Check in LLVM r95781.
diff --git a/lib/CodeGen/LiveIntervalAnalysis.cpp b/lib/CodeGen/LiveIntervalAnalysis.cpp
new file mode 100644
index 0000000..432409a
--- /dev/null
+++ b/lib/CodeGen/LiveIntervalAnalysis.cpp
@@ -0,0 +1,2104 @@
+//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LiveInterval analysis pass which is used
+// by the Linear Scan Register allocator. This pass linearizes the
+// basic blocks of the function in DFS order and uses the
+// LiveVariables pass to conservatively compute live intervals for
+// each virtual and physical register.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "liveintervals"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "VirtRegMap.h"
+#include "llvm/Value.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/ProcessImplicitDefs.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+#include <limits>
+#include <cmath>
+using namespace llvm;
+
+// Hidden options for help debugging.
+static cl::opt<bool> DisableReMat("disable-rematerialization", 
+                                  cl::init(false), cl::Hidden);
+
+static cl::opt<bool> EnableFastSpilling("fast-spill",
+                                        cl::init(false), cl::Hidden);
+
+STATISTIC(numIntervals , "Number of original intervals");
+STATISTIC(numFolds     , "Number of loads/stores folded into instructions");
+STATISTIC(numSplits    , "Number of intervals split");
+
+char LiveIntervals::ID = 0;
+static RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
+
+void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
+  AU.setPreservesCFG();
+  AU.addRequired<AliasAnalysis>();
+  AU.addPreserved<AliasAnalysis>();
+  AU.addPreserved<LiveVariables>();
+  AU.addRequired<LiveVariables>();
+  AU.addPreservedID(MachineLoopInfoID);
+  AU.addPreservedID(MachineDominatorsID);
+  
+  if (!StrongPHIElim) {
+    AU.addPreservedID(PHIEliminationID);
+    AU.addRequiredID(PHIEliminationID);
+  }
+  
+  AU.addRequiredID(TwoAddressInstructionPassID);
+  AU.addPreserved<ProcessImplicitDefs>();
+  AU.addRequired<ProcessImplicitDefs>();
+  AU.addPreserved<SlotIndexes>();
+  AU.addRequiredTransitive<SlotIndexes>();
+  MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+void LiveIntervals::releaseMemory() {
+  // Free the live intervals themselves.
+  for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(),
+       E = r2iMap_.end(); I != E; ++I)
+    delete I->second;
+  
+  r2iMap_.clear();
+
+  // Release VNInfo memroy regions after all VNInfo objects are dtor'd.
+  VNInfoAllocator.Reset();
+  while (!CloneMIs.empty()) {
+    MachineInstr *MI = CloneMIs.back();
+    CloneMIs.pop_back();
+    mf_->DeleteMachineInstr(MI);
+  }
+}
+
+/// runOnMachineFunction - Register allocate the whole function
+///
+bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
+  mf_ = &fn;
+  mri_ = &mf_->getRegInfo();
+  tm_ = &fn.getTarget();
+  tri_ = tm_->getRegisterInfo();
+  tii_ = tm_->getInstrInfo();
+  aa_ = &getAnalysis<AliasAnalysis>();
+  lv_ = &getAnalysis<LiveVariables>();
+  indexes_ = &getAnalysis<SlotIndexes>();
+  allocatableRegs_ = tri_->getAllocatableSet(fn);
+
+  computeIntervals();
+
+  numIntervals += getNumIntervals();
+
+  DEBUG(dump());
+  return true;
+}
+
+/// print - Implement the dump method.
+void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
+  OS << "********** INTERVALS **********\n";
+  for (const_iterator I = begin(), E = end(); I != E; ++I) {
+    I->second->print(OS, tri_);
+    OS << "\n";
+  }
+
+  printInstrs(OS);
+}
+
+void LiveIntervals::printInstrs(raw_ostream &OS) const {
+  OS << "********** MACHINEINSTRS **********\n";
+
+  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
+       mbbi != mbbe; ++mbbi) {
+    OS << "BB#" << mbbi->getNumber()
+       << ":\t\t# derived from " << mbbi->getName() << "\n";
+    for (MachineBasicBlock::iterator mii = mbbi->begin(),
+           mie = mbbi->end(); mii != mie; ++mii) {
+      if (mii->isDebugValue())
+        OS << SlotIndex::getEmptyKey() << '\t' << *mii;
+      else
+        OS << getInstructionIndex(mii) << '\t' << *mii;
+    }
+  }
+}
+
+void LiveIntervals::dumpInstrs() const {
+  printInstrs(dbgs());
+}
+
+bool LiveIntervals::conflictsWithPhysReg(const LiveInterval &li,
+                                         VirtRegMap &vrm, unsigned reg) {
+  // We don't handle fancy stuff crossing basic block boundaries
+  if (li.ranges.size() != 1)
+    return true;
+  const LiveRange &range = li.ranges.front();
+  SlotIndex idx = range.start.getBaseIndex();
+  SlotIndex end = range.end.getPrevSlot().getBaseIndex().getNextIndex();
+
+  // Skip deleted instructions
+  MachineInstr *firstMI = getInstructionFromIndex(idx);
+  while (!firstMI && idx != end) {
+    idx = idx.getNextIndex();
+    firstMI = getInstructionFromIndex(idx);
+  }
+  if (!firstMI)
+    return false;
+
+  // Find last instruction in range
+  SlotIndex lastIdx = end.getPrevIndex();
+  MachineInstr *lastMI = getInstructionFromIndex(lastIdx);
+  while (!lastMI && lastIdx != idx) {
+    lastIdx = lastIdx.getPrevIndex();
+    lastMI = getInstructionFromIndex(lastIdx);
+  }
+  if (!lastMI)
+    return false;
+
+  // Range cannot cross basic block boundaries or terminators
+  MachineBasicBlock *MBB = firstMI->getParent();
+  if (MBB != lastMI->getParent() || lastMI->getDesc().isTerminator())
+    return true;
+
+  MachineBasicBlock::const_iterator E = lastMI;
+  ++E;
+  for (MachineBasicBlock::const_iterator I = firstMI; I != E; ++I) {
+    const MachineInstr &MI = *I;
+
+    // Allow copies to and from li.reg
+    unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
+    if (tii_->isMoveInstr(MI, SrcReg, DstReg, SrcSubReg, DstSubReg))
+      if (SrcReg == li.reg || DstReg == li.reg)
+        continue;
+
+    // Check for operands using reg
+    for (unsigned i = 0, e = MI.getNumOperands(); i != e;  ++i) {
+      const MachineOperand& mop = MI.getOperand(i);
+      if (!mop.isReg())
+        continue;
+      unsigned PhysReg = mop.getReg();
+      if (PhysReg == 0 || PhysReg == li.reg)
+        continue;
+      if (TargetRegisterInfo::isVirtualRegister(PhysReg)) {
+        if (!vrm.hasPhys(PhysReg))
+          continue;
+        PhysReg = vrm.getPhys(PhysReg);
+      }
+      if (PhysReg && tri_->regsOverlap(PhysReg, reg))
+        return true;
+    }
+  }
+
+  // No conflicts found.
+  return false;
+}
+
+/// conflictsWithPhysRegRef - Similar to conflictsWithPhysRegRef except
+/// it can check use as well.
+bool LiveIntervals::conflictsWithPhysRegRef(LiveInterval &li,
+                                            unsigned Reg, bool CheckUse,
+                                  SmallPtrSet<MachineInstr*,32> &JoinedCopies) {
+  for (LiveInterval::Ranges::const_iterator
+         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
+    for (SlotIndex index = I->start.getBaseIndex(),
+           end = I->end.getPrevSlot().getBaseIndex().getNextIndex();
+           index != end;
+           index = index.getNextIndex()) {
+      MachineInstr *MI = getInstructionFromIndex(index);
+      if (!MI)
+        continue;               // skip deleted instructions
+
+      if (JoinedCopies.count(MI))
+        continue;
+      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+        MachineOperand& MO = MI->getOperand(i);
+        if (!MO.isReg())
+          continue;
+        if (MO.isUse() && !CheckUse)
+          continue;
+        unsigned PhysReg = MO.getReg();
+        if (PhysReg == 0 || TargetRegisterInfo::isVirtualRegister(PhysReg))
+          continue;
+        if (tri_->isSubRegister(Reg, PhysReg))
+          return true;
+      }
+    }
+  }
+
+  return false;
+}
+
+#ifndef NDEBUG
+static void printRegName(unsigned reg, const TargetRegisterInfo* tri_) {
+  if (TargetRegisterInfo::isPhysicalRegister(reg))
+    dbgs() << tri_->getName(reg);
+  else
+    dbgs() << "%reg" << reg;
+}
+#endif
+
+void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
+                                             MachineBasicBlock::iterator mi,
+                                             SlotIndex MIIdx,
+                                             MachineOperand& MO,
+                                             unsigned MOIdx,
+                                             LiveInterval &interval) {
+  DEBUG({
+      dbgs() << "\t\tregister: ";
+      printRegName(interval.reg, tri_);
+    });
+
+  // Virtual registers may be defined multiple times (due to phi
+  // elimination and 2-addr elimination).  Much of what we do only has to be
+  // done once for the vreg.  We use an empty interval to detect the first
+  // time we see a vreg.
+  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
+  if (interval.empty()) {
+    // Get the Idx of the defining instructions.
+    SlotIndex defIndex = MIIdx.getDefIndex();
+    // Earlyclobbers move back one, so that they overlap the live range
+    // of inputs.
+    if (MO.isEarlyClobber())
+      defIndex = MIIdx.getUseIndex();
+    VNInfo *ValNo;
+    MachineInstr *CopyMI = NULL;
+    unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
+    if (mi->isExtractSubreg() || mi->isInsertSubreg() || mi->isSubregToReg() ||
+        tii_->isMoveInstr(*mi, SrcReg, DstReg, SrcSubReg, DstSubReg))
+      CopyMI = mi;
+    // Earlyclobbers move back one.
+    ValNo = interval.getNextValue(defIndex, CopyMI, true, VNInfoAllocator);
+
+    assert(ValNo->id == 0 && "First value in interval is not 0?");
+
+    // Loop over all of the blocks that the vreg is defined in.  There are
+    // two cases we have to handle here.  The most common case is a vreg
+    // whose lifetime is contained within a basic block.  In this case there
+    // will be a single kill, in MBB, which comes after the definition.
