second);
+    MetadataOnInst.clear();
+
+    BB->getInstList().push_back(Inst);
+
+    // Set the name on the instruction.
+    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
+  } while (!isa<TerminatorInst>(Inst));
+
+  return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction Parsing.
+//===----------------------------------------------------------------------===//
+
+/// ParseInstruction - Parse one of the many different instructions.
+///
+int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
+                               PerFunctionState &PFS) {
+  lltok::Kind Token = Lex.getKind();
+  if (Token == lltok::Eof)
+    return TokError("found end of file when expecting more instructions");
+  LocTy Loc = Lex.getLoc();
+  unsigned KeywordVal = Lex.getUIntVal();
+  Lex.Lex();  // Eat the keyword.
+
+  switch (Token) {
+  default:                    return Error(Loc, "expected instruction opcode");
+  // Terminator Instructions.
+  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
+  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
+  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
+  case lltok::kw_br:          return ParseBr(Inst, PFS);
+  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
+  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
+  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
+  // Binary Operators.
+  case lltok::kw_add:
+  case lltok::kw_sub:
+  case lltok::kw_mul: {
+    bool NUW = false;
+    bool NSW = false;
+    LocTy ModifierLoc = Lex.getLoc();
+    if (EatIfPresent(lltok::kw_nuw))
+      NUW = true;
+    if (EatIfPresent(lltok::kw_nsw)) {
+      NSW = true;
+      if (EatIfPresent(lltok::kw_nuw))
+        NUW = true;
+    }
+    // API compatibility: Accept either integer or floating-point types.
+    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
+    if (!Result) {
+      if (!Inst->getType()->isIntOrIntVector()) {
+        if (NUW)
+          return Error(ModifierLoc, "nuw only applies to integer operations");
+        if (NSW)
+          return Error(ModifierLoc, "nsw only applies to integer operations");
+      }
+      if (NUW)
+        cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
+      if (NSW)
+        cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
+    }
+    return Result;
+  }
+  case lltok::kw_fadd:
+  case lltok::kw_fsub:
+  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
+
+  case lltok::kw_sdiv: {
+    bool Exact = false;
+    if (EatIfPresent(lltok::kw_exact))
+      Exact = true;
+    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
+    if (!Result)
+      if (Exact)
+        cast<BinaryOperator>(Inst)->setIsExact(true);
+    return Result;
+  }
+
+  case lltok::kw_udiv:
+  case lltok::kw_urem:
+  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
+  case lltok::kw_fdiv:
+  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
+  case lltok::kw_shl:
+  case lltok::kw_lshr:
+  case lltok::kw_ashr:
+  case lltok::kw_and:
+  case lltok::kw_or:
+  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
+  case lltok::kw_icmp:
+  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
+  // Casts.
+  case lltok::kw_trunc:
+  case lltok::kw_zext:
+  case lltok::kw_sext:
+  case lltok::kw_fptrunc:
+  case lltok::kw_fpext:
+  case lltok::kw_bitcast:
+  case lltok::kw_uitofp:
+  case lltok::kw_sitofp:
+  case lltok::kw_fptoui:
+  case lltok::kw_fptosi:
+  case lltok::kw_inttoptr:
+  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
+  // Other.
+  case lltok::kw_select:         return ParseSelect(Inst, PFS);
+  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
+  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
+  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
+  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
+  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
+  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
+  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
+  // Memory.
+  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
+  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, BB, false);
+  case lltok::kw_free:           return ParseFree(Inst, PFS, BB);
+  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
+  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
+  case lltok::kw_volatile:
+    if (EatIfPresent(lltok::kw_load))
+      return ParseLoad(Inst, PFS, true);
+    else if (EatIfPresent(lltok::kw_store))
+      return ParseStore(Inst, PFS, true);
+    else
+      return TokError("expected 'load' or 'store'");
+  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
+  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
+  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
+  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
+  }
+}
+
+/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
+bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
+  if (Opc == Instruction::FCmp) {
+    switch (Lex.getKind()) {
+    default: TokError("expected fcmp predicate (e.g. 'oeq')");
+    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
+    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
+    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
+    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
+    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
+    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
+    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
+    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
+    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
+    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
+    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
+    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
+    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
+    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
+    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
+    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
+    }
+  } else {
+    switch (Lex.getKind()) {
+    default: TokError("expected icmp predicate (e.g. 'eq')");
+    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
+    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
+    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
+    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
+    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
+    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
+    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
+    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
+    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
+    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
+    }
+  }
+  Lex.Lex();
+  return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Terminator Instructions.
