Check in LLVM r95781.
diff --git a/lib/CodeGen/SelectionDAG/DAGCombiner.cpp b/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
new file mode 100644
index 0000000..9189e71
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
@@ -0,0 +1,6454 @@
+//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
+// both before and after the DAG is legalized.
+//
+// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
+// primarily intended to handle simplification opportunities that are implicit
+// in the LLVM IR and exposed by the various codegen lowering phases.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "dagcombine"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetFrameInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NodesCombined   , "Number of dag nodes combined");
+STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
+STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
+STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
+
+namespace {
+  static cl::opt<bool>
+    CombinerAA("combiner-alias-analysis", cl::Hidden,
+               cl::desc("Turn on alias analysis during testing"));
+
+  static cl::opt<bool>
+    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
+               cl::desc("Include global information in alias analysis"));
+
+//------------------------------ DAGCombiner ---------------------------------//
+
+  class DAGCombiner {
+    SelectionDAG &DAG;
+    const TargetLowering &TLI;
+    CombineLevel Level;
+    CodeGenOpt::Level OptLevel;
+    bool LegalOperations;
+    bool LegalTypes;
+
+    // Worklist of all of the nodes that need to be simplified.
+    std::vector<SDNode*> WorkList;
+
+    // AA - Used for DAG load/store alias analysis.
+    AliasAnalysis &AA;
+
+    /// AddUsersToWorkList - When an instruction is simplified, add all users of
+    /// the instruction to the work lists because they might get more simplified
+    /// now.
+    ///
+    void AddUsersToWorkList(SDNode *N) {
+      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
+           UI != UE; ++UI)
+        AddToWorkList(*UI);
+    }
+
+    /// visit - call the node-specific routine that knows how to fold each
+    /// particular type of node.
+    SDValue visit(SDNode *N);
+
+  public:
+    /// AddToWorkList - Add to the work list making sure it's instance is at the
+    /// the back (next to be processed.)
+    void AddToWorkList(SDNode *N) {
+      removeFromWorkList(N);
+      WorkList.push_back(N);
+    }
+
+    /// removeFromWorkList - remove all instances of N from the worklist.
+    ///
+    void removeFromWorkList(SDNode *N) {
+      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
+                     WorkList.end());
+    }
+
+    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
+                      bool AddTo = true);
+
+    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
+      return CombineTo(N, &Res, 1, AddTo);
+    }
+
+    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
+                      bool AddTo = true) {
+      SDValue To[] = { Res0, Res1 };
+      return CombineTo(N, To, 2, AddTo);
+    }
+
+    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
+
+  private:
+
+    /// SimplifyDemandedBits - Check the specified integer node value to see if
+    /// it can be simplified or if things it uses can be simplified by bit
+    /// propagation.  If so, return true.
+    bool SimplifyDemandedBits(SDValue Op) {
+      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
+      APInt Demanded = APInt::getAllOnesValue(BitWidth);
+      return SimplifyDemandedBits(Op, Demanded);
+    }
+
+    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
+
+    bool CombineToPreIndexedLoadStore(SDNode *N);
+    bool CombineToPostIndexedLoadStore(SDNode *N);
+
+
+    /// combine - call the node-specific routine that knows how to fold each
+    /// particular type of node. If that doesn't do anything, try the
+    /// target-specific DAG combines.
+    SDValue combine(SDNode *N);
+
+    // Visitation implementation - Implement dag node combining for different
+    // node types.  The semantics are as follows:
+    // Return Value:
+    //   SDValue.getNode() == 0 - No change was made
+    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
+    //   otherwise              - N should be replaced by the returned Operand.