+    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
+      // FIXME: what about dead vars?
+      SlotIndex killIdx;
+      if (vi.Kills[0] != mi)
+        killIdx = getInstructionIndex(vi.Kills[0]).getDefIndex();
+      else
+        killIdx = defIndex.getStoreIndex();
+
+      // If the kill happens after the definition, we have an intra-block
+      // live range.
+      if (killIdx > defIndex) {
+        assert(vi.AliveBlocks.empty() &&
+               "Shouldn't be alive across any blocks!");
+        LiveRange LR(defIndex, killIdx, ValNo);
+        interval.addRange(LR);
+        DEBUG(dbgs() << " +" << LR << "\n");
+        ValNo->addKill(killIdx);
+        return;
+      }
+    }
+
+    // The other case we handle is when a virtual register lives to the end
+    // of the defining block, potentially live across some blocks, then is
+    // live into some number of blocks, but gets killed.  Start by adding a
+    // range that goes from this definition to the end of the defining block.
+    LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
+    DEBUG(dbgs() << " +" << NewLR);
+    interval.addRange(NewLR);
+
+    // Iterate over all of the blocks that the variable is completely
+    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
+    // live interval.
+    for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(), 
+             E = vi.AliveBlocks.end(); I != E; ++I) {
+      MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I);
+      LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo);
+      interval.addRange(LR);
+      DEBUG(dbgs() << " +" << LR);
+    }
+
+    // Finally, this virtual register is live from the start of any killing
+    // block to the 'use' slot of the killing instruction.
+    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
+      MachineInstr *Kill = vi.Kills[i];
+      SlotIndex killIdx =
+        getInstructionIndex(Kill).getDefIndex();
+      LiveRange LR(getMBBStartIdx(Kill->getParent()), killIdx, ValNo);
+      interval.addRange(LR);
+      ValNo->addKill(killIdx);
+      DEBUG(dbgs() << " +" << LR);
+    }
+
+  } else {
+    // If this is the second time we see a virtual register definition, it
+    // must be due to phi elimination or two addr elimination.  If this is
+    // the result of two address elimination, then the vreg is one of the
+    // def-and-use register operand.
+    if (mi->isRegTiedToUseOperand(MOIdx)) {
+      // If this is a two-address definition, then we have already processed
+      // the live range.  The only problem is that we didn't realize there
+      // are actually two values in the live interval.  Because of this we
+      // need to take the LiveRegion that defines this register and split it
+      // into two values.
+      assert(interval.containsOneValue());
+      SlotIndex DefIndex = interval.getValNumInfo(0)->def.getDefIndex();
+      SlotIndex RedefIndex = MIIdx.getDefIndex();
+      if (MO.isEarlyClobber())
+        RedefIndex = MIIdx.getUseIndex();
+
+      const LiveRange *OldLR =
+        interval.getLiveRangeContaining(RedefIndex.getUseIndex());
+      VNInfo *OldValNo = OldLR->valno;
+
+      // Delete the initial value, which should be short and continuous,
+      // because the 2-addr copy must be in the same MBB as the redef.
+      interval.removeRange(DefIndex, RedefIndex);
+
+      // Two-address vregs should always only be redefined once.  This means
+      // that at this point, there should be exactly one value number in it.
+      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
+
+      // The new value number (#1) is defined by the instruction we claimed
+      // defined value #0.
+      VNInfo *ValNo = interval.getNextValue(OldValNo->def, OldValNo->getCopy(),
+                                            false, // update at *
+                                            VNInfoAllocator);
+      ValNo->setFlags(OldValNo->getFlags()); // * <- updating here
+
+      // Value#0 is now defined by the 2-addr instruction.
+      OldValNo->def  = RedefIndex;
+      OldValNo->setCopy(0);
+      
+      // Add the new live interval which replaces the range for the input copy.
+      LiveRange LR(DefIndex, RedefIndex, ValNo);
+      DEBUG(dbgs() << " replace range with " << LR);
+      interval.addRange(LR);
+      ValNo->addKill(RedefIndex);
+
+      // If this redefinition is dead, we need to add a dummy unit live
+      // range covering the def slot.
+      if (MO.isDead())
+        interval.addRange(LiveRange(RedefIndex, RedefIndex.getStoreIndex(),
+                                    OldValNo));
+
+      DEBUG({
+          dbgs() << " RESULT: ";
+          interval.print(dbgs(), tri_);
+        });
+    } else {
+      // Otherwise, this must be because of phi elimination.  If this is the
+      // first redefinition of the vreg that we have seen, go back and change
+      // the live range in the PHI block to be a different value number.
+      if (interval.containsOneValue()) {
+
+        VNInfo *VNI = interval.getValNumInfo(0);
+        // Phi elimination may have reused the register for multiple identical
+        // phi nodes. There will be a kill per phi. Remove the old ranges that
+        // we now know have an incorrect number.
+        for (unsigned ki=0, ke=vi.Kills.size(); ki != ke; ++ki) {
+          MachineInstr *Killer = vi.Kills[ki];
+          SlotIndex Start = getMBBStartIdx(Killer->getParent());
+          SlotIndex End = getInstructionIndex(Killer).getDefIndex();
+          DEBUG({
+              dbgs() << "\n\t\trenaming [" << Start << "," << End << "] in: ";
+              interval.print(dbgs(), tri_);
+            });
+          interval.removeRange(Start, End);
+
+          // Replace the interval with one of a NEW value number.  Note that
+          // this value number isn't actually defined by an instruction, weird
+          // huh? :)
+          LiveRange LR(Start, End,
+                       interval.getNextValue(SlotIndex(Start, true),
+                                             0, false, VNInfoAllocator));
+          LR.valno->setIsPHIDef(true);
+          interval.addRange(LR);
+          LR.valno->addKill(End);
+        }
+
+        MachineBasicBlock *killMBB = getMBBFromIndex(VNI->def);
+        VNI->addKill(indexes_->getTerminatorGap(killMBB));
+        VNI->setHasPHIKill(true);
+        DEBUG({
+            dbgs() << " RESULT: ";
+            interval.print(dbgs(), tri_);
+          });
+      }
+
+      // In the case of PHI elimination, each variable definition is only
+      // live until the end of the block.  We've already taken care of the
+      // rest of the live range.
+      SlotIndex defIndex = MIIdx.getDefIndex();
+      if (MO.isEarlyClobber())
+        defIndex = MIIdx.getUseIndex();
+
+      VNInfo *ValNo;
+      MachineInstr *CopyMI = NULL;
+      unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
+      if (mi->isExtractSubreg() || mi->isInsertSubreg() || mi->isSubregToReg()||
+          tii_->isMoveInstr(*mi, SrcReg, DstReg, SrcSubReg, DstSubReg))
+        CopyMI = mi;
+      ValNo = interval.getNextValue(defIndex, CopyMI, true, VNInfoAllocator);
+      
+      SlotIndex killIndex = getMBBEndIdx(mbb);
+      LiveRange LR(defIndex, killIndex, ValNo);
+      interval.addRange(LR);
+      ValNo->addKill(indexes_->getTerminatorGap(mbb));
+      ValNo->setHasPHIKill(true);
+      DEBUG(dbgs() << " +" << LR);
+    }
+  }
+
+  DEBUG(dbgs() << '\n');
+}
+
+void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
+                                              MachineBasicBlock::iterator mi,
+                                              SlotIndex MIIdx,
+                                              MachineOperand& MO,
+                                              LiveInterval &interval,
+                                              MachineInstr *CopyMI) {
+  // A physical register cannot be live across basic block, so its
+  // lifetime must end somewhere in its defining basic block.
+  DEBUG({
+      dbgs() << "\t\tregister: ";
+      printRegName(interval.reg, tri_);
+    });
+
+  SlotIndex baseIndex = MIIdx;
+  SlotIndex start = baseIndex.getDefIndex();
+  // Earlyclobbers move back one.
+  if (MO.isEarlyClobber())
+    start = MIIdx.getUseIndex();
+  SlotIndex end = start;
+
+  // If it is not used after definition, it is considered dead at
+  // the instruction defining it. Hence its interval is:
+  // [defSlot(def), defSlot(def)+1)
+  // For earlyclobbers, the defSlot was pushed back one; the extra
+  // advance below compensates.
+  if (MO.isDead()) {
+    DEBUG(dbgs() << " dead");
+    end = start.getStoreIndex();
+    goto exit;
+  }
+
+  // If it is not dead on definition, it must be killed by a
+  // subsequent instruction. Hence its interval is:
+  // [defSlot(def), useSlot(kill)+1)
+  baseIndex = baseIndex.getNextIndex();
+  while (++mi != MBB->end()) {
+
+    if (mi->isDebugValue())
+      continue;
+    if (getInstructionFromIndex(baseIndex) == 0)
+      baseIndex = indexes_->getNextNonNullIndex(baseIndex);
+
+    if (mi->killsRegister(interval.reg, tri_)) {
+      DEBUG(dbgs() << " killed");
+      end = baseIndex.getDefIndex();
+      goto exit;
+    } else {
+      int DefIdx = mi->findRegisterDefOperandIdx(interval.reg, false, tri_);
+      if (DefIdx != -1) {
+        if (mi->isRegTiedToUseOperand(DefIdx)) {
+          // Two-address instruction.
+          end = baseIndex.getDefIndex();
+        } else {
+          // Another instruction redefines the register before it is ever read.
+          // Then the register is essentially dead at the instruction that
+          // defines it. Hence its interval is:
+          // [defSlot(def), defSlot(def)+1)
+          DEBUG(dbgs() << " dead");
+          end = start.getStoreIndex();
+        }
+        goto exit;
+      }
+    }
+    
+    baseIndex = baseIndex.getNextIndex();
+  }
+  
+  // The only case we should have a dead physreg here without a killing or
+  // instruction where we know it's dead is if it is live-in to the function
+  // and never used. Another possible case is the implicit use of the
+  // physical register has been deleted by two-address pass.
+  end = start.getStoreIndex();
+
+exit:
+  assert(start < end && "did not find end of interval?");
+
+  // Already exists? Extend old live interval.