+//===----------------------------------------------------------------------===//
+
+/// ParseRet - Parse a return instruction.
+///   ::= 'ret' void (',' !dbg, !1)*
+///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
+///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' !dbg, !1)*
+///         [[obsolete: LLVM 3.0]]
+int LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
+                       PerFunctionState &PFS) {
+  PATypeHolder Ty(Type::getVoidTy(Context));
+  if (ParseType(Ty, true /*void allowed*/)) return true;
+
+  if (Ty->isVoidTy()) {
+    Inst = ReturnInst::Create(Context);
+    return false;
+  }
+
+  Value *RV;
+  if (ParseValue(Ty, RV, PFS)) return true;
+
+  bool ExtraComma = false;
+  if (EatIfPresent(lltok::comma)) {
+    // Parse optional custom metadata, e.g. !dbg
+    if (Lex.getKind() == lltok::MetadataVar) {
+      ExtraComma = true;
+    } else {
+      // The normal case is one return value.
+      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
+      // use of 'ret {i32,i32} {i32 1, i32 2}'
+      SmallVector<Value*, 8> RVs;
+      RVs.push_back(RV);
+
+      do {
+        // If optional custom metadata, e.g. !dbg is seen then this is the 
+        // end of MRV.
+        if (Lex.getKind() == lltok::MetadataVar)
+          break;
+        if (ParseTypeAndValue(RV, PFS)) return true;
+        RVs.push_back(RV);
+      } while (EatIfPresent(lltok::comma));
+
+      RV = UndefValue::get(PFS.getFunction().getReturnType());
+      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
+        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
+        BB->getInstList().push_back(I);
+        RV = I;
+      }
+    }
+  }
+
+  Inst = ReturnInst::Create(Context, RV);
+  return ExtraComma ? InstExtraComma : InstNormal;
+}
+
+
+/// ParseBr
+///   ::= 'br' TypeAndValue
+///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
+bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
+  LocTy Loc, Loc2;
+  Value *Op0;
+  BasicBlock *Op1, *Op2;
+  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
+
+  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
+    Inst = BranchInst::Create(BB);
+    return false;
+  }
+
+  if (Op0->getType() != Type::getInt1Ty(Context))
+    return Error(Loc, "branch condition must have 'i1' type");
+
+  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
+      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
+      ParseToken(lltok::comma, "expected ',' after true destination") ||
+      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
+    return true;
+
+  Inst = BranchInst::Create(Op1, Op2, Op0);
+  return false;
+}
+
+/// ParseSwitch
+///  Instruction
+///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
+///  JumpTable
+///    ::= (TypeAndValue ',' TypeAndValue)*
+bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
+  LocTy CondLoc, BBLoc;
+  Value *Cond;
+  BasicBlock *DefaultBB;
+  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
+      ParseToken(lltok::comma, "expected ',' after switch condition") ||
+      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
+      ParseToken(lltok::lsquare, "expected '[' with switch table"))
+    return true;
+
+  if (!isa<IntegerType>(Cond->getType()))
+    return Error(CondLoc, "switch condition must have integer type");
+
+  // Parse the jump table pairs.
+  SmallPtrSet<Value*, 32> SeenCases;
+  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
+  while (Lex.getKind() != lltok::rsquare) {
+    Value *Constant;
+    BasicBlock *DestBB;
+
+    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
+        ParseToken(lltok::comma, "expected ',' after case value") ||
+        ParseTypeAndBasicBlock(DestBB, PFS))
+      return true;
+    
+    if (!SeenCases.insert(Constant))
+      return Error(CondLoc, "duplicate case value in switch");
+    if (!isa<ConstantInt>(Constant))
+      return Error(CondLoc, "case value is not a constant integer");
+
+    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
+  }
+
+  Lex.Lex();  // Eat the ']'.