+    //
+    SDValue visitTokenFactor(SDNode *N);
+    SDValue visitMERGE_VALUES(SDNode *N);
+    SDValue visitADD(SDNode *N);
+    SDValue visitSUB(SDNode *N);
+    SDValue visitADDC(SDNode *N);
+    SDValue visitADDE(SDNode *N);
+    SDValue visitMUL(SDNode *N);
+    SDValue visitSDIV(SDNode *N);
+    SDValue visitUDIV(SDNode *N);
+    SDValue visitSREM(SDNode *N);
+    SDValue visitUREM(SDNode *N);
+    SDValue visitMULHU(SDNode *N);
+    SDValue visitMULHS(SDNode *N);
+    SDValue visitSMUL_LOHI(SDNode *N);
+    SDValue visitUMUL_LOHI(SDNode *N);
+    SDValue visitSDIVREM(SDNode *N);
+    SDValue visitUDIVREM(SDNode *N);
+    SDValue visitAND(SDNode *N);
+    SDValue visitOR(SDNode *N);
+    SDValue visitXOR(SDNode *N);
+    SDValue SimplifyVBinOp(SDNode *N);
+    SDValue visitSHL(SDNode *N);
+    SDValue visitSRA(SDNode *N);
+    SDValue visitSRL(SDNode *N);
+    SDValue visitCTLZ(SDNode *N);
+    SDValue visitCTTZ(SDNode *N);
+    SDValue visitCTPOP(SDNode *N);
+    SDValue visitSELECT(SDNode *N);
+    SDValue visitSELECT_CC(SDNode *N);
+    SDValue visitSETCC(SDNode *N);
+    SDValue visitSIGN_EXTEND(SDNode *N);
+    SDValue visitZERO_EXTEND(SDNode *N);
+    SDValue visitANY_EXTEND(SDNode *N);
+    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
+    SDValue visitTRUNCATE(SDNode *N);
+    SDValue visitBIT_CONVERT(SDNode *N);
+    SDValue visitBUILD_PAIR(SDNode *N);
+    SDValue visitFADD(SDNode *N);
+    SDValue visitFSUB(SDNode *N);
+    SDValue visitFMUL(SDNode *N);
+    SDValue visitFDIV(SDNode *N);
+    SDValue visitFREM(SDNode *N);
+    SDValue visitFCOPYSIGN(SDNode *N);
+    SDValue visitSINT_TO_FP(SDNode *N);
+    SDValue visitUINT_TO_FP(SDNode *N);
+    SDValue visitFP_TO_SINT(SDNode *N);
+    SDValue visitFP_TO_UINT(SDNode *N);
+    SDValue visitFP_ROUND(SDNode *N);
+    SDValue visitFP_ROUND_INREG(SDNode *N);
+    SDValue visitFP_EXTEND(SDNode *N);
+    SDValue visitFNEG(SDNode *N);
+    SDValue visitFABS(SDNode *N);
+    SDValue visitBRCOND(SDNode *N);
+    SDValue visitBR_CC(SDNode *N);
+    SDValue visitLOAD(SDNode *N);
+    SDValue visitSTORE(SDNode *N);
+    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
+    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
+    SDValue visitBUILD_VECTOR(SDNode *N);
+    SDValue visitCONCAT_VECTORS(SDNode *N);
+    SDValue visitVECTOR_SHUFFLE(SDNode *N);
+
+    SDValue XformToShuffleWithZero(SDNode *N);
+    SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS);
+
+    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
+
+    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
+    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
+    SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2);
+    SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2,
+                             SDValue N3, ISD::CondCode CC,
+                             bool NotExtCompare = false);
+    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
+                          DebugLoc DL, bool foldBooleans = true);
+    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
+                                         unsigned HiOp);
+    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
+    SDValue ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, EVT);
+    SDValue BuildSDIV(SDNode *N);
+    SDValue BuildUDIV(SDNode *N);
+    SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
+    SDValue ReduceLoadWidth(SDNode *N);
+    SDValue ReduceLoadOpStoreWidth(SDNode *N);
+
+    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
+
+    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
+    /// looking for aliasing nodes and adding them to the Aliases vector.
+    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
+                          SmallVector<SDValue, 8> &Aliases);
+
+    /// isAlias - Return true if there is any possibility that the two addresses
+    /// overlap.
+    bool isAlias(SDValue Ptr1, int64_t Size1,
+                 const Value *SrcValue1, int SrcValueOffset1,
+                 unsigned SrcValueAlign1,
+                 SDValue Ptr2, int64_t Size2,
+                 const Value *SrcValue2, int SrcValueOffset2,
+                 unsigned SrcValueAlign2) const;
+
+    /// FindAliasInfo - Extracts the relevant alias information from the memory
+    /// node.  Returns true if the operand was a load.
+    bool FindAliasInfo(SDNode *N,
+                       SDValue &Ptr, int64_t &Size,
+                       const Value *&SrcValue, int &SrcValueOffset,
+                       unsigned &SrcValueAlignment) const;
+
+    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
+    /// looking for a better chain (aliasing node.)
+    SDValue FindBetterChain(SDNode *N, SDValue Chain);
+
+    /// getShiftAmountTy - Returns a type large enough to hold any valid
+    /// shift amount - before type legalization these can be huge.
+    EVT getShiftAmountTy() {
+      return LegalTypes ?  TLI.getShiftAmountTy() : TLI.getPointerTy();
+    }
+
+public:
+    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
+      : DAG(D),
+        TLI(D.getTargetLoweringInfo()),
+        Level(Unrestricted),
+        OptLevel(OL),
+        LegalOperations(false),
+        LegalTypes(false),
+        AA(A) {}
+
+    /// Run - runs the dag combiner on all nodes in the work list
+    void Run(CombineLevel AtLevel);
+  };
+}
+
+
+namespace {
+/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
+/// nodes from the worklist.
+class WorkListRemover : public SelectionDAG::DAGUpdateListener {
+  DAGCombiner &DC;
+public:
+  explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {}
+
+  virtual void NodeDeleted(SDNode *N, SDNode *E) {
+    DC.removeFromWorkList(N);
+  }
+
+  virtual void NodeUpdated(SDNode *N) {
+    // Ignore updates.