+  LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
+  bool Extend = OldLR != interval.end();
+  VNInfo *ValNo = Extend
+    ? OldLR->valno : interval.getNextValue(start, CopyMI, true, VNInfoAllocator);
+  if (MO.isEarlyClobber() && Extend)
+    ValNo->setHasRedefByEC(true);
+  LiveRange LR(start, end, ValNo);
+  interval.addRange(LR);
+  LR.valno->addKill(end);
+  DEBUG(dbgs() << " +" << LR << '\n');
+}
+
+void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
+                                      MachineBasicBlock::iterator MI,
+                                      SlotIndex MIIdx,
+                                      MachineOperand& MO,
+                                      unsigned MOIdx) {
+  if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+    handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
+                             getOrCreateInterval(MO.getReg()));
+  else if (allocatableRegs_[MO.getReg()]) {
+    MachineInstr *CopyMI = NULL;
+    unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
+    if (MI->isExtractSubreg() || MI->isInsertSubreg() || MI->isSubregToReg() ||
+        tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg))
+      CopyMI = MI;
+    handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
+                              getOrCreateInterval(MO.getReg()), CopyMI);
+    // Def of a register also defines its sub-registers.
+    for (const unsigned* AS = tri_->getSubRegisters(MO.getReg()); *AS; ++AS)
+      // If MI also modifies the sub-register explicitly, avoid processing it
+      // more than once. Do not pass in TRI here so it checks for exact match.
+      if (!MI->modifiesRegister(*AS))
+        handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
+                                  getOrCreateInterval(*AS), 0);
+  }
+}
+
+void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
+                                         SlotIndex MIIdx,
+                                         LiveInterval &interval, bool isAlias) {
+  DEBUG({
+      dbgs() << "\t\tlivein register: ";
+      printRegName(interval.reg, tri_);
+    });
+
+  // Look for kills, if it reaches a def before it's killed, then it shouldn't
+  // be considered a livein.
+  MachineBasicBlock::iterator mi = MBB->begin();
+  SlotIndex baseIndex = MIIdx;
+  SlotIndex start = baseIndex;
+  if (getInstructionFromIndex(baseIndex) == 0)
+    baseIndex = indexes_->getNextNonNullIndex(baseIndex);
+
+  SlotIndex end = baseIndex;
+  bool SeenDefUse = false;
+
+  MachineBasicBlock::iterator E = MBB->end();  
+  while (mi != E) {
+    if (mi->isDebugValue()) {
+      ++mi;
+      continue;
+    }
+    if (mi->killsRegister(interval.reg, tri_)) {
+      DEBUG(dbgs() << " killed");
+      end = baseIndex.getDefIndex();
+      SeenDefUse = true;
+      break;
+    } else if (mi->modifiesRegister(interval.reg, tri_)) {
+      // Another instruction redefines the register before it is ever read.
+      // Then the register is essentially dead at the instruction that defines
+      // it. Hence its interval is:
+      // [defSlot(def), defSlot(def)+1)
+      DEBUG(dbgs() << " dead");
+      end = start.getStoreIndex();
+      SeenDefUse = true;
+      break;
+    }
+
+    ++mi;
+    if (mi != E && !mi->isDebugValue()) {
+      baseIndex = indexes_->getNextNonNullIndex(baseIndex);
+    }
+  }
+
+  // Live-in register might not be used at all.
+  if (!SeenDefUse) {
+    if (isAlias) {
+      DEBUG(dbgs() << " dead");
+      end = MIIdx.getStoreIndex();
+    } else {
+      DEBUG(dbgs() << " live through");
+      end = baseIndex;
+    }
+  }
+
+  VNInfo *vni =
+    interval.getNextValue(SlotIndex(getMBBStartIdx(MBB), true),
+                          0, false, VNInfoAllocator);
+  vni->setIsPHIDef(true);
+  LiveRange LR(start, end, vni);
+
+  interval.addRange(LR);
+  LR.valno->addKill(end);
+  DEBUG(dbgs() << " +" << LR << '\n');
+}
+
+/// computeIntervals - computes the live intervals for virtual
+/// registers. for some ordering of the machine instructions [1,N] a
+/// live interval is an interval [i, j) where 1 <= i <= j < N for
+/// which a variable is live
+void LiveIntervals::computeIntervals() { 
+  DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n"
+               << "********** Function: "
+               << ((Value*)mf_->getFunction())->getName() << '\n');
+
+  SmallVector<unsigned, 8> UndefUses;
+  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
+       MBBI != E; ++MBBI) {
+    MachineBasicBlock *MBB = MBBI;
+    if (MBB->empty())
+      continue;
+
+    // Track the index of the current machine instr.
+    SlotIndex MIIndex = getMBBStartIdx(MBB);
+    DEBUG(dbgs() << MBB->getName() << ":\n");
+
+    // Create intervals for live-ins to this BB first.
+    for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
+           LE = MBB->livein_end(); LI != LE; ++LI) {
+      handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
+      // Multiple live-ins can alias the same register.
+      for (const unsigned* AS = tri_->getSubRegisters(*LI); *AS; ++AS)
+        if (!hasInterval(*AS))
+          handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
+                               true);
+    }
+    
+    // Skip over empty initial indices.
+    if (getInstructionFromIndex(MIIndex) == 0)
+      MIIndex = indexes_->getNextNonNullIndex(MIIndex);
+    
+    for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
+         MI != miEnd; ++MI) {
+      DEBUG(dbgs() << MIIndex << "\t" << *MI);
+      if (MI->isDebugValue())
+        continue;
+
+      // Handle defs.
+      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
+        MachineOperand &MO = MI->getOperand(i);
+        if (!MO.isReg() || !MO.getReg())
+          continue;
+
+        // handle register defs - build intervals
+        if (MO.isDef())
+          handleRegisterDef(MBB, MI, MIIndex, MO, i);
+        else if (MO.isUndef())
+          UndefUses.push_back(MO.getReg());
+      }
+      
+      // Move to the next instr slot.
+      MIIndex = indexes_->getNextNonNullIndex(MIIndex);
+    }
+  }
+
+  // Create empty intervals for registers defined by implicit_def's (except
+  // for those implicit_def that define values which are liveout of their
+  // blocks.
+  for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
+    unsigned UndefReg = UndefUses[i];
+    (void)getOrCreateInterval(UndefReg);
+  }
+}
+
+LiveInterval* LiveIntervals::createInterval(unsigned reg) {
+  float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
+  return new LiveInterval(reg, Weight);
+}
+
+/// dupInterval - Duplicate a live interval. The caller is responsible for
+/// managing the allocated memory.
+LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) {
+  LiveInterval *NewLI = createInterval(li->reg);
+  NewLI->Copy(*li, mri_, getVNInfoAllocator());
+  return NewLI;
+}
+
+/// getVNInfoSourceReg - Helper function that parses the specified VNInfo
+/// copy field and returns the source register that defines it.
+unsigned LiveIntervals::getVNInfoSourceReg(const VNInfo *VNI) const {
+  if (!VNI->getCopy())
+    return 0;
+
+  if (VNI->getCopy()->isExtractSubreg()) {
+    // If it's extracting out of a physical register, return the sub-register.
+    unsigned Reg = VNI->getCopy()->getOperand(1).getReg();
+    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+      unsigned SrcSubReg = VNI->getCopy()->getOperand(2).getImm();
+      unsigned DstSubReg = VNI->getCopy()->getOperand(0).getSubReg();
+      if (SrcSubReg == DstSubReg)
+        // %reg1034:3<def> = EXTRACT_SUBREG %EDX, 3
+        // reg1034 can still be coalesced to EDX.
+        return Reg;
+      assert(DstSubReg == 0);
+      Reg = tri_->getSubReg(Reg, VNI->getCopy()->getOperand(2).getImm());
+    }
+    return Reg;
+  } else if (VNI->getCopy()->isInsertSubreg() ||
+             VNI->getCopy()->isSubregToReg())
+    return VNI->getCopy()->getOperand(2).getReg();
+
+  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
+  if (tii_->isMoveInstr(*VNI->getCopy(), SrcReg, DstReg, SrcSubReg, DstSubReg))
+    return SrcReg;
+  llvm_unreachable("Unrecognized copy instruction!");
+  return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Register allocator hooks.
+//
+
+/// getReMatImplicitUse - If the remat definition MI has one (for now, we only
+/// allow one) virtual register operand, then its uses are implicitly using
+/// the register. Returns the virtual register.
+unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li,
+                                            MachineInstr *MI) const {
+  unsigned RegOp = 0;
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg() || !MO.isUse())
+      continue;
+    unsigned Reg = MO.getReg();
+    if (Reg == 0 || Reg == li.reg)
+      continue;
+    
+    if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
+        !allocatableRegs_[Reg])
+      continue;
+    // FIXME: For now, only remat MI with at most one register operand.
+    assert(!RegOp &&
+           "Can't rematerialize instruction with multiple register operand!");
+    RegOp = MO.getReg();
+#ifndef NDEBUG
+    break;
+#endif
+  }
+  return RegOp;
+}
+
+/// isValNoAvailableAt - Return true if the val# of the specified interval
+/// which reaches the given instruction also reaches the specified use index.
+bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
+                                       SlotIndex UseIdx) const {
+  SlotIndex Index = getInstructionIndex(MI);  
+  VNInfo *ValNo = li.FindLiveRangeContaining(Index)->valno;
+  LiveInterval::const_iterator UI = li.FindLiveRangeContaining(UseIdx);
+  return UI != li.end() && UI->valno == ValNo;
+}
+
+/// isReMaterializable - Returns true if the definition MI of the specified
+/// val# of the specified interval is re-materializable.
+bool LiveIntervals::isReMaterializable(const LiveInterval &li,
+                                       const VNInfo *ValNo, MachineInstr *MI,
+                                       SmallVectorImpl<LiveInterval*> &SpillIs,
+                                       bool &isLoad) {
+  if (DisableReMat)
+    return false;
+
+  if (!tii_->isTriviallyReMaterializable(MI, aa_))
+    return false;
+
+  // Target-specific code can mark an instruction as being rematerializable
+  // if it has one virtual reg use, though it had better be something like
+  // a PIC base register which is likely to be live everywhere.
+  unsigned ImpUse = getReMatImplicitUse(li, MI);
+  if (ImpUse) {
+    const LiveInterval &ImpLi = getInterval(ImpUse);
+    for (MachineRegisterInfo::use_iterator ri = mri_->use_begin(li.reg),
+           re = mri_->use_end(); ri != re; ++ri) {
+      MachineInstr *UseMI = &*ri;
+      SlotIndex UseIdx = getInstructionIndex(UseMI);
+      if (li.FindLiveRangeContaining(UseIdx)->valno != ValNo)
+        continue;
+      if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
+        return false;
+    }
+
+    // If a register operand of the re-materialized instruction is going to
+    // be spilled next, then it's not legal to re-materialize this instruction.