+
+  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
+  for (unsigned i = 0, e = Table.size(); i != e; ++i)
+    SI->addCase(Table[i].first, Table[i].second);
+  Inst = SI;
+  return false;
+}
+
+/// ParseIndirectBr
+///  Instruction
+///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
+bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
+  LocTy AddrLoc;
+  Value *Address;
+  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
+      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
+      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
+    return true;
+  
+  if (!isa<PointerType>(Address->getType()))
+    return Error(AddrLoc, "indirectbr address must have pointer type");
+  
+  // Parse the destination list.
+  SmallVector<BasicBlock*, 16> DestList;
+  
+  if (Lex.getKind() != lltok::rsquare) {
+    BasicBlock *DestBB;
+    if (ParseTypeAndBasicBlock(DestBB, PFS))
+      return true;
+    DestList.push_back(DestBB);
+    
+    while (EatIfPresent(lltok::comma)) {
+      if (ParseTypeAndBasicBlock(DestBB, PFS))
+        return true;
+      DestList.push_back(DestBB);
+    }
+  }
+  
+  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
+    return true;
+
+  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
+  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
+    IBI->addDestination(DestList[i]);
+  Inst = IBI;
+  return false;
+}
+
+
+/// ParseInvoke
+///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
+///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
+bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
+  LocTy CallLoc = Lex.getLoc();
+  unsigned RetAttrs, FnAttrs;
+  CallingConv::ID CC;
+  PATypeHolder RetType(Type::getVoidTy(Context));
+  LocTy RetTypeLoc;
+  ValID CalleeID;
+  SmallVector<ParamInfo, 16> ArgList;
+
+  BasicBlock *NormalBB, *UnwindBB;
+  if (ParseOptionalCallingConv(CC) ||
+      ParseOptionalAttrs(RetAttrs, 1) ||
+      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
+      ParseValID(CalleeID) ||
+      ParseParameterList(ArgList, PFS) ||
+      ParseOptionalAttrs(FnAttrs, 2) ||
+      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
+      ParseTypeAndBasicBlock(NormalBB, PFS) ||
+      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
+      ParseTypeAndBasicBlock(UnwindBB, PFS))
+    return true;
+
+  // If RetType is a non-function pointer type, then this is the short syntax
+  // for the call, which means that RetType is just the return type.  Infer the
+  // rest of the function argument types from the arguments that are present.
+  const PointerType *PFTy = 0;
+  const FunctionType *Ty = 0;
+  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
+      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
+    // Pull out the types of all of the arguments...
+    std::vector<const Type*> ParamTypes;
+    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
+      ParamTypes.push_back(ArgList[i].V->getType());
+
+    if (!FunctionType::isValidReturnType(RetType))
+      return Error(RetTypeLoc, "Invalid result type for LLVM function");
+
+    Ty = FunctionType::get(RetType, ParamTypes, false);
+    PFTy = PointerType::getUnqual(Ty);
+  }
+
+  // Look up the callee.
+  Value *Callee;
+  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
+
+  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
+  // function attributes.
+  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
+  if (FnAttrs & ObsoleteFuncAttrs) {
+    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
+    FnAttrs &= ~ObsoleteFuncAttrs;
+  }
+
+  // Set up the Attributes for the function.
+  SmallVector<AttributeWithIndex, 8> Attrs;
+  if (RetAttrs != Attribute::None)
+    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
+
+  SmallVector<Value*, 8> Args;
+
+  // Loop through FunctionType's arguments and ensure they are specified
+  // correctly.  Also, gather any parameter attributes.
+  FunctionType::param_iterator I = Ty->param_begin();
+  FunctionType::param_iterator E = Ty->param_end();
+  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
+    const Type *ExpectedTy = 0;
+    if (I != E) {
+      ExpectedTy = *I++;
+    } else if (!Ty->isVarArg()) {
+      return Error(ArgList[i].Loc, "too many arguments specified");
+    }
+
+    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
+      return Error(ArgList[i].Loc, "argument is not of expected type '" +
+                   ExpectedTy->getDescription() + "'");
+    Args.push_back(ArgList[i].V);
+    if (ArgList[i].Attrs != Attribute::None)
+      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
+  }
+
+  if (I != E)
+    return Error(CallLoc, "not enough parameters specified for call");
+
+  if (FnAttrs != Attribute::None)
+    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
+
+  // Finish off the Attributes and check them
+  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
+
+  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
+                                      Args.begin(), Args.end());
+  II->setCallingConv(CC);
+  II->setAttributes(PAL);
+  Inst = II;
+  return false;
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// Binary Operators.