+  }
+};
+}
+
+//===----------------------------------------------------------------------===//
+//  TargetLowering::DAGCombinerInfo implementation
+//===----------------------------------------------------------------------===//
+
+void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
+  ((DAGCombiner*)DC)->AddToWorkList(N);
+}
+
+SDValue TargetLowering::DAGCombinerInfo::
+CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
+  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
+}
+
+SDValue TargetLowering::DAGCombinerInfo::
+CombineTo(SDNode *N, SDValue Res, bool AddTo) {
+  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
+}
+
+
+SDValue TargetLowering::DAGCombinerInfo::
+CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
+  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
+}
+
+void TargetLowering::DAGCombinerInfo::
+CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
+  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
+}
+
+//===----------------------------------------------------------------------===//
+// Helper Functions
+//===----------------------------------------------------------------------===//
+
+/// isNegatibleForFree - Return 1 if we can compute the negated form of the
+/// specified expression for the same cost as the expression itself, or 2 if we
+/// can compute the negated form more cheaply than the expression itself.
+static char isNegatibleForFree(SDValue Op, bool LegalOperations,
+                               unsigned Depth = 0) {
+  // No compile time optimizations on this type.
+  if (Op.getValueType() == MVT::ppcf128)
+    return 0;
+
+  // fneg is removable even if it has multiple uses.
+  if (Op.getOpcode() == ISD::FNEG) return 2;
+
+  // Don't allow anything with multiple uses.
+  if (!Op.hasOneUse()) return 0;
+
+  // Don't recurse exponentially.
+  if (Depth > 6) return 0;
+
+  switch (Op.getOpcode()) {
+  default: return false;
+  case ISD::ConstantFP:
+    // Don't invert constant FP values after legalize.  The negated constant
+    // isn't necessarily legal.
+    return LegalOperations ? 0 : 1;
+  case ISD::FADD:
+    // FIXME: determine better conditions for this xform.
+    if (!UnsafeFPMath) return 0;
+
+    // fold (fsub (fadd A, B)) -> (fsub (fneg A), B)
+    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
+      return V;
+    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
+    return isNegatibleForFree(Op.getOperand(1), LegalOperations, Depth+1);
+  case ISD::FSUB:
+    // We can't turn -(A-B) into B-A when we honor signed zeros.
+    if (!UnsafeFPMath) return 0;
+
+    // fold (fneg (fsub A, B)) -> (fsub B, A)
+    return 1;
+
+  case ISD::FMUL:
+  case ISD::FDIV:
+    if (HonorSignDependentRoundingFPMath()) return 0;
+
+    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
+    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
+      return V;
+
+    return isNegatibleForFree(Op.getOperand(1), LegalOperations, Depth+1);
+
+  case ISD::FP_EXTEND:
+  case ISD::FP_ROUND:
+  case ISD::FSIN:
+    return isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1);
+  }
+}
+
+/// GetNegatedExpression - If isNegatibleForFree returns true, this function
+/// returns the newly negated expression.
+static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
+                                    bool LegalOperations, unsigned Depth = 0) {
+  // fneg is removable even if it has multiple uses.
+  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
+
+  // Don't allow anything with multiple uses.
+  assert(Op.hasOneUse() && "Unknown reuse!");
+
+  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
+  switch (Op.getOpcode()) {
+  default: llvm_unreachable("Unknown code");
+  case ISD::ConstantFP: {
+    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
+    V.changeSign();
+    return DAG.getConstantFP(V, Op.getValueType());
+  }
+  case ISD::FADD:
+    // FIXME: determine better conditions for this xform.
+    assert(UnsafeFPMath);
+
+    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
+    if (isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
+      return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
+                         GetNegatedExpression(Op.getOperand(0), DAG,
+                                              LegalOperations, Depth+1),
+                         Op.getOperand(1));
+    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
+    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
+                       GetNegatedExpression(Op.getOperand(1), DAG,
+                                            LegalOperations, Depth+1),
+                       Op.getOperand(0));
+  case ISD::FSUB:
+    // We can't turn -(A-B) into B-A when we honor signed zeros.
+    assert(UnsafeFPMath);
+
+    // fold (fneg (fsub 0, B)) -> B
+    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
+      if (N0CFP->getValueAPF().isZero())
+        return Op.getOperand(1);
+
+    // fold (fneg (fsub A, B)) -> (fsub B, A)
+    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
+                       Op.getOperand(1), Op.getOperand(0));
+
+  case ISD::FMUL:
+  case ISD::FDIV:
+    assert(!HonorSignDependentRoundingFPMath());
+
+    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
+    if (isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
+      return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
+                         GetNegatedExpression(Op.getOperand(0), DAG,
+                                              LegalOperations, Depth+1),
+                         Op.getOperand(1));
+
+    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
+    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
+                       Op.getOperand(0),
+                       GetNegatedExpression(Op.getOperand(1), DAG,
+                                            LegalOperations, Depth+1));
+
+  case ISD::FP_EXTEND:
+  case ISD::FSIN:
+    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
+                       GetNegatedExpression(Op.getOperand(0), DAG,
+                                            LegalOperations, Depth+1));
+  case ISD::FP_ROUND:
+      return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(),
+                         GetNegatedExpression(Op.getOperand(0), DAG,
+                                              LegalOperations, Depth+1),
+                         Op.getOperand(1));
+  }
+}
+
+
+// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
+// that selects between the values 1 and 0, making it equivalent to a setcc.
+// Also, set the incoming LHS, RHS, and CC references to the appropriate
+// nodes based on the type of node we are checking.  This simplifies life a
+// bit for the callers.