+    for (unsigned i = 0, e = SpillIs.size(); i != e; ++i)
+      if (ImpUse == SpillIs[i]->reg)
+        return false;
+  }
+  return true;
+}
+
+/// isReMaterializable - Returns true if the definition MI of the specified
+/// val# of the specified interval is re-materializable.
+bool LiveIntervals::isReMaterializable(const LiveInterval &li,
+                                       const VNInfo *ValNo, MachineInstr *MI) {
+  SmallVector<LiveInterval*, 4> Dummy1;
+  bool Dummy2;
+  return isReMaterializable(li, ValNo, MI, Dummy1, Dummy2);
+}
+
+/// isReMaterializable - Returns true if every definition of MI of every
+/// val# of the specified interval is re-materializable.
+bool LiveIntervals::isReMaterializable(const LiveInterval &li,
+                                       SmallVectorImpl<LiveInterval*> &SpillIs,
+                                       bool &isLoad) {
+  isLoad = false;
+  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
+       i != e; ++i) {
+    const VNInfo *VNI = *i;
+    if (VNI->isUnused())
+      continue; // Dead val#.
+    // Is the def for the val# rematerializable?
+    if (!VNI->isDefAccurate())
+      return false;
+    MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def);
+    bool DefIsLoad = false;
+    if (!ReMatDefMI ||
+        !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad))
+      return false;
+    isLoad |= DefIsLoad;
+  }
+  return true;
+}
+
+/// FilterFoldedOps - Filter out two-address use operands. Return
+/// true if it finds any issue with the operands that ought to prevent
+/// folding.
+static bool FilterFoldedOps(MachineInstr *MI,
+                            SmallVector<unsigned, 2> &Ops,
+                            unsigned &MRInfo,
+                            SmallVector<unsigned, 2> &FoldOps) {
+  MRInfo = 0;
+  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+    unsigned OpIdx = Ops[i];
+    MachineOperand &MO = MI->getOperand(OpIdx);
+    // FIXME: fold subreg use.
+    if (MO.getSubReg())
+      return true;
+    if (MO.isDef())
+      MRInfo |= (unsigned)VirtRegMap::isMod;
+    else {
+      // Filter out two-address use operand(s).
+      if (MI->isRegTiedToDefOperand(OpIdx)) {
+        MRInfo = VirtRegMap::isModRef;
+        continue;
+      }
+      MRInfo |= (unsigned)VirtRegMap::isRef;
+    }
+    FoldOps.push_back(OpIdx);
+  }
+  return false;
+}
+                           
+
+/// tryFoldMemoryOperand - Attempts to fold either a spill / restore from
+/// slot / to reg or any rematerialized load into ith operand of specified
+/// MI. If it is successul, MI is updated with the newly created MI and
+/// returns true.
+bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI,
+                                         VirtRegMap &vrm, MachineInstr *DefMI,
+                                         SlotIndex InstrIdx,
+                                         SmallVector<unsigned, 2> &Ops,
+                                         bool isSS, int Slot, unsigned Reg) {
+  // If it is an implicit def instruction, just delete it.
+  if (MI->isImplicitDef()) {
+    RemoveMachineInstrFromMaps(MI);
+    vrm.RemoveMachineInstrFromMaps(MI);
+    MI->eraseFromParent();
+    ++numFolds;
+    return true;
+  }
+
+  // Filter the list of operand indexes that are to be folded. Abort if
+  // any operand will prevent folding.
+  unsigned MRInfo = 0;
+  SmallVector<unsigned, 2> FoldOps;
+  if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
+    return false;
+
+  // The only time it's safe to fold into a two address instruction is when
+  // it's folding reload and spill from / into a spill stack slot.
+  if (DefMI && (MRInfo & VirtRegMap::isMod))
+    return false;
+
+  MachineInstr *fmi = isSS ? tii_->foldMemoryOperand(*mf_, MI, FoldOps, Slot)
+                           : tii_->foldMemoryOperand(*mf_, MI, FoldOps, DefMI);
+  if (fmi) {
+    // Remember this instruction uses the spill slot.
+    if (isSS) vrm.addSpillSlotUse(Slot, fmi);
+
+    // Attempt to fold the memory reference into the instruction. If
+    // we can do this, we don't need to insert spill code.
+    MachineBasicBlock &MBB = *MI->getParent();
+    if (isSS && !mf_->getFrameInfo()->isImmutableObjectIndex(Slot))
+      vrm.virtFolded(Reg, MI, fmi, (VirtRegMap::ModRef)MRInfo);
+    vrm.transferSpillPts(MI, fmi);
+    vrm.transferRestorePts(MI, fmi);
+    vrm.transferEmergencySpills(MI, fmi);
+    ReplaceMachineInstrInMaps(MI, fmi);
+    MI = MBB.insert(MBB.erase(MI), fmi);
+    ++numFolds;
+    return true;
+  }
+  return false;
+}
+
+/// canFoldMemoryOperand - Returns true if the specified load / store
+/// folding is possible.
+bool LiveIntervals::canFoldMemoryOperand(MachineInstr *MI,
+                                         SmallVector<unsigned, 2> &Ops,
+                                         bool ReMat) const {
+  // Filter the list of operand indexes that are to be folded. Abort if
+  // any operand will prevent folding.
+  unsigned MRInfo = 0;
+  SmallVector<unsigned, 2> FoldOps;
+  if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
+    return false;
+
+  // It's only legal to remat for a use, not a def.
+  if (ReMat && (MRInfo & VirtRegMap::isMod))
+    return false;
+
+  return tii_->canFoldMemoryOperand(MI, FoldOps);
+}
+
+bool LiveIntervals::intervalIsInOneMBB(const LiveInterval &li) const {
+  LiveInterval::Ranges::const_iterator itr = li.ranges.begin();
+
+  MachineBasicBlock *mbb =  indexes_->getMBBCoveringRange(itr->start, itr->end);
+
+  if (mbb == 0)
+    return false;
+
+  for (++itr; itr != li.ranges.end(); ++itr) {
+    MachineBasicBlock *mbb2 =
+      indexes_->getMBBCoveringRange(itr->start, itr->end);
+
+    if (mbb2 != mbb)
+      return false;
+  }
+
+  return true;
+}
+
+/// rewriteImplicitOps - Rewrite implicit use operands of MI (i.e. uses of
+/// interval on to-be re-materialized operands of MI) with new register.
+void LiveIntervals::rewriteImplicitOps(const LiveInterval &li,
+                                       MachineInstr *MI, unsigned NewVReg,
+                                       VirtRegMap &vrm) {
+  // There is an implicit use. That means one of the other operand is
+  // being remat'ed and the remat'ed instruction has li.reg as an
+  // use operand. Make sure we rewrite that as well.
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg())
+      continue;
+    unsigned Reg = MO.getReg();
+    if (Reg == 0 || TargetRegisterInfo::isPhysicalRegister(Reg))
+      continue;
+    if (!vrm.isReMaterialized(Reg))
+      continue;
+    MachineInstr *ReMatMI = vrm.getReMaterializedMI(Reg);
+    MachineOperand *UseMO = ReMatMI->findRegisterUseOperand(li.reg);
+    if (UseMO)
+      UseMO->setReg(NewVReg);
+  }
+}
+
+/// rewriteInstructionForSpills, rewriteInstructionsForSpills - Helper functions
+/// for addIntervalsForSpills to rewrite uses / defs for the given live range.
+bool LiveIntervals::
+rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
+                 bool TrySplit, SlotIndex index, SlotIndex end, 
+                 MachineInstr *MI,
+                 MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
+                 unsigned Slot, int LdSlot,
+                 bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
+                 VirtRegMap &vrm,
+                 const TargetRegisterClass* rc,
+                 SmallVector<int, 4> &ReMatIds,
+                 const MachineLoopInfo *loopInfo,
+                 unsigned &NewVReg, unsigned ImpUse, bool &HasDef, bool &HasUse,
+                 DenseMap<unsigned,unsigned> &MBBVRegsMap,
+                 std::vector<LiveInterval*> &NewLIs) {
+  bool CanFold = false;
+ RestartInstruction:
+  for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
+    MachineOperand& mop = MI->getOperand(i);
+    if (!mop.isReg())
+      continue;
+    unsigned Reg = mop.getReg();
+    unsigned RegI = Reg;
+    if (Reg == 0 || TargetRegisterInfo::isPhysicalRegister(Reg))
+      continue;
+    if (Reg != li.reg)
+      continue;
+
+    bool TryFold = !DefIsReMat;
+    bool FoldSS = true; // Default behavior unless it's a remat.
+    int FoldSlot = Slot;
+    if (DefIsReMat) {
+      // If this is the rematerializable definition MI itself and
+      // all of its uses are rematerialized, simply delete it.
+      if (MI == ReMatOrigDefMI && CanDelete) {
+        DEBUG(dbgs() << "\t\t\t\tErasing re-materializable def: "
+                     << MI << '\n');
+        RemoveMachineInstrFromMaps(MI);
+        vrm.RemoveMachineInstrFromMaps(MI);
+        MI->eraseFromParent();
+        break;
+      }
+
+      // If def for this use can't be rematerialized, then try folding.
+      // If def is rematerializable and it's a load, also try folding.
+      TryFold = !ReMatDefMI || (ReMatDefMI && (MI == ReMatOrigDefMI || isLoad));
+      if (isLoad) {
+        // Try fold loads (from stack slot, constant pool, etc.) into uses.
+        FoldSS = isLoadSS;
+        FoldSlot = LdSlot;
+      }
+    }
+
+    // Scan all of the operands of this instruction rewriting operands
+    // to use NewVReg instead of li.reg as appropriate.  We do this for
+    // two reasons:
+    //
+    //   1. If the instr reads the same spilled vreg multiple times, we
+    //      want to reuse the NewVReg.
+    //   2. If the instr is a two-addr instruction, we are required to
+    //      keep the src/dst regs pinned.
+    //
+    // Keep track of whether we replace a use and/or def so that we can
+    // create the spill interval with the appropriate range. 