+//===----------------------------------------------------------------------===//
+
+/// ParseArithmetic
+///  ::= ArithmeticOps TypeAndValue ',' Value
+///
+/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
+/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
+bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
+                               unsigned Opc, unsigned OperandType) {
+  LocTy Loc; Value *LHS, *RHS;
+  if (ParseTypeAndValue(LHS, Loc, PFS) ||
+      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
+      ParseValue(LHS->getType(), RHS, PFS))
+    return true;
+
+  bool Valid;
+  switch (OperandType) {
+  default: llvm_unreachable("Unknown operand type!");
+  case 0: // int or FP.
+    Valid = LHS->getType()->isIntOrIntVector() ||
+            LHS->getType()->isFPOrFPVector();
+    break;
+  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
+  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
+  }
+
+  if (!Valid)
+    return Error(Loc, "invalid operand type for instruction");
+
+  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
+  return false;
+}
+
+/// ParseLogical
+///  ::= ArithmeticOps TypeAndValue ',' Value {
+bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
+                            unsigned Opc) {
+  LocTy Loc; Value *LHS, *RHS;
+  if (ParseTypeAndValue(LHS, Loc, PFS) ||
+      ParseToken(lltok::comma, "expected ',' in logical operation") ||
+      ParseValue(LHS->getType(), RHS, PFS))
+    return true;
+
+  if (!LHS->getType()->isIntOrIntVector())
+    return Error(Loc,"instruction requires integer or integer vector operands");
+
+  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
+  return false;
+}
+
+
+/// ParseCompare
+///  ::= 'icmp' IPredicates TypeAndValue ',' Value
+///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
+bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
+                            unsigned Opc) {
+  // Parse the integer/fp comparison predicate.
+  LocTy Loc;
+  unsigned Pred;
+  Value *LHS, *RHS;
+  if (ParseCmpPredicate(Pred, Opc) ||
+      ParseTypeAndValue(LHS, Loc, PFS) ||
+      ParseToken(lltok::comma, "expected ',' after compare value") ||
+      ParseValue(LHS->getType(), RHS, PFS))
+    return true;
+
+  if (Opc == Instruction::FCmp) {
+    if (!LHS->getType()->isFPOrFPVector())
+      return Error(Loc, "fcmp requires floating point operands");
+    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
+  } else {
+    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
+    if (!LHS->getType()->isIntOrIntVector() &&
+        !isa<PointerType>(LHS->getType()))
+      return Error(Loc, "icmp requires integer operands");
+    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
+  }
+  return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Other Instructions.
+//===----------------------------------------------------------------------===//
+
+
+/// ParseCast
+///   ::= CastOpc TypeAndValue 'to' Type
+bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
+                         unsigned Opc) {
+  LocTy Loc;  Value *Op;
+  PATypeHolder DestTy(Type::getVoidTy(Context));
+  if (ParseTypeAndValue(Op, Loc, PFS) ||
+      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
+      ParseType(DestTy))
+    return true;
+
+  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
+    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
+    return Error(Loc, "invalid cast opcode for cast from '" +
+                 Op->getType()->getDescription() + "' to '" +
+                 DestTy->getDescription() + "'");
+  }
+  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
+  return false;
+}
+
+/// ParseSelect
+///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
+bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
+  LocTy Loc;
+  Value *Op0, *Op1, *Op2;
+  if (ParseTypeAndValue(Op0, Loc, PFS) ||
+      ParseToken(lltok::comma, "expected ',' after select condition") ||
+      ParseTypeAndValue(Op1, PFS) ||
+      ParseToken(lltok::comma, "expected ',' after select value") ||
+      ParseTypeAndValue(Op2, PFS))
+    return true;
+
+  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
+    return Error(Loc, Reason);
+
+  Inst = SelectInst::Create(Op0, Op1, Op2);
+  return false;
+}
+
+/// ParseVA_Arg
+///   ::= 'va_arg' TypeAndValue ',' Type
+bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
+  Value *Op;
+  PATypeHolder EltTy(Type::getVoidTy(Context));
+  LocTy TypeLoc;
+  if (ParseTypeAndValue(Op, PFS) ||
+      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
+      ParseType(EltTy, TypeLoc))
+    return true;
+
+  if (!EltTy->isFirstClassType())
+    return Error(TypeLoc, "va_arg requires operand with first class type");
+
+  Inst = new VAArgInst(Op, EltTy);
+  return false;
+}
+
+/// ParseExtractElement
+///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
+bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
+  LocTy Loc;
+  Value *Op0, *Op1;
+  if (ParseTypeAndValue(Op0, Loc, PFS) ||
+      ParseToken(lltok::comma, "expected ',' after extract value") ||
+      ParseTypeAndValue(Op1, PFS))
+    return true;
+
+  if (!ExtractElementInst::isValidOperands(Op0, Op1))
+    return Error(Loc, "invalid extractelement operands");
+
+  Inst = ExtractElementInst::Create(Op0, Op1);
+  return false;
+}
+
+/// ParseInsertElement
+///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
+bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
+  LocTy Loc;
+  Value *Op0, *Op1, *Op2;
+  if (ParseTypeAndValue(Op0, Loc, PFS) ||
+      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
+      ParseTypeAndValue(Op1, PFS) ||
+      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
+      ParseTypeAndValue(Op2, PFS))
+    return true;
+
+  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
+    return Error(Loc, "invalid insertelement operands");
+
+  Inst = InsertElementInst::Create(Op0, Op1, Op2);
+  return false;
+}
+
+/// ParseShuffleVector
+///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
+bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
+  LocTy Loc;
+  Value *Op0, *Op1, *Op2;
+  if (ParseTypeAndValue(Op0, Loc, PFS) ||
+      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
+      ParseTypeAndValue(Op1, PFS) ||
+      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
+      ParseTypeAndValue(Op2, PFS))
+    return true;
+
+  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
+    return Error(Loc, "invalid extractelement operands");
+
+  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
+  return false;
+}
+
+/// ParsePHI
+///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
+int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
+  PATypeHolder Ty(Type::getVoidTy(Context));
+  Value *Op0, *Op1;
+  LocTy TypeLoc = Lex.getLoc();
+
+  if (ParseType(Ty) ||
+      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
+      ParseValue(Ty, Op0, PFS) ||
+      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
+      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
+      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
+    return true;
+
+  bool AteExtraComma = false;
+  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
+  while (1) {
+    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
+
+    if (!EatIfPresent(lltok::comma))
+      break;
+
+    if (Lex.getKind() == lltok::MetadataVar) {
+      AteExtraComma = true;
+      break;
+    }
+
+    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
+        ParseValue(Ty, Op0, PFS) ||
+        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
+        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
+        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
+      return true;
+  }
+
+  if (!Ty->isFirstClassType())
+    return Error(TypeLoc, "phi node must have first class type");
+
+  PHINode *PN = PHINode::Create(Ty);
+  PN->reserveOperandSpace(PHIVals.size());
+  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
+    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
+  Inst = PN;
+  return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseCall
+///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
+///       ParameterList OptionalAttrs
+bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
+                         bool isTail) {
+  unsigned RetAttrs, FnAttrs;
+  CallingConv::ID CC;
+  PATypeHolder RetType(Type::getVoidTy(Context));
+  LocTy RetTypeLoc;
+  ValID CalleeID;
+  SmallVector<ParamInfo, 16> ArgList;
+  LocTy CallLoc = Lex.getLoc();
+
+  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
+      ParseOptionalCallingConv(CC) ||
+      ParseOptionalAttrs(RetAttrs, 1) ||
+      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
+      ParseValID(CalleeID) ||
+      ParseParameterList(ArgList, PFS) ||
+      ParseOptionalAttrs(FnAttrs, 2))
+    return true;
+
+  // If RetType is a non-function pointer type, then this is the short syntax
+  // for the call, which means that RetType is just the return type.  Infer the
+  // rest of the function argument types from the arguments that are present.
+  const PointerType *PFTy = 0;
+  const FunctionType *Ty = 0;
+  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
+      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
+    // Pull out the types of all of the arguments...
+    std::vector<const Type*> ParamTypes;
+    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
+      ParamTypes.push_back(ArgList[i].V->getType());
+
+    if (!FunctionType::isValidReturnType(RetType))
+      return Error(RetTypeLoc, "Invalid result type for LLVM function");
+
+    Ty = FunctionType::get(RetType, ParamTypes, false);
+    PFTy = PointerType::getUnqual(Ty);
+  }
+
+  // Look up the callee.