+static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
+                              SDValue &CC) {
+  if (N.getOpcode() == ISD::SETCC) {
+    LHS = N.getOperand(0);
+    RHS = N.getOperand(1);
+    CC  = N.getOperand(2);
+    return true;
+  }
+  if (N.getOpcode() == ISD::SELECT_CC &&
+      N.getOperand(2).getOpcode() == ISD::Constant &&
+      N.getOperand(3).getOpcode() == ISD::Constant &&
+      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
+      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
+    LHS = N.getOperand(0);
+    RHS = N.getOperand(1);
+    CC  = N.getOperand(4);
+    return true;
+  }
+  return false;
+}
+
+// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
+// one use.  If this is true, it allows the users to invert the operation for
+// free when it is profitable to do so.
+static bool isOneUseSetCC(SDValue N) {
+  SDValue N0, N1, N2;
+  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
+    return true;
+  return false;
+}
+
+SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL,
+                                    SDValue N0, SDValue N1) {
+  EVT VT = N0.getValueType();
+  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
+    if (isa<ConstantSDNode>(N1)) {
+      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
+      SDValue OpNode =
+        DAG.FoldConstantArithmetic(Opc, VT,
+                                   cast<ConstantSDNode>(N0.getOperand(1)),
+                                   cast<ConstantSDNode>(N1));
+      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
+    } else if (N0.hasOneUse()) {
+      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
+      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
+                                   N0.getOperand(0), N1);
+      AddToWorkList(OpNode.getNode());
+      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
+    }
+  }
+
+  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
+    if (isa<ConstantSDNode>(N0)) {
+      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
+      SDValue OpNode =
+        DAG.FoldConstantArithmetic(Opc, VT,
+                                   cast<ConstantSDNode>(N1.getOperand(1)),
+                                   cast<ConstantSDNode>(N0));
+      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
+    } else if (N1.hasOneUse()) {
+      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
+      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
+                                   N1.getOperand(0), N0);
+      AddToWorkList(OpNode.getNode());
+      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
+    }
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
+                               bool AddTo) {
+  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
+  ++NodesCombined;
+  DEBUG(dbgs() << "\nReplacing.1 ";
+        N->dump(&DAG);
+        dbgs() << "\nWith: ";
+        To[0].getNode()->dump(&DAG);
+        dbgs() << " and " << NumTo-1 << " other values\n";
+        for (unsigned i = 0, e = NumTo; i != e; ++i)
+          assert((!To[i].getNode() ||
+                  N->getValueType(i) == To[i].getValueType()) &&
+                 "Cannot combine value to value of different type!"));
+  WorkListRemover DeadNodes(*this);
+  DAG.ReplaceAllUsesWith(N, To, &DeadNodes);
+
+  if (AddTo) {
+    // Push the new nodes and any users onto the worklist
+    for (unsigned i = 0, e = NumTo; i != e; ++i) {
+      if (To[i].getNode()) {
+        AddToWorkList(To[i].getNode());
+        AddUsersToWorkList(To[i].getNode());
+      }
+    }
+  }
+
+  // Finally, if the node is now dead, remove it from the graph.  The node
+  // may not be dead if the replacement process recursively simplified to
+  // something else needing this node.
+  if (N->use_empty()) {
+    // Nodes can be reintroduced into the worklist.  Make sure we do not
+    // process a node that has been replaced.
+    removeFromWorkList(N);
+
+    // Finally, since the node is now dead, remove it from the graph.
+    DAG.DeleteNode(N);
+  }
+  return SDValue(N, 0);
+}
+
+void
+DAGCombiner::CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &
+                                                                          TLO) {
+  // Replace all uses.  If any nodes become isomorphic to other nodes and
+  // are deleted, make sure to remove them from our worklist.
+  WorkListRemover DeadNodes(*this);
+  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
+
+  // Push the new node and any (possibly new) users onto the worklist.
+  AddToWorkList(TLO.New.getNode());
+  AddUsersToWorkList(TLO.New.getNode());
+
+  // Finally, if the node is now dead, remove it from the graph.  The node
+  // may not be dead if the replacement process recursively simplified to
+  // something else needing this node.
+  if (TLO.Old.getNode()->use_empty()) {
+    removeFromWorkList(TLO.Old.getNode());
+
+    // If the operands of this node are only used by the node, they will now
+    // be dead.  Make sure to visit them first to delete dead nodes early.
+    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
+      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
+        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
+
+    DAG.DeleteNode(TLO.Old.getNode());
+  }
+}
+
+/// SimplifyDemandedBits - Check the specified integer node value to see if
+/// it can be simplified or if things it uses can be simplified by bit
+/// propagation.  If so, return true.
+bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
+  TargetLowering::TargetLoweringOpt TLO(DAG);
+  APInt KnownZero, KnownOne;
+  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
+    return false;
+
+  // Revisit the node.
+  AddToWorkList(Op.getNode());
+
+  // Replace the old value with the new one.