+
+    HasUse = mop.isUse();
+    HasDef = mop.isDef();
+    SmallVector<unsigned, 2> Ops;
+    Ops.push_back(i);
+    for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
+      const MachineOperand &MOj = MI->getOperand(j);
+      if (!MOj.isReg())
+        continue;
+      unsigned RegJ = MOj.getReg();
+      if (RegJ == 0 || TargetRegisterInfo::isPhysicalRegister(RegJ))
+        continue;
+      if (RegJ == RegI) {
+        Ops.push_back(j);
+        if (!MOj.isUndef()) {
+          HasUse |= MOj.isUse();
+          HasDef |= MOj.isDef();
+        }
+      }
+    }
+
+    // Create a new virtual register for the spill interval.
+    // Create the new register now so we can map the fold instruction
+    // to the new register so when it is unfolded we get the correct
+    // answer.
+    bool CreatedNewVReg = false;
+    if (NewVReg == 0) {
+      NewVReg = mri_->createVirtualRegister(rc);
+      vrm.grow();
+      CreatedNewVReg = true;
+
+      // The new virtual register should get the same allocation hints as the
+      // old one.
+      std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(Reg);
+      if (Hint.first || Hint.second)
+        mri_->setRegAllocationHint(NewVReg, Hint.first, Hint.second);
+    }
+
+    if (!TryFold)
+      CanFold = false;
+    else {
+      // Do not fold load / store here if we are splitting. We'll find an
+      // optimal point to insert a load / store later.
+      if (!TrySplit) {
+        if (tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index,
+                                 Ops, FoldSS, FoldSlot, NewVReg)) {
+          // Folding the load/store can completely change the instruction in
+          // unpredictable ways, rescan it from the beginning.
+
+          if (FoldSS) {
+            // We need to give the new vreg the same stack slot as the
+            // spilled interval.
+            vrm.assignVirt2StackSlot(NewVReg, FoldSlot);
+          }
+
+          HasUse = false;
+          HasDef = false;
+          CanFold = false;
+          if (isNotInMIMap(MI))
+            break;
+          goto RestartInstruction;
+        }
+      } else {
+        // We'll try to fold it later if it's profitable.
+        CanFold = canFoldMemoryOperand(MI, Ops, DefIsReMat);
+      }
+    }
+
+    mop.setReg(NewVReg);
+    if (mop.isImplicit())
+      rewriteImplicitOps(li, MI, NewVReg, vrm);
+
+    // Reuse NewVReg for other reads.
+    for (unsigned j = 0, e = Ops.size(); j != e; ++j) {
+      MachineOperand &mopj = MI->getOperand(Ops[j]);
+      mopj.setReg(NewVReg);
+      if (mopj.isImplicit())
+        rewriteImplicitOps(li, MI, NewVReg, vrm);
+    }
+            
+    if (CreatedNewVReg) {
+      if (DefIsReMat) {
+        vrm.setVirtIsReMaterialized(NewVReg, ReMatDefMI);
+        if (ReMatIds[VNI->id] == VirtRegMap::MAX_STACK_SLOT) {
+          // Each valnum may have its own remat id.
+          ReMatIds[VNI->id] = vrm.assignVirtReMatId(NewVReg);
+        } else {
+          vrm.assignVirtReMatId(NewVReg, ReMatIds[VNI->id]);
+        }
+        if (!CanDelete || (HasUse && HasDef)) {
+          // If this is a two-addr instruction then its use operands are
+          // rematerializable but its def is not. It should be assigned a
+          // stack slot.
+          vrm.assignVirt2StackSlot(NewVReg, Slot);
+        }
+      } else {
+        vrm.assignVirt2StackSlot(NewVReg, Slot);
+      }
+    } else if (HasUse && HasDef &&
+               vrm.getStackSlot(NewVReg) == VirtRegMap::NO_STACK_SLOT) {
+      // If this interval hasn't been assigned a stack slot (because earlier
+      // def is a deleted remat def), do it now.
+      assert(Slot != VirtRegMap::NO_STACK_SLOT);
+      vrm.assignVirt2StackSlot(NewVReg, Slot);
+    }
+
+    // Re-matting an instruction with virtual register use. Add the
+    // register as an implicit use on the use MI.
+    if (DefIsReMat && ImpUse)
+      MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true));
+
+    // Create a new register interval for this spill / remat.
+    LiveInterval &nI = getOrCreateInterval(NewVReg);
+    if (CreatedNewVReg) {
+      NewLIs.push_back(&nI);
+      MBBVRegsMap.insert(std::make_pair(MI->getParent()->getNumber(), NewVReg));
+      if (TrySplit)
+        vrm.setIsSplitFromReg(NewVReg, li.reg);
+    }
+
+    if (HasUse) {
+      if (CreatedNewVReg) {
+        LiveRange LR(index.getLoadIndex(), index.getDefIndex(),
+                     nI.getNextValue(SlotIndex(), 0, false, VNInfoAllocator));
+        DEBUG(dbgs() << " +" << LR);
+        nI.addRange(LR);
+      } else {
+        // Extend the split live interval to this def / use.
+        SlotIndex End = index.getDefIndex();
+        LiveRange LR(nI.ranges[nI.ranges.size()-1].end, End,
+                     nI.getValNumInfo(nI.getNumValNums()-1));
+        DEBUG(dbgs() << " +" << LR);
+        nI.addRange(LR);
+      }
+    }
+    if (HasDef) {
+      LiveRange LR(index.getDefIndex(), index.getStoreIndex(),
+                   nI.getNextValue(SlotIndex(), 0, false, VNInfoAllocator));
+      DEBUG(dbgs() << " +" << LR);
+      nI.addRange(LR);
+    }
+
+    DEBUG({
+        dbgs() << "\t\t\t\tAdded new interval: ";
+        nI.print(dbgs(), tri_);
+        dbgs() << '\n';
+      });
+  }
+  return CanFold;
+}
+bool LiveIntervals::anyKillInMBBAfterIdx(const LiveInterval &li,
+                                   const VNInfo *VNI,
+                                   MachineBasicBlock *MBB,
+                                   SlotIndex Idx) const {
+  SlotIndex End = getMBBEndIdx(MBB);
+  for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) {
+    if (VNI->kills[j].isPHI())
+      continue;
+
+    SlotIndex KillIdx = VNI->kills[j];
+    if (KillIdx > Idx && KillIdx <= End)
+      return true;
+  }
+  return false;
+}
+
+/// RewriteInfo - Keep track of machine instrs that will be rewritten
+/// during spilling.
+namespace {
+  struct RewriteInfo {
+    SlotIndex Index;
+    MachineInstr *MI;
+    bool HasUse;
+    bool HasDef;
+    RewriteInfo(SlotIndex i, MachineInstr *mi, bool u, bool d)
+      : Index(i), MI(mi), HasUse(u), HasDef(d) {}
+  };
+
+  struct RewriteInfoCompare {
+    bool operator()(const RewriteInfo &LHS, const RewriteInfo &RHS) const {
+      return LHS.Index < RHS.Index;
+    }
+  };
+}
+
+void LiveIntervals::
+rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
+                    LiveInterval::Ranges::const_iterator &I,
+                    MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
+                    unsigned Slot, int LdSlot,
+                    bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
+                    VirtRegMap &vrm,
+                    const TargetRegisterClass* rc,
+                    SmallVector<int, 4> &ReMatIds,
+                    const MachineLoopInfo *loopInfo,
+                    BitVector &SpillMBBs,
+                    DenseMap<unsigned, std::vector<SRInfo> > &SpillIdxes,
+                    BitVector &RestoreMBBs,
+                    DenseMap<unsigned, std::vector<SRInfo> > &RestoreIdxes,
+                    DenseMap<unsigned,unsigned> &MBBVRegsMap,
+                    std::vector<LiveInterval*> &NewLIs) {
+  bool AllCanFold = true;
+  unsigned NewVReg = 0;
+  SlotIndex start = I->start.getBaseIndex();
+  SlotIndex end = I->end.getPrevSlot().getBaseIndex().getNextIndex();
+
+  // First collect all the def / use in this live range that will be rewritten.
+  // Make sure they are sorted according to instruction index.
+  std::vector<RewriteInfo> RewriteMIs;
+  for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg),
+         re = mri_->reg_end(); ri != re; ) {
+    MachineInstr *MI = &*ri;
+    MachineOperand &O = ri.getOperand();
+    ++ri;
+    if (MI->isDebugValue()) {
+      // Remove debug info for now.
+      O.setReg(0U);
+      DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
+      continue;
+    }
+    assert(!O.isImplicit() && "Spilling register that's used as implicit use?");
+    SlotIndex index = getInstructionIndex(MI);
+    if (index < start || index >= end)
+      continue;
+
+    if (O.isUndef())
+      // Must be defined by an implicit def. It should not be spilled. Note,
+      // this is for correctness reason. e.g.
+      // 8   %reg1024<def> = IMPLICIT_DEF
+      // 12  %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
+      // The live range [12, 14) are not part of the r1024 live interval since
+      // it's defined by an implicit def. It will not conflicts with live
+      // interval of r1025. Now suppose both registers are spilled, you can
+      // easily see a situation where both registers are reloaded before
+      // the INSERT_SUBREG and both target registers that would overlap.
+      continue;
+    RewriteMIs.push_back(RewriteInfo(index, MI, O.isUse(), O.isDef()));
+  }
+  std::sort(RewriteMIs.begin(), RewriteMIs.end(), RewriteInfoCompare());
+
+  unsigned ImpUse = DefIsReMat ? getReMatImplicitUse(li, ReMatDefMI) : 0;
+  // Now rewrite the defs and uses.
+  for (unsigned i = 0, e = RewriteMIs.size(); i != e; ) {
+    RewriteInfo &rwi = RewriteMIs[i];
+    ++i;
+    SlotIndex index = rwi.Index;
+    bool MIHasUse = rwi.HasUse;
+    bool MIHasDef = rwi.HasDef;
+    MachineInstr *MI = rwi.MI;
+    // If MI def and/or use the same register multiple times, then there
+    // are multiple entries.
