Check in LLVM r95781.
diff --git a/lib/CodeGen/MachineSink.cpp b/lib/CodeGen/MachineSink.cpp
new file mode 100644
index 0000000..c391576
--- /dev/null
+++ b/lib/CodeGen/MachineSink.cpp
@@ -0,0 +1,279 @@
+//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass moves instructions into successor blocks, when possible, so that
+// they aren't executed on paths where their results aren't needed.
+//
+// This pass is not intended to be a replacement or a complete alternative
+// for an LLVM-IR-level sinking pass. It is only designed to sink simple
+// constructs that are not exposed before lowering and instruction selection.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "machine-sink"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+STATISTIC(NumSunk, "Number of machine instructions sunk");
+
+namespace {
+  class MachineSinking : public MachineFunctionPass {
+    const TargetInstrInfo *TII;
+    const TargetRegisterInfo *TRI;
+    MachineRegisterInfo  *RegInfo; // Machine register information
+    MachineDominatorTree *DT;   // Machine dominator tree
+    AliasAnalysis *AA;
+    BitVector AllocatableSet;   // Which physregs are allocatable?
+
+  public:
+    static char ID; // Pass identification
+    MachineSinking() : MachineFunctionPass(&ID) {}
+    
+    virtual bool runOnMachineFunction(MachineFunction &MF);
+    
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.setPreservesCFG();
+      MachineFunctionPass::getAnalysisUsage(AU);
+      AU.addRequired<AliasAnalysis>();
+      AU.addRequired<MachineDominatorTree>();
+      AU.addPreserved<MachineDominatorTree>();
+    }
+  private:
+    bool ProcessBlock(MachineBasicBlock &MBB);
+    bool SinkInstruction(MachineInstr *MI, bool &SawStore);
+    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const;
+  };
+} // end anonymous namespace
+  
+char MachineSinking::ID = 0;
+static RegisterPass<MachineSinking>
+X("machine-sink", "Machine code sinking");
+
+FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
+
+/// AllUsesDominatedByBlock - Return true if all uses of the specified register
+/// occur in blocks dominated by the specified block.
+bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 
+                                             MachineBasicBlock *MBB) const {
+  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
+         "Only makes sense for vregs");
+  for (MachineRegisterInfo::use_iterator I = RegInfo->use_begin(Reg),
+       E = RegInfo->use_end(); I != E; ++I) {
+    // Determine the block of the use.
+    MachineInstr *UseInst = &*I;
+    MachineBasicBlock *UseBlock = UseInst->getParent();
+    if (UseInst->isPHI()) {
+      // PHI nodes use the operand in the predecessor block, not the block with
+      // the PHI.
+      UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
+    }
+    // Check that it dominates.
+    if (!DT->dominates(MBB, UseBlock))
+      return false;
+  }
+  return true;
+}
+
+bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
+  DEBUG(dbgs() << "******** Machine Sinking ********\n");
+  
+  const TargetMachine &TM = MF.getTarget();
+  TII = TM.getInstrInfo();
+  TRI = TM.getRegisterInfo();
+  RegInfo = &MF.getRegInfo();
+  DT = &getAnalysis<MachineDominatorTree>();
+  AA = &getAnalysis<AliasAnalysis>();
+  AllocatableSet = TRI->getAllocatableSet(MF);
+
+  bool EverMadeChange = false;
+  
+  while (1) {
+    bool MadeChange = false;
+
+    // Process all basic blocks.
+    for (MachineFunction::iterator I = MF.begin(), E = MF.end(); 
+         I != E; ++I)
+      MadeChange |= ProcessBlock(*I);
+    
+    // If this iteration over the code changed anything, keep iterating.
+    if (!MadeChange) break;
+    EverMadeChange = true;
+  } 
+  return EverMadeChange;
+}
+
+bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
+  // Can't sink anything out of a block that has less than two successors.
+  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
+
+  bool MadeChange = false;
+
+  // Walk the basic block bottom-up.  Remember if we saw a store.
+  MachineBasicBlock::iterator I = MBB.end();
+  --I;
+  bool ProcessedBegin, SawStore = false;
+  do {
+    MachineInstr *MI = I;  // The instruction to sink.
+    
+    // Predecrement I (if it's not begin) so that it isn't invalidated by
+    // sinking.
+    ProcessedBegin = I == MBB.begin();
+    if (!ProcessedBegin)
+      --I;
+    
+    if (SinkInstruction(MI, SawStore))
+      ++NumSunk, MadeChange = true;
+    
+    // If we just processed the first instruction in the block, we're done.