+  ++NodesCombined;
+  DEBUG(dbgs() << "\nReplacing.2 "; 
+        TLO.Old.getNode()->dump(&DAG);
+        dbgs() << "\nWith: ";
+        TLO.New.getNode()->dump(&DAG);
+        dbgs() << '\n');
+
+  CommitTargetLoweringOpt(TLO);
+  return true;
+}
+
+//===----------------------------------------------------------------------===//
+//  Main DAG Combiner implementation
+//===----------------------------------------------------------------------===//
+
+void DAGCombiner::Run(CombineLevel AtLevel) {
+  // set the instance variables, so that the various visit routines may use it.
+  Level = AtLevel;
+  LegalOperations = Level >= NoIllegalOperations;
+  LegalTypes = Level >= NoIllegalTypes;
+
+  // Add all the dag nodes to the worklist.
+  WorkList.reserve(DAG.allnodes_size());
+  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
+       E = DAG.allnodes_end(); I != E; ++I)
+    WorkList.push_back(I);
+
+  // Create a dummy node (which is not added to allnodes), that adds a reference
+  // to the root node, preventing it from being deleted, and tracking any
+  // changes of the root.
+  HandleSDNode Dummy(DAG.getRoot());
+
+  // The root of the dag may dangle to deleted nodes until the dag combiner is
+  // done.  Set it to null to avoid confusion.
+  DAG.setRoot(SDValue());
+
+  // while the worklist isn't empty, inspect the node on the end of it and
+  // try and combine it.
+  while (!WorkList.empty()) {
+    SDNode *N = WorkList.back();
+    WorkList.pop_back();
+
+    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
+    // N is deleted from the DAG, since they too may now be dead or may have a
+    // reduced number of uses, allowing other xforms.
+    if (N->use_empty() && N != &Dummy) {
+      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+        AddToWorkList(N->getOperand(i).getNode());
+
+      DAG.DeleteNode(N);
+      continue;
+    }
+
+    SDValue RV = combine(N);
+
+    if (RV.getNode() == 0)
+      continue;
+
+    ++NodesCombined;
+
+    // If we get back the same node we passed in, rather than a new node or
+    // zero, we know that the node must have defined multiple values and
+    // CombineTo was used.  Since CombineTo takes care of the worklist
+    // mechanics for us, we have no work to do in this case.
+    if (RV.getNode() == N)
+      continue;
+
+    assert(N->getOpcode() != ISD::DELETED_NODE &&
+           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
+           "Node was deleted but visit returned new node!");
+
+    DEBUG(dbgs() << "\nReplacing.3 "; 
+          N->dump(&DAG);
+          dbgs() << "\nWith: ";
+          RV.getNode()->dump(&DAG);
+          dbgs() << '\n');
+    WorkListRemover DeadNodes(*this);
+    if (N->getNumValues() == RV.getNode()->getNumValues())
+      DAG.ReplaceAllUsesWith(N, RV.getNode(), &DeadNodes);
+    else {
+      assert(N->getValueType(0) == RV.getValueType() &&
+             N->getNumValues() == 1 && "Type mismatch");
+      SDValue OpV = RV;
+      DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes);
+    }
+
+    // Push the new node and any users onto the worklist
+    AddToWorkList(RV.getNode());
+    AddUsersToWorkList(RV.getNode());
+
+    // Add any uses of the old node to the worklist in case this node is the
+    // last one that uses them.  They may become dead after this node is
+    // deleted.
+    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+      AddToWorkList(N->getOperand(i).getNode());
+
+    // Finally, if the node is now dead, remove it from the graph.  The node
+    // may not be dead if the replacement process recursively simplified to
+    // something else needing this node.
+    if (N->use_empty()) {
+      // Nodes can be reintroduced into the worklist.  Make sure we do not
+      // process a node that has been replaced.
+      removeFromWorkList(N);
+
+      // Finally, since the node is now dead, remove it from the graph.
+      DAG.DeleteNode(N);
+    }
+  }
+
+  // If the root changed (e.g. it was a dead load, update the root).