+    unsigned NumUses = MIHasUse;
+    while (i != e && RewriteMIs[i].MI == MI) {
+      assert(RewriteMIs[i].Index == index);
+      bool isUse = RewriteMIs[i].HasUse;
+      if (isUse) ++NumUses;
+      MIHasUse |= isUse;
+      MIHasDef |= RewriteMIs[i].HasDef;
+      ++i;
+    }
+    MachineBasicBlock *MBB = MI->getParent();
+
+    if (ImpUse && MI != ReMatDefMI) {
+      // Re-matting an instruction with virtual register use. Update the
+      // register interval's spill weight to HUGE_VALF to prevent it from
+      // being spilled.
+      LiveInterval &ImpLi = getInterval(ImpUse);
+      ImpLi.weight = HUGE_VALF;
+    }
+
+    unsigned MBBId = MBB->getNumber();
+    unsigned ThisVReg = 0;
+    if (TrySplit) {
+      DenseMap<unsigned,unsigned>::iterator NVI = MBBVRegsMap.find(MBBId);
+      if (NVI != MBBVRegsMap.end()) {
+        ThisVReg = NVI->second;
+        // One common case:
+        // x = use
+        // ...
+        // ...
+        // def = ...
+        //     = use
+        // It's better to start a new interval to avoid artifically
+        // extend the new interval.
+        if (MIHasDef && !MIHasUse) {
+          MBBVRegsMap.erase(MBB->getNumber());
+          ThisVReg = 0;
+        }
+      }
+    }
+
+    bool IsNew = ThisVReg == 0;
+    if (IsNew) {
+      // This ends the previous live interval. If all of its def / use
+      // can be folded, give it a low spill weight.
+      if (NewVReg && TrySplit && AllCanFold) {
+        LiveInterval &nI = getOrCreateInterval(NewVReg);
+        nI.weight /= 10.0F;
+      }
+      AllCanFold = true;
+    }
+    NewVReg = ThisVReg;
+
+    bool HasDef = false;
+    bool HasUse = false;
+    bool CanFold = rewriteInstructionForSpills(li, I->valno, TrySplit,
+                         index, end, MI, ReMatOrigDefMI, ReMatDefMI,
+                         Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
+                         CanDelete, vrm, rc, ReMatIds, loopInfo, NewVReg,
+                         ImpUse, HasDef, HasUse, MBBVRegsMap, NewLIs);
+    if (!HasDef && !HasUse)
+      continue;
+
+    AllCanFold &= CanFold;
+
+    // Update weight of spill interval.
+    LiveInterval &nI = getOrCreateInterval(NewVReg);
+    if (!TrySplit) {
+      // The spill weight is now infinity as it cannot be spilled again.
+      nI.weight = HUGE_VALF;
+      continue;
+    }
+
+    // Keep track of the last def and first use in each MBB.
+    if (HasDef) {
+      if (MI != ReMatOrigDefMI || !CanDelete) {
+        bool HasKill = false;
+        if (!HasUse)
+          HasKill = anyKillInMBBAfterIdx(li, I->valno, MBB, index.getDefIndex());
+        else {
+          // If this is a two-address code, then this index starts a new VNInfo.
+          const VNInfo *VNI = li.findDefinedVNInfoForRegInt(index.getDefIndex());
+          if (VNI)
+            HasKill = anyKillInMBBAfterIdx(li, VNI, MBB, index.getDefIndex());
+        }
+        DenseMap<unsigned, std::vector<SRInfo> >::iterator SII =
+          SpillIdxes.find(MBBId);
+        if (!HasKill) {
+          if (SII == SpillIdxes.end()) {
+            std::vector<SRInfo> S;
+            S.push_back(SRInfo(index, NewVReg, true));
+            SpillIdxes.insert(std::make_pair(MBBId, S));
+          } else if (SII->second.back().vreg != NewVReg) {
+            SII->second.push_back(SRInfo(index, NewVReg, true));
+          } else if (index > SII->second.back().index) {
+            // If there is an earlier def and this is a two-address
+            // instruction, then it's not possible to fold the store (which
+            // would also fold the load).
+            SRInfo &Info = SII->second.back();
+            Info.index = index;
+            Info.canFold = !HasUse;
+          }
+          SpillMBBs.set(MBBId);
+        } else if (SII != SpillIdxes.end() &&
+                   SII->second.back().vreg == NewVReg &&
+                   index > SII->second.back().index) {
+          // There is an earlier def that's not killed (must be two-address).
+          // The spill is no longer needed.
+          SII->second.pop_back();
+          if (SII->second.empty()) {
+            SpillIdxes.erase(MBBId);
+            SpillMBBs.reset(MBBId);
+          }
+        }
+      }
+    }
+
+    if (HasUse) {
+      DenseMap<unsigned, std::vector<SRInfo> >::iterator SII =
+        SpillIdxes.find(MBBId);
+      if (SII != SpillIdxes.end() &&
+          SII->second.back().vreg == NewVReg &&
+          index > SII->second.back().index)
+        // Use(s) following the last def, it's not safe to fold the spill.
+        SII->second.back().canFold = false;
+      DenseMap<unsigned, std::vector<SRInfo> >::iterator RII =
+        RestoreIdxes.find(MBBId);
+      if (RII != RestoreIdxes.end() && RII->second.back().vreg == NewVReg)
+        // If we are splitting live intervals, only fold if it's the first
+        // use and there isn't another use later in the MBB.
+        RII->second.back().canFold = false;
+      else if (IsNew) {
+        // Only need a reload if there isn't an earlier def / use.
+        if (RII == RestoreIdxes.end()) {
+          std::vector<SRInfo> Infos;
+          Infos.push_back(SRInfo(index, NewVReg, true));
+          RestoreIdxes.insert(std::make_pair(MBBId, Infos));
+        } else {
+          RII->second.push_back(SRInfo(index, NewVReg, true));
+        }
+        RestoreMBBs.set(MBBId);
+      }
+    }
+
+    // Update spill weight.
+    unsigned loopDepth = loopInfo->getLoopDepth(MBB);
+    nI.weight += getSpillWeight(HasDef, HasUse, loopDepth);
+  }
+
+  if (NewVReg && TrySplit && AllCanFold) {
+    // If all of its def / use can be folded, give it a low spill weight.
+    LiveInterval &nI = getOrCreateInterval(NewVReg);
+    nI.weight /= 10.0F;
+  }
+}
+
+bool LiveIntervals::alsoFoldARestore(int Id, SlotIndex index,
+                        unsigned vr, BitVector &RestoreMBBs,
+                        DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
+  if (!RestoreMBBs[Id])
+    return false;
+  std::vector<SRInfo> &Restores = RestoreIdxes[Id];
+  for (unsigned i = 0, e = Restores.size(); i != e; ++i)
+    if (Restores[i].index == index &&
+        Restores[i].vreg == vr &&
+        Restores[i].canFold)
+      return true;
+  return false;
+}
+
+void LiveIntervals::eraseRestoreInfo(int Id, SlotIndex index,
+                        unsigned vr, BitVector &RestoreMBBs,
+                        DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
+  if (!RestoreMBBs[Id])
+    return;
+  std::vector<SRInfo> &Restores = RestoreIdxes[Id];
+  for (unsigned i = 0, e = Restores.size(); i != e; ++i)
+    if (Restores[i].index == index && Restores[i].vreg)
+      Restores[i].index = SlotIndex();
+}
+
+/// handleSpilledImpDefs - Remove IMPLICIT_DEF instructions which are being
+/// spilled and create empty intervals for their uses.
+void
+LiveIntervals::handleSpilledImpDefs(const LiveInterval &li, VirtRegMap &vrm,
+                                    const TargetRegisterClass* rc,
+                                    std::vector<LiveInterval*> &NewLIs) {
+  for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg),
+         re = mri_->reg_end(); ri != re; ) {
+    MachineOperand &O = ri.getOperand();
+    MachineInstr *MI = &*ri;
+    ++ri;
+    if (O.isDef()) {
+      assert(MI->isImplicitDef() &&
+             "Register def was not rewritten?");
+      RemoveMachineInstrFromMaps(MI);
+      vrm.RemoveMachineInstrFromMaps(MI);
+      MI->eraseFromParent();
+    } else {
+      // This must be an use of an implicit_def so it's not part of the live
+      // interval. Create a new empty live interval for it.
+      // FIXME: Can we simply erase some of the instructions? e.g. Stores?
+      unsigned NewVReg = mri_->createVirtualRegister(rc);
+      vrm.grow();
+      vrm.setIsImplicitlyDefined(NewVReg);
+      NewLIs.push_back(&getOrCreateInterval(NewVReg));
+      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+        MachineOperand &MO = MI->getOperand(i);
+        if (MO.isReg() && MO.getReg() == li.reg) {
+          MO.setReg(NewVReg);
+          MO.setIsUndef();
+        }
+      }
+    }
+  }
+}
+
+std::vector<LiveInterval*> LiveIntervals::
+addIntervalsForSpillsFast(const LiveInterval &li,
+                          const MachineLoopInfo *loopInfo,
+                          VirtRegMap &vrm) {
+  unsigned slot = vrm.assignVirt2StackSlot(li.reg);
+
+  std::vector<LiveInterval*> added;
+
+  assert(li.weight != HUGE_VALF &&
+         "attempt to spill already spilled interval!");
+
+  DEBUG({
+      dbgs() << "\t\t\t\tadding intervals for spills for interval: ";
+      li.dump();
+      dbgs() << '\n';
+    });
+
+  const TargetRegisterClass* rc = mri_->getRegClass(li.reg);
+
+  MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(li.reg);
+  while (RI != mri_->reg_end()) {
+    MachineInstr* MI = &*RI;
+    
+    SmallVector<unsigned, 2> Indices;
+    bool HasUse = false;
+    bool HasDef = false;
+    
+    for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
+      MachineOperand& mop = MI->getOperand(i);
+      if (!mop.isReg() || mop.getReg() != li.reg) continue;
+      
+      HasUse |= MI->getOperand(i).isUse();
+      HasDef |= MI->getOperand(i).isDef();
+      
+      Indices.push_back(i);
+    }
+    
+    if (!tryFoldMemoryOperand(MI, vrm, NULL, getInstructionIndex(MI),
+                              Indices, true, slot, li.reg)) {
+      unsigned NewVReg = mri_->createVirtualRegister(rc);
+      vrm.grow();
+      vrm.assignVirt2StackSlot(NewVReg, slot);
+      
+      // create a new register for this spill
+      LiveInterval &nI = getOrCreateInterval(NewVReg);
+
+      // the spill weight is now infinity as it
+      // cannot be spilled again
+      nI.weight = HUGE_VALF;
+      
+      // Rewrite register operands to use the new vreg.