+  Value *Callee;
+  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
+
+  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
+  // function attributes.
+  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
+  if (FnAttrs & ObsoleteFuncAttrs) {
+    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
+    FnAttrs &= ~ObsoleteFuncAttrs;
+  }
+
+  // Set up the Attributes for the function.
+  SmallVector<AttributeWithIndex, 8> Attrs;
+  if (RetAttrs != Attribute::None)
+    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
+
+  SmallVector<Value*, 8> Args;
+
+  // Loop through FunctionType's arguments and ensure they are specified
+  // correctly.  Also, gather any parameter attributes.
+  FunctionType::param_iterator I = Ty->param_begin();
+  FunctionType::param_iterator E = Ty->param_end();
+  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
+    const Type *ExpectedTy = 0;
+    if (I != E) {
+      ExpectedTy = *I++;
+    } else if (!Ty->isVarArg()) {
+      return Error(ArgList[i].Loc, "too many arguments specified");
+    }
+
+    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
+      return Error(ArgList[i].Loc, "argument is not of expected type '" +
+                   ExpectedTy->getDescription() + "'");
+    Args.push_back(ArgList[i].V);
+    if (ArgList[i].Attrs != Attribute::None)
+      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
+  }
+
+  if (I != E)
+    return Error(CallLoc, "not enough parameters specified for call");
+
+  if (FnAttrs != Attribute::None)
+    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
+
+  // Finish off the Attributes and check them
+  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
+
+  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
+  CI->setTailCall(isTail);
+  CI->setCallingConv(CC);
+  CI->setAttributes(PAL);
+  Inst = CI;
+  return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Memory Instructions.
+//===----------------------------------------------------------------------===//
+
+/// ParseAlloc
+///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
+///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
+int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
+                         BasicBlock* BB, bool isAlloca) {
+  PATypeHolder Ty(Type::getVoidTy(Context));
+  Value *Size = 0;
+  LocTy SizeLoc;
+  unsigned Alignment = 0;
+  if (ParseType(Ty)) return true;
+
+  bool AteExtraComma = false;
+  if (EatIfPresent(lltok::comma)) {
+    if (Lex.getKind() == lltok::kw_align) {
+      if (ParseOptionalAlignment(Alignment)) return true;
+    } else if (Lex.getKind() == lltok::MetadataVar) {
+      AteExtraComma = true;
+    } else {
+      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
+          ParseOptionalCommaAlign(Alignment, AteExtraComma))
+        return true;
+    }
+  }
+
+  if (Size && !Size->getType()->isInteger(32))
+    return Error(SizeLoc, "element count must be i32");
+
+  if (isAlloca) {
+    Inst = new AllocaInst(Ty, Size, Alignment);
+    return AteExtraComma ? InstExtraComma : InstNormal;
+  }
+
+  // Autoupgrade old malloc instruction to malloc call.
+  // FIXME: Remove in LLVM 3.0.
+  const Type *IntPtrTy = Type::getInt32Ty(Context);
+  Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
+  AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
+  if (!MallocF)
+    // Prototype malloc as "void *(int32)".
+    // This function is renamed as "malloc" in ValidateEndOfModule().