+  DAG.setRoot(Dummy.getValue());
+}
+
+SDValue DAGCombiner::visit(SDNode *N) {
+  switch(N->getOpcode()) {
+  default: break;
+  case ISD::TokenFactor:        return visitTokenFactor(N);
+  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
+  case ISD::ADD:                return visitADD(N);
+  case ISD::SUB:                return visitSUB(N);
+  case ISD::ADDC:               return visitADDC(N);
+  case ISD::ADDE:               return visitADDE(N);
+  case ISD::MUL:                return visitMUL(N);
+  case ISD::SDIV:               return visitSDIV(N);
+  case ISD::UDIV:               return visitUDIV(N);
+  case ISD::SREM:               return visitSREM(N);
+  case ISD::UREM:               return visitUREM(N);
+  case ISD::MULHU:              return visitMULHU(N);
+  case ISD::MULHS:              return visitMULHS(N);
+  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
+  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
+  case ISD::SDIVREM:            return visitSDIVREM(N);
+  case ISD::UDIVREM:            return visitUDIVREM(N);
+  case ISD::AND:                return visitAND(N);
+  case ISD::OR:                 return visitOR(N);
+  case ISD::XOR:                return visitXOR(N);
+  case ISD::SHL:                return visitSHL(N);
+  case ISD::SRA:                return visitSRA(N);
+  case ISD::SRL:                return visitSRL(N);
+  case ISD::CTLZ:               return visitCTLZ(N);
+  case ISD::CTTZ:               return visitCTTZ(N);
+  case ISD::CTPOP:              return visitCTPOP(N);
+  case ISD::SELECT:             return visitSELECT(N);
+  case ISD::SELECT_CC:          return visitSELECT_CC(N);
+  case ISD::SETCC:              return visitSETCC(N);
+  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
+  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
+  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
+  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
+  case ISD::TRUNCATE:           return visitTRUNCATE(N);
+  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
+  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
+  case ISD::FADD:               return visitFADD(N);
+  case ISD::FSUB:               return visitFSUB(N);
+  case ISD::FMUL:               return visitFMUL(N);
+  case ISD::FDIV:               return visitFDIV(N);
+  case ISD::FREM:               return visitFREM(N);
+  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
+  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
+  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
+  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
+  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
+  case ISD::FP_ROUND:           return visitFP_ROUND(N);
+  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
+  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
+  case ISD::FNEG:               return visitFNEG(N);
+  case ISD::FABS:               return visitFABS(N);
+  case ISD::BRCOND:             return visitBRCOND(N);
+  case ISD::BR_CC:              return visitBR_CC(N);
+  case ISD::LOAD:               return visitLOAD(N);
+  case ISD::STORE:              return visitSTORE(N);
+  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
+  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
+  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
+  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
+  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
+  }
+  return SDValue();
+}
+
+SDValue DAGCombiner::combine(SDNode *N) {
+  SDValue RV = visit(N);
+
+  // If nothing happened, try a target-specific DAG combine.
+  if (RV.getNode() == 0) {
+    assert(N->getOpcode() != ISD::DELETED_NODE &&
+           "Node was deleted but visit returned NULL!");
+
+    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
+        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
+
+      // Expose the DAG combiner to the target combiner impls.
+      TargetLowering::DAGCombinerInfo
+        DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
+
+      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
+    }
+  }
+
+  // If N is a commutative binary node, try commuting it to enable more
+  // sdisel CSE.
+  if (RV.getNode() == 0 &&
+      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
+      N->getNumValues() == 1) {
+    SDValue N0 = N->getOperand(0);
+    SDValue N1 = N->getOperand(1);
+
+    // Constant operands are canonicalized to RHS.
+    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
+      SDValue Ops[] = { N1, N0 };
+      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
+                                            Ops, 2);
+      if (CSENode)
+        return SDValue(CSENode, 0);
+    }
+  }
+
+  return RV;
+}
+
+/// getInputChainForNode - Given a node, return its input chain if it has one,
+/// otherwise return a null sd operand.
+static SDValue getInputChainForNode(SDNode *N) {
+  if (unsigned NumOps = N->getNumOperands()) {
+    if (N->getOperand(0).getValueType() == MVT::Other)
+      return N->getOperand(0);
+    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
+      return N->getOperand(NumOps-1);
+    for (unsigned i = 1; i < NumOps-1; ++i)
+      if (N->getOperand(i).getValueType() == MVT::Other)
+        return N->getOperand(i);
+  }
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
+  // If N has two operands, where one has an input chain equal to the other,
+  // the 'other' chain is redundant.
+  if (N->getNumOperands() == 2) {
+    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
+      return N->getOperand(0);
+    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
+      return N->getOperand(1);
+  }
+
+  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
+  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
+  SmallPtrSet<SDNode*, 16> SeenOps;
+  bool Changed = false;             // If we should replace this token factor.
+
+  // Start out with this token factor.
+  TFs.push_back(N);
+
+  // Iterate through token factors.  The TFs grows when new token factors are
+  // encountered.
+  for (unsigned i = 0; i < TFs.size(); ++i) {
+    SDNode *TF = TFs[i];
+
+    // Check each of the operands.
+    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
+      SDValue Op = TF->getOperand(i);
+
+      switch (Op.getOpcode()) {
+      case ISD::EntryToken:
+        // Entry tokens don't need to be added to the list. They are
+        // rededundant.
+        Changed = true;
+        break;
+
+      case ISD::TokenFactor:
+        if (Op.hasOneUse() &&
+            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
+          // Queue up for processing.
+          TFs.push_back(Op.getNode());
+          // Clean up in case the token factor is removed.
+          AddToWorkList(Op.getNode());
+          Changed = true;
+          break;
+        }
+        // Fall thru
+
+      default:
+        // Only add if it isn't already in the list.
+        if (SeenOps.insert(Op.getNode()))
+          Ops.push_back(Op);
+        else
+          Changed = true;
+        break;
+      }
+    }
+  }
+  
+  SDValue Result;
+
+  // If we've change things around then replace token factor.
+  if (Changed) {
+    if (Ops.empty()) {
+      // The entry token is the only possible outcome.
+      Result = DAG.getEntryNode();
+    } else {
+      // New and improved token factor.
+      Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
+                           MVT::Other, &Ops[0], Ops.size());
+    }
+
+    // Don't add users to work list.