+      for (SmallVectorImpl<unsigned>::iterator I = Indices.begin(),
+           E = Indices.end(); I != E; ++I) {
+        MI->getOperand(*I).setReg(NewVReg);
+        
+        if (MI->getOperand(*I).isUse())
+          MI->getOperand(*I).setIsKill(true);
+      }
+      
+      // Fill in  the new live interval.
+      SlotIndex index = getInstructionIndex(MI);
+      if (HasUse) {
+        LiveRange LR(index.getLoadIndex(), index.getUseIndex(),
+                     nI.getNextValue(SlotIndex(), 0, false,
+                                     getVNInfoAllocator()));
+        DEBUG(dbgs() << " +" << LR);
+        nI.addRange(LR);
+        vrm.addRestorePoint(NewVReg, MI);
+      }
+      if (HasDef) {
+        LiveRange LR(index.getDefIndex(), index.getStoreIndex(),
+                     nI.getNextValue(SlotIndex(), 0, false,
+                                     getVNInfoAllocator()));
+        DEBUG(dbgs() << " +" << LR);
+        nI.addRange(LR);
+        vrm.addSpillPoint(NewVReg, true, MI);
+      }
+      
+      added.push_back(&nI);
+        
+      DEBUG({
+          dbgs() << "\t\t\t\tadded new interval: ";
+          nI.dump();
+          dbgs() << '\n';
+        });
+    }
+    
+    
+    RI = mri_->reg_begin(li.reg);
+  }
+
+  return added;
+}
+
+std::vector<LiveInterval*> LiveIntervals::
+addIntervalsForSpills(const LiveInterval &li,
+                      SmallVectorImpl<LiveInterval*> &SpillIs,
+                      const MachineLoopInfo *loopInfo, VirtRegMap &vrm) {
+  
+  if (EnableFastSpilling)
+    return addIntervalsForSpillsFast(li, loopInfo, vrm);
+  
+  assert(li.weight != HUGE_VALF &&
+         "attempt to spill already spilled interval!");
+
+  DEBUG({
+      dbgs() << "\t\t\t\tadding intervals for spills for interval: ";
+      li.print(dbgs(), tri_);
+      dbgs() << '\n';
+    });
+
+  // Each bit specify whether a spill is required in the MBB.
+  BitVector SpillMBBs(mf_->getNumBlockIDs());
+  DenseMap<unsigned, std::vector<SRInfo> > SpillIdxes;
+  BitVector RestoreMBBs(mf_->getNumBlockIDs());
+  DenseMap<unsigned, std::vector<SRInfo> > RestoreIdxes;
+  DenseMap<unsigned,unsigned> MBBVRegsMap;
+  std::vector<LiveInterval*> NewLIs;
+  const TargetRegisterClass* rc = mri_->getRegClass(li.reg);
+
+  unsigned NumValNums = li.getNumValNums();
+  SmallVector<MachineInstr*, 4> ReMatDefs;
+  ReMatDefs.resize(NumValNums, NULL);
+  SmallVector<MachineInstr*, 4> ReMatOrigDefs;
+  ReMatOrigDefs.resize(NumValNums, NULL);
+  SmallVector<int, 4> ReMatIds;
+  ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
+  BitVector ReMatDelete(NumValNums);
+  unsigned Slot = VirtRegMap::MAX_STACK_SLOT;
+
+  // Spilling a split live interval. It cannot be split any further. Also,
+  // it's also guaranteed to be a single val# / range interval.
+  if (vrm.getPreSplitReg(li.reg)) {
+    vrm.setIsSplitFromReg(li.reg, 0);
+    // Unset the split kill marker on the last use.
+    SlotIndex KillIdx = vrm.getKillPoint(li.reg);
+    if (KillIdx != SlotIndex()) {
+      MachineInstr *KillMI = getInstructionFromIndex(KillIdx);
+      assert(KillMI && "Last use disappeared?");
+      int KillOp = KillMI->findRegisterUseOperandIdx(li.reg, true);
+      assert(KillOp != -1 && "Last use disappeared?");
+      KillMI->getOperand(KillOp).setIsKill(false);
+    }
+    vrm.removeKillPoint(li.reg);
+    bool DefIsReMat = vrm.isReMaterialized(li.reg);
+    Slot = vrm.getStackSlot(li.reg);
+    assert(Slot != VirtRegMap::MAX_STACK_SLOT);
+    MachineInstr *ReMatDefMI = DefIsReMat ?
+      vrm.getReMaterializedMI(li.reg) : NULL;
+    int LdSlot = 0;
+    bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
+    bool isLoad = isLoadSS ||
+      (DefIsReMat && (ReMatDefMI->getDesc().canFoldAsLoad()));
+    bool IsFirstRange = true;
+    for (LiveInterval::Ranges::const_iterator
+           I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
+      // If this is a split live interval with multiple ranges, it means there
+      // are two-address instructions that re-defined the value. Only the
+      // first def can be rematerialized!
+      if (IsFirstRange) {
+        // Note ReMatOrigDefMI has already been deleted.
+        rewriteInstructionsForSpills(li, false, I, NULL, ReMatDefMI,
+                             Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
+                             false, vrm, rc, ReMatIds, loopInfo,
+                             SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
+                             MBBVRegsMap, NewLIs);
+      } else {
+        rewriteInstructionsForSpills(li, false, I, NULL, 0,
+                             Slot, 0, false, false, false,
+                             false, vrm, rc, ReMatIds, loopInfo,
+                             SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
+                             MBBVRegsMap, NewLIs);
+      }
+      IsFirstRange = false;
+    }
+
+    handleSpilledImpDefs(li, vrm, rc, NewLIs);
+    return NewLIs;
+  }
+
+  bool TrySplit = !intervalIsInOneMBB(li);
+  if (TrySplit)
+    ++numSplits;
+  bool NeedStackSlot = false;
+  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
+       i != e; ++i) {
+    const VNInfo *VNI = *i;
+    unsigned VN = VNI->id;
+    if (VNI->isUnused())
+      continue; // Dead val#.
+    // Is the def for the val# rematerializable?
+    MachineInstr *ReMatDefMI = VNI->isDefAccurate()
+      ? getInstructionFromIndex(VNI->def) : 0;
+    bool dummy;
+    if (ReMatDefMI && isReMaterializable(li, VNI, ReMatDefMI, SpillIs, dummy)) {
+      // Remember how to remat the def of this val#.
+      ReMatOrigDefs[VN] = ReMatDefMI;
+      // Original def may be modified so we have to make a copy here.
+      MachineInstr *Clone = mf_->CloneMachineInstr(ReMatDefMI);
+      CloneMIs.push_back(Clone);
+      ReMatDefs[VN] = Clone;
+
+      bool CanDelete = true;
+      if (VNI->hasPHIKill()) {
+        // A kill is a phi node, not all of its uses can be rematerialized.
+        // It must not be deleted.
+        CanDelete = false;
+        // Need a stack slot if there is any live range where uses cannot be
+        // rematerialized.
+        NeedStackSlot = true;
+      }
+      if (CanDelete)
+        ReMatDelete.set(VN);
+    } else {
+      // Need a stack slot if there is any live range where uses cannot be
+      // rematerialized.
+      NeedStackSlot = true;
+    }
+  }
+
+  // One stack slot per live interval.
+  if (NeedStackSlot && vrm.getPreSplitReg(li.reg) == 0) {
+    if (vrm.getStackSlot(li.reg) == VirtRegMap::NO_STACK_SLOT)
+      Slot = vrm.assignVirt2StackSlot(li.reg);
+    
+    // This case only occurs when the prealloc splitter has already assigned
+    // a stack slot to this vreg.
+    else
+      Slot = vrm.getStackSlot(li.reg);
+  }
+
+  // Create new intervals and rewrite defs and uses.
+  for (LiveInterval::Ranges::const_iterator
+         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
+    MachineInstr *ReMatDefMI = ReMatDefs[I->valno->id];
+    MachineInstr *ReMatOrigDefMI = ReMatOrigDefs[I->valno->id];
+    bool DefIsReMat = ReMatDefMI != NULL;
+    bool CanDelete = ReMatDelete[I->valno->id];
+    int LdSlot = 0;
+    bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
+    bool isLoad = isLoadSS ||
+      (DefIsReMat && ReMatDefMI->getDesc().canFoldAsLoad());
+    rewriteInstructionsForSpills(li, TrySplit, I, ReMatOrigDefMI, ReMatDefMI,
+                               Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
+                               CanDelete, vrm, rc, ReMatIds, loopInfo,
+                               SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
+                               MBBVRegsMap, NewLIs);
+  }
+
+  // Insert spills / restores if we are splitting.
+  if (!TrySplit) {
+    handleSpilledImpDefs(li, vrm, rc, NewLIs);
+    return NewLIs;
+  }
+
+  SmallPtrSet<LiveInterval*, 4> AddedKill;
+  SmallVector<unsigned, 2> Ops;
+  if (NeedStackSlot) {
+    int Id = SpillMBBs.find_first();
+    while (Id != -1) {
+      std::vector<SRInfo> &spills = SpillIdxes[Id];
+      for (unsigned i = 0, e = spills.size(); i != e; ++i) {
+        SlotIndex index = spills[i].index;
+        unsigned VReg = spills[i].vreg;
+        LiveInterval &nI = getOrCreateInterval(VReg);
+        bool isReMat = vrm.isReMaterialized(VReg);
+        MachineInstr *MI = getInstructionFromIndex(index);
+        bool CanFold = false;
+        bool FoundUse = false;
+        Ops.clear();
+        if (spills[i].canFold) {
+          CanFold = true;
+          for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
+            MachineOperand &MO = MI->getOperand(j);
+            if (!MO.isReg() || MO.getReg() != VReg)
+              continue;
+
+            Ops.push_back(j);
+            if (MO.isDef())
+              continue;
+            if (isReMat || 
+                (!FoundUse && !alsoFoldARestore(Id, index, VReg,
+                                                RestoreMBBs, RestoreIdxes))) {
+              // MI has two-address uses of the same register. If the use
+              // isn't the first and only use in the BB, then we can't fold
+              // it. FIXME: Move this to rewriteInstructionsForSpills.
+              CanFold = false;
+              break;
+            }
+            FoundUse = true;
+          }
+        }
+        // Fold the store into the def if possible.