+    MallocF = cast<Function>(
+       M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
+  Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
+return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseFree
+///   ::= 'free' TypeAndValue
+bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
+                         BasicBlock* BB) {
+  Value *Val; LocTy Loc;
+  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
+  if (!isa<PointerType>(Val->getType()))
+    return Error(Loc, "operand to free must be a pointer");
+  Inst = CallInst::CreateFree(Val, BB);
+  return false;
+}
+
+/// ParseLoad
+///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
+int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
+                        bool isVolatile) {
+  Value *Val; LocTy Loc;
+  unsigned Alignment = 0;
+  bool AteExtraComma = false;
+  if (ParseTypeAndValue(Val, Loc, PFS) ||
+      ParseOptionalCommaAlign(Alignment, AteExtraComma))
+    return true;
+
+  if (!isa<PointerType>(Val->getType()) ||
+      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
+    return Error(Loc, "load operand must be a pointer to a first class type");
+
+  Inst = new LoadInst(Val, "", isVolatile, Alignment);
+  return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseStore
+///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
+int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
+                         bool isVolatile) {
+  Value *Val, *Ptr; LocTy Loc, PtrLoc;
+  unsigned Alignment = 0;
+  bool AteExtraComma = false;
+  if (ParseTypeAndValue(Val, Loc, PFS) ||
+      ParseToken(lltok::comma, "expected ',' after store operand") ||
+      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
+      ParseOptionalCommaAlign(Alignment, AteExtraComma))
+    return true;
+
+  if (!isa<PointerType>(Ptr->getType()))
+    return Error(PtrLoc, "store operand must be a pointer");
+  if (!Val->getType()->isFirstClassType())
+    return Error(Loc, "store operand must be a first class value");
+  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
+    return Error(Loc, "stored value and pointer type do not match");
+
+  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
+  return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseGetResult
+///   ::= 'getresult' TypeAndValue ',' i32
+/// FIXME: Remove support for getresult in LLVM 3.0
+bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
+  Value *Val; LocTy ValLoc, EltLoc;
+  unsigned Element;
+  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
+      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
+      ParseUInt32(Element, EltLoc))
+    return true;
+
+  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
+    return Error(ValLoc, "getresult inst requires an aggregate operand");
+  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
+    return Error(EltLoc, "invalid getresult index for value");
+  Inst = ExtractValueInst::Create(Val, Element);
+  return false;
+}
+
+/// ParseGetElementPtr
+///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
+int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
+  Value *Ptr, *Val; LocTy Loc, EltLoc;
+
+  bool InBounds = EatIfPresent(lltok::kw_inbounds);
+
+  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
+
+  if (!isa<PointerType>(Ptr->getType()))
+    return Error(Loc, "base of getelementptr must be a pointer");
+
+  SmallVector<Value*, 16> Indices;
+  bool AteExtraComma = false;
+  while (EatIfPresent(lltok::comma)) {
+    if (Lex.getKind() == lltok::MetadataVar) {
+      AteExtraComma = true;
+      break;
+    }
+    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
+    if (!isa<IntegerType>(Val->getType()))
+      return Error(EltLoc, "getelementptr index must be an integer");
+    Indices.push_back(Val);
+  }
+
+  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
+                                         Indices.begin(), Indices.end()))
+    return Error(Loc, "invalid getelementptr indices");
+  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
+  if (InBounds)
+    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
+  return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseExtractValue
+///   ::= 'extractvalue' TypeAndValue (',' uint32)+
+int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
+  Value *Val; LocTy Loc;
+  SmallVector<unsigned, 4> Indices;
+  bool AteExtraComma;
+  if (ParseTypeAndValue(Val, Loc, PFS) ||
+      ParseIndexList(Indices, AteExtraComma))
+    return true;
+
+  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
+    return Error(Loc, "extractvalue operand must be array or struct");
+
+  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
+                                        Indices.end()))
+    return Error(Loc, "invalid indices for extractvalue");
+  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
+  return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseInsertValue
+///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
+int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
+  Value *Val0, *Val1; LocTy Loc0, Loc1;
+  SmallVector<unsigned, 4> Indices;
+  bool AteExtraComma;
+  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
+      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
+      ParseTypeAndValue(Val1, Loc1, PFS) ||
+      ParseIndexList(Indices, AteExtraComma))
+    return true;
+  
+  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
+    return Error(Loc0, "extractvalue operand must be array or struct");
+
+  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
+                                        Indices.end()))
+    return Error(Loc0, "invalid indices for insertvalue");
+  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
+  return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+//===----------------------------------------------------------------------===//
+// Embedded metadata.
+//===----------------------------------------------------------------------===//
+
+/// ParseMDNodeVector
+///   ::= Element (',' Element)*
+/// Element
+///   ::= 'null' | TypeAndValue
+bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
+                                 PerFunctionState *PFS) {
+  do {
+    // Null is a special case since it is typeless.
+    if (EatIfPresent(lltok::kw_null)) {
+      Elts.push_back(0);
+      continue;
+    }
+    
+    Value *V = 0;
+    PATypeHolder Ty(Type::getVoidTy(Context));
+    ValID ID;
+    if (ParseType(Ty) || ParseValID(ID, PFS) ||
+        ConvertValIDToValue(Ty, ID, V, PFS))
+      return true;
+    
+    Elts.push_back(V);
+  } while (EatIfPresent(lltok::comma));
+
+  return false;
+}