+    return CombineTo(N, Result, false);
+  }
+
+  return Result;
+}
+
+/// MERGE_VALUES can always be eliminated.
+SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
+  WorkListRemover DeadNodes(*this);
+  // Replacing results may cause a different MERGE_VALUES to suddenly
+  // be CSE'd with N, and carry its uses with it. Iterate until no
+  // uses remain, to ensure that the node can be safely deleted.
+  do {
+    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i),
+                                    &DeadNodes);
+  } while (!N->use_empty());
+  removeFromWorkList(N);
+  DAG.DeleteNode(N);
+  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+}
+
+static
+SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
+                              SelectionDAG &DAG) {
+  EVT VT = N0.getValueType();
+  SDValue N00 = N0.getOperand(0);
+  SDValue N01 = N0.getOperand(1);
+  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
+
+  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
+      isa<ConstantSDNode>(N00.getOperand(1))) {
+    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
+    N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
+                     DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT,
+                                 N00.getOperand(0), N01),
+                     DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT,
+                                 N00.getOperand(1), N01));
+    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitADD(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  EVT VT = N0.getValueType();
+
+  // fold vector ops
+  if (VT.isVector()) {
+    SDValue FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.getNode()) return FoldedVOp;
+  }
+
+  // fold (add x, undef) -> undef
+  if (N0.getOpcode() == ISD::UNDEF)
+    return N0;
+  if (N1.getOpcode() == ISD::UNDEF)
+    return N1;
+  // fold (add c1, c2) -> c1+c2
+  if (N0C && N1C)
+    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
+  // canonicalize constant to RHS
+  if (N0C && !N1C)
+    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0);
+  // fold (add x, 0) -> x
+  if (N1C && N1C->isNullValue())
+    return N0;
+  // fold (add Sym, c) -> Sym+c
+  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
+    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
+        GA->getOpcode() == ISD::GlobalAddress)
+      return DAG.getGlobalAddress(GA->getGlobal(), VT,
+                                  GA->getOffset() +
+                                    (uint64_t)N1C->getSExtValue());
+  // fold ((c1-A)+c2) -> (c1+c2)-A
+  if (N1C && N0.getOpcode() == ISD::SUB)
+    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
+      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
+                         DAG.getConstant(N1C->getAPIntValue()+
+                                         N0C->getAPIntValue(), VT),
+                         N0.getOperand(1));
+  // reassociate add
+  SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1);
+  if (RADD.getNode() != 0)
+    return RADD;
+  // fold ((0-A) + B) -> B-A
+  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
+      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
+    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1));
+  // fold (A + (0-B)) -> A-B
+  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
+      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
+    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1));
+  // fold (A+(B-A)) -> B
+  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
+    return N1.getOperand(0);
+  // fold ((B-A)+A) -> B
+  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
+    return N0.getOperand(0);
+  // fold (A+(B-(A+C))) to (B-C)
+  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
+      N0 == N1.getOperand(1).getOperand(0))
+    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
+                       N1.getOperand(1).getOperand(1));
+  // fold (A+(B-(C+A))) to (B-C)
+  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
+      N0 == N1.getOperand(1).getOperand(1))
+    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
+                       N1.getOperand(1).getOperand(0));
+  // fold (A+((B-A)+or-C)) to (B+or-C)
+  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
+      N1.getOperand(0).getOpcode() == ISD::SUB &&
+      N0 == N1.getOperand(0).getOperand(1))
+    return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT,
+                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
+
+  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
+  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
+    SDValue N00 = N0.getOperand(0);
+    SDValue N01 = N0.getOperand(1);
+    SDValue N10 = N1.getOperand(0);
+    SDValue N11 = N1.getOperand(1);
+
+    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
+      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
+                         DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10),
+                         DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11));
+  }
+
+  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
+    return SDValue(N, 0);
+
+  // fold (a+b) -> (a|b) iff a and b share no bits.
+  if (VT.isInteger() && !VT.isVector()) {
+    APInt LHSZero, LHSOne;
+    APInt RHSZero, RHSOne;
+    APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits());
+    DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
+
+    if (LHSZero.getBoolValue()) {
+      DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
+
+      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
+      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
+      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
+          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
+        return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1);
+    }
+  }
+
+  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
+  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
+    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG);
+    if (Result.getNode()) return Result;
+  }
+  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
+    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG);
+    if (Result.getNode()) return Result;
+  }
+
+  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
+  if (N1.getOpcode() == ISD::SHL &&
+      N1.getOperand(0).getOpcode() == ISD::SUB)
+    if (ConstantSDNode *C =
+          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
+      if (C->getAPIntValue() == 0)
+        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0,
+                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
+                                       N1.getOperand(0).getOperand(1),
+                                       N1.getOperand(1)));
+  if (N0.getOpcode() == ISD::SHL &&
+      N0.getOperand(0).getOpcode() == ISD::SUB)
+    if (ConstantSDNode *C =
+          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
+      if (C->getAPIntValue() == 0)
+        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1,
+                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
+                                       N0.getOperand(0).getOperand(1),
+                                       N0.getOperand(1)));
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitADDC(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  EVT VT = N0.getValueType();
+
+  // If the flag result is dead, turn this into an ADD.
+  if (N->hasNUsesOfValue(0, 1))
+    return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0),
+                     DAG.getNode(ISD::CARRY_FALSE,
+                                 N->getDebugLoc(), MVT::Flag));
+
+  // canonicalize constant to RHS.
+  if (N0C && !N1C)
+    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
+
+  // fold (addc x, 0) -> x + no carry out
+  if (N1C && N1C->isNullValue())
+    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
+                                        N->getDebugLoc(), MVT::Flag));
+
+  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
+  APInt LHSZero, LHSOne;
+  APInt RHSZero, RHSOne;
+  APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits());
+  DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
+
+  if (LHSZero.getBoolValue()) {
+    DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
+
+    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
+    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
+    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
+        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
+      return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1),
+                       DAG.getNode(ISD::CARRY_FALSE,
+                                   N->getDebugLoc(), MVT::Flag));
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitADDE(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  SDValue CarryIn = N->getOperand(2);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+
+  // canonicalize constant to RHS
+  if (N0C && !N1C)
+    return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(),
+                       N1, N0, CarryIn);
+
+  // fold (adde x, y, false) -> (addc x, y)
+  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
+    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitSUB(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
+  EVT VT = N0.getValueType();
+
+  // fold vector ops
+  if (VT.isVector()) {
+    SDValue FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.getNode()) return FoldedVOp;
+  }
+
+  // fold (sub x, x) -> 0
+  if (N0 == N1)
+    return DAG.getConstant(0, N->getValueType(0));
+  // fold (sub c1, c2) -> c1-c2
+  if (N0C && N1C)
+    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
+  // fold (sub x, c) -> (add x, -c)
+  if (N1C)
+    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0,
+                       DAG.getConstant(-N1C->getAPIntValue(), VT));
+  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
+  if (N0C && N0C->isAllOnesValue())
+    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
+  // fold (A+B)-A -> B
+  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
+    return N0.getOperand(1);
+  // fold (A+B)-B -> A
+  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
+    return N0.getOperand(0);
+  // fold ((A+(B+or-C))-B) -> A+or-C
+  if (N0.getOpcode() == ISD::ADD &&
+      (N0.getOperand(1).getOpcode() == ISD::SUB ||
+       N0.getOperand(1).getOpcode() == ISD::ADD) &&
+      N0.getOperand(1).getOperand(0) == N1)
+    return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT,
+                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
+  // fold ((A+(C+B))-B) -> A+C
+  if (N0.getOpcode() == ISD::ADD &&
+      N0.getOperand(1).getOpcode() == ISD::ADD &&
+      N0.getOperand(1).getOperand(1) == N1)
+    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
+                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
+  // fold ((A-(B-C))-C) -> A-B
+  if (N0.getOpcode() == ISD::SUB &&
+      N0.getOperand(1).getOpcode() == ISD::SUB &&
+      N0.getOperand(1).getOperand(1) == N1)
+    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
+                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
+
+  // If either operand of a sub is undef, the result is undef
+  if (N0.getOpcode() == ISD::UNDEF)
+    return N0;
+  if (N1.getOpcode() == ISD::UNDEF)
+    return N1;
+
+  // If the relocation model supports it, consider symbol offsets.
+  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
+    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
+      // fold (sub Sym, c) -> Sym-c
+      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
+        return DAG.getGlobalAddress(GA->getGlobal(), VT,
+                                    GA->getOffset() -
+                                      (uint64_t)N1C->getSExtValue());
+      // fold (sub Sym+c1, Sym+c2) -> c1-c2
+      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
+        if (GA->getGlobal() == GB->getGlobal())
+          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
+                                 VT);
+    }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitMUL(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  EVT VT = N0.getValueType();
+
+  // fold vector ops
+  if (VT.isVector()) {
+    SDValue FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.getNode()) return FoldedVOp;
+  }
+
+  // fold (mul x, undef) -> 0
+  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(0, VT);
+  // fold (mul c1, c2) -> c1*c2
+  if (N0C && N1C)
+    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);
+  // canonicalize constant to RHS
+  if (N0C && !N1C)
+    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);
+  // fold (mul x, 0) -> 0
+  if (N1C && N1C->isNullValue())
+    return N1;
+  // fold (mul x, -1) -> 0-x
+  if (N1C && N1C->isAllOnesValue())
+    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
+                       DAG.getConstant(0, VT), N0);
+  // fold (mul x, (1 << c)) -> x << c
+  if (N1C && N1C->getAPIntValue().isPowerOf2())
+    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
+                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
+                                       getShiftAmountTy()));
+  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
+  if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
+    unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
+    // FIXME: If the input is something that is easily negated (e.g. a
+    // single-use add), we should put the negate there.
+    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
+                       DAG.getConstant(0, VT),
+                       DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
+                            DAG.getConstant(Log2Val, getShiftAmountTy())));
+  }
+  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
+  if (N1C && N0.getOpcode() == ISD::SHL &&
+      isa<ConstantSDNode>(N0.getOperand(1))) {
+    SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
+                             N1, N0.getOperand(1));
+    AddToWorkList(C3.getNode());
+    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
+                       N0.getOperand(