+        bool Folded = false;
+        if (CanFold && !Ops.empty()) {
+          if (tryFoldMemoryOperand(MI, vrm, NULL, index, Ops, true, Slot,VReg)){
+            Folded = true;
+            if (FoundUse) {
+              // Also folded uses, do not issue a load.
+              eraseRestoreInfo(Id, index, VReg, RestoreMBBs, RestoreIdxes);
+              nI.removeRange(index.getLoadIndex(), index.getDefIndex());
+            }
+            nI.removeRange(index.getDefIndex(), index.getStoreIndex());
+          }
+        }
+
+        // Otherwise tell the spiller to issue a spill.
+        if (!Folded) {
+          LiveRange *LR = &nI.ranges[nI.ranges.size()-1];
+          bool isKill = LR->end == index.getStoreIndex();
+          if (!MI->registerDefIsDead(nI.reg))
+            // No need to spill a dead def.
+            vrm.addSpillPoint(VReg, isKill, MI);
+          if (isKill)
+            AddedKill.insert(&nI);
+        }
+      }
+      Id = SpillMBBs.find_next(Id);
+    }
+  }
+
+  int Id = RestoreMBBs.find_first();
+  while (Id != -1) {
+    std::vector<SRInfo> &restores = RestoreIdxes[Id];
+    for (unsigned i = 0, e = restores.size(); i != e; ++i) {
+      SlotIndex index = restores[i].index;
+      if (index == SlotIndex())
+        continue;
+      unsigned VReg = restores[i].vreg;
+      LiveInterval &nI = getOrCreateInterval(VReg);
+      bool isReMat = vrm.isReMaterialized(VReg);
+      MachineInstr *MI = getInstructionFromIndex(index);
+      bool CanFold = false;
+      Ops.clear();
+      if (restores[i].canFold) {
+        CanFold = true;
+        for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
+          MachineOperand &MO = MI->getOperand(j);
+          if (!MO.isReg() || MO.getReg() != VReg)
+            continue;
+
+          if (MO.isDef()) {
+            // If this restore were to be folded, it would have been folded
+            // already.
+            CanFold = false;
+            break;
+          }
+          Ops.push_back(j);
+        }
+      }
+
+      // Fold the load into the use if possible.
+      bool Folded = false;
+      if (CanFold && !Ops.empty()) {
+        if (!isReMat)
+          Folded = tryFoldMemoryOperand(MI, vrm, NULL,index,Ops,true,Slot,VReg);
+        else {
+          MachineInstr *ReMatDefMI = vrm.getReMaterializedMI(VReg);
+          int LdSlot = 0;
+          bool isLoadSS = tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
+          // If the rematerializable def is a load, also try to fold it.
+          if (isLoadSS || ReMatDefMI->getDesc().canFoldAsLoad())
+            Folded = tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index,
+                                          Ops, isLoadSS, LdSlot, VReg);
+          if (!Folded) {
+            unsigned ImpUse = getReMatImplicitUse(li, ReMatDefMI);
+            if (ImpUse) {
+              // Re-matting an instruction with virtual register use. Add the
+              // register as an implicit use on the use MI and update the register
+              // interval's spill weight to HUGE_VALF to prevent it from being
+              // spilled.
+              LiveInterval &ImpLi = getInterval(ImpUse);
+              ImpLi.weight = HUGE_VALF;
+              MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true));
+            }
+          }
+        }
+      }
+      // If folding is not possible / failed, then tell the spiller to issue a
+      // load / rematerialization for us.
+      if (Folded)
+        nI.removeRange(index.getLoadIndex(), index.getDefIndex());
+      else
+        vrm.addRestorePoint(VReg, MI);
+    }
+    Id = RestoreMBBs.find_next(Id);
+  }
+
+  // Finalize intervals: add kills, finalize spill weights, and filter out
+  // dead intervals.
+  std::vector<LiveInterval*> RetNewLIs;
+  for (unsigned i = 0, e = NewLIs.size(); i != e; ++i) {
+    LiveInterval *LI = NewLIs[i];
+    if (!LI->empty()) {
+      LI->weight /= SlotIndex::NUM * getApproximateInstructionCount(*LI);
+      if (!AddedKill.count(LI)) {
+        LiveRange *LR = &LI->ranges[LI->ranges.size()-1];
+        SlotIndex LastUseIdx = LR->end.getBaseIndex();
+        MachineInstr *LastUse = getInstructionFromIndex(LastUseIdx);
+        int UseIdx = LastUse->findRegisterUseOperandIdx(LI->reg, false);
+        assert(UseIdx != -1);
+        if (!LastUse->isRegTiedToDefOperand(UseIdx)) {
+          LastUse->getOperand(UseIdx).setIsKill();
+          vrm.addKillPoint(LI->reg, LastUseIdx);
+        }
+      }
+      RetNewLIs.push_back(LI);
+    }
+  }
+
+  handleSpilledImpDefs(li, vrm, rc, RetNewLIs);
+  return RetNewLIs;
+}
+
+/// hasAllocatableSuperReg - Return true if the specified physical register has
+/// any super register that's allocatable.
+bool LiveIntervals::hasAllocatableSuperReg(unsigned Reg) const {
+  for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS)
+    if (allocatableRegs_[*AS] && hasInterval(*AS))
+      return true;
+  return false;
+}
+
+/// getRepresentativeReg - Find the largest super register of the specified
+/// physical register.
+unsigned LiveIntervals::getRepresentativeReg(unsigned Reg) const {
+  // Find the largest super-register that is allocatable. 
+  unsigned BestReg = Reg;
+  for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS) {
+    unsigned SuperReg = *AS;
+    if (!hasAllocatableSuperReg(SuperReg) && hasInterval(SuperReg)) {
+      BestReg = SuperReg;
+      break;
+    }
+  }
+  return BestReg;
+}
+
+/// getNumConflictsWithPhysReg - Return the number of uses and defs of the
+/// specified interval that conflicts with the specified physical register.
+unsigned LiveIntervals::getNumConflictsWithPhysReg(const LiveInterval &li,
+                                                   unsigned PhysReg) const {
+  unsigned NumConflicts = 0;
+  const LiveInterval &pli = getInterval(getRepresentativeReg(PhysReg));
+  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg),
+         E = mri_->reg_end(); I != E; ++I) {
+    MachineOperand &O = I.getOperand();
+    MachineInstr *MI = O.getParent();
+    SlotIndex Index = getInstructionIndex(MI);
+    if (pli.liveAt(Index))
+      ++NumConflicts;
+  }
+  return NumConflicts;
+}
+
+/// spillPhysRegAroundRegDefsUses - Spill the specified physical register
+/// around all defs and uses of the specified interval. Return true if it
+/// was able to cut its interval.
+bool LiveIntervals::spillPhysRegAroundRegDefsUses(const LiveInterval &li,
+                                            unsigned PhysReg, VirtRegMap &vrm) {
+  unsigned SpillReg = getRepresentativeReg(PhysReg);
+
+  for (const unsigned *AS = tri_->getAliasSet(PhysReg); *AS; ++AS)
+    // If there are registers which alias PhysReg, but which are not a
+    // sub-register of the chosen representative super register. Assert
+    // since we can't handle it yet.
+    assert(*AS == SpillReg || !allocatableRegs_[*AS] || !hasInterval(*AS) ||
+           tri_->isSuperRegister(*AS, SpillReg));
+
+  bool Cut = false;
+  SmallVector<unsigned, 4> PRegs;
+  if (hasInterval(SpillReg))
+    PRegs.push_back(SpillReg);
+  else {
+    SmallSet<unsigned, 4> Added;
+    for (const unsigned* AS = tri_->getSubRegisters(SpillReg); *AS; ++AS)
+      if (Added.insert(*AS) && hasInterval(*AS)) {
+        PRegs.push_back(*AS);
+        for (const unsigned* ASS = tri_->getSubRegisters(*AS); *ASS; ++ASS)
+          Added.insert(*ASS);
+      }
+  }
+
+  SmallPtrSet<MachineInstr*, 8> SeenMIs;
+  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg),
+         E = mri_->reg_end(); I != E; ++I) {
+    MachineOperand &O = I.getOperand();
+    MachineInstr *MI = O.getParent();
+    if (SeenMIs.count(MI))
+      continue;
+    SeenMIs.insert(MI);
+    SlotIndex Index = getInstructionIndex(MI);
+    for (unsigned i = 0, e = PRegs.size(); i != e; ++i) {
+      unsigned PReg = PRegs[i];
+      LiveInterval &pli = getInterval(PReg);
+      if (!pli.liveAt(Index))
+        continue;
+      vrm.addEmergencySpill(PReg, MI);
+      SlotIndex StartIdx = Index.getLoadIndex();
+      SlotIndex EndIdx = Index.getNextIndex().getBaseIndex();
+      if (pli.isInOneLiveRange(StartIdx, EndIdx)) {
+        pli.removeRange(StartIdx, EndIdx);
+        Cut = true;
+      } else {
+        std::string msg;
+        raw_string_ostream Msg(msg);
+        Msg << "Ran out of registers during register allocation!";
+        if (MI->isInlineAsm()) {
+          Msg << "\nPlease check your inline asm statement for invalid "
+              << "constraints:\n";
+          MI->print(Msg, tm_);
+        }
+        llvm_report_error(Msg.str());
+      }
+      for (const unsigned* AS = tri_->getSubRegisters(PReg); *AS; ++AS) {
+        if (!hasInterval(*AS))
+          continue;
+        LiveInterval &spli = getInterval(*AS);
+        if (spli.liveAt(Index))
+          spli.removeRange(Index.getLoadIndex(),
+                           Index.getNextIndex().getBaseIndex());
+      }
+    }
+  }
+  return Cut;
+}
+
+LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
+                                                  MachineInstr* startInst) {
+  LiveInterval& Interval = getOrCreateInterval(reg);
+  VNInfo* VN = Interval.getNextValue(
+    SlotIndex(getInstructionIndex(startInst).getDefIndex()),
+    startInst, true, getVNInfoAllocator());
+  VN->setHasPHIKill(true);
+  VN->kills.push_back(indexes_->getTerminatorGap(startInst->getParent()));
+  LiveRange LR(
+     SlotIndex(getInstructionIndex(startInst).getDefIndex()),
+     getMBBEndIdx(startInst->getParent()), VN);
+  Interval.addRange(LR);
+  
+  return LR;
+}
+