+  } while (!ProcessedBegin);
+  
+  return MadeChange;
+}
+
+/// SinkInstruction - Determine whether it is safe to sink the specified machine
+/// instruction out of its current block into a successor.
+bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
+  // Check if it's safe to move the instruction.
+  if (!MI->isSafeToMove(TII, SawStore, AA))
+    return false;
+  
+  // FIXME: This should include support for sinking instructions within the
+  // block they are currently in to shorten the live ranges.  We often get
+  // instructions sunk into the top of a large block, but it would be better to
+  // also sink them down before their first use in the block.  This xform has to
+  // be careful not to *increase* register pressure though, e.g. sinking
+  // "x = y + z" down if it kills y and z would increase the live ranges of y
+  // and z and only shrink the live range of x.
+  
+  // Loop over all the operands of the specified instruction.  If there is
+  // anything we can't handle, bail out.
+  MachineBasicBlock *ParentBlock = MI->getParent();
+  
+  // SuccToSinkTo - This is the successor to sink this instruction to, once we
+  // decide.
+  MachineBasicBlock *SuccToSinkTo = 0;
+  
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    const MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg()) continue;  // Ignore non-register operands.
+    
+    unsigned Reg = MO.getReg();
+    if (Reg == 0) continue;
+    
+    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+      if (MO.isUse()) {
+        // If the physreg has no defs anywhere, it's just an ambient register
+        // and we can freely move its uses. Alternatively, if it's allocatable,
+        // it could get allocated to something with a def during allocation.
+        if (!RegInfo->def_empty(Reg))
+          return false;
+        if (AllocatableSet.test(Reg))
+          return false;
+        // Check for a def among the register's aliases too.
+        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+          unsigned AliasReg = *Alias;
+          if (!RegInfo->def_empty(AliasReg))
+            return false;
+          if (AllocatableSet.test(AliasReg))
+            return false;
+        }
+      } else if (!MO.isDead()) {
+        // A def that isn't dead. We can't move it.
+        return false;
+      }
+    } else {
+      // Virtual register uses are always safe to sink.
+      if (MO.isUse()) continue;
+
+      // If it's not safe to move defs of the register class, then abort.
+      if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg)))
+        return false;
+      
+      // FIXME: This picks a successor to sink into based on having one
+      // successor that dominates all the uses.  However, there are cases where
+      // sinking can happen but where the sink point isn't a successor.  For
+      // example:
+      //   x = computation
+      //   if () {} else {}
+      //   use x
+      // the instruction could be sunk over the whole diamond for the 
+      // if/then/else (or loop, etc), allowing it to be sunk into other blocks
+      // after that.
+      
+      // Virtual register defs can only be sunk if all their uses are in blocks
+      // dominated by one of the successors.
+      if (SuccToSinkTo) {
+        // If a previous operand picked a block to sink to, then this operand
+        // must be sinkable to the same block.
+        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo)) 
+          return false;
+        continue;
+      }
+      
+      // Otherwise, we should look at all the successors and decide which one
+      // we should sink to.
+      for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
+           E = ParentBlock->succ_end(); SI != E; ++SI) {
+        if (AllUsesDominatedByBlock(Reg, *SI)) {
+          SuccToSinkTo = *SI;
+          break;
+        }
+      }
+      
+      // If we couldn't find a block to sink to, ignore this instruction.
+      if (SuccToSinkTo == 0)
+        return false;
+    }
+  }
+  
+  // If there are no outputs, it must have side-effects.
+  if (SuccToSinkTo == 0)
+    return false;
+
+  // It's not safe to sink instructions to EH landing pad. Control flow into
+  // landing pad is implicitly defined.
+  if (SuccToSinkTo->isLandingPad())
+    return false;
+  
+  // It is not possible to sink an instruction into its own block.  This can
+  // happen with loops.
+  if (MI->getParent() == SuccToSinkTo)
+    return false;
+  
+  DEBUG(dbgs() << "Sink instr " << *MI);
+  DEBUG(dbgs() << "to block " << *SuccToSinkTo);
+  
+  // If the block has multiple predecessors, this would introduce computation on
+  // a path that it doesn't already exist.  We could split the critical edge,
+  // but for now we just punt.
+  // FIXME: Split critical edges if not backedges.
+  if (SuccToSinkTo->pred_size() > 1) {
+    DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
+    return false;
+  }
+  
+  // Determine where to insert into.  Skip phi nodes.
+  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
+  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
+    ++InsertPos;
+  
+  // Move the instruction.
+  SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
+                       ++MachineBasicBlock::iterator(MI));
+  return true;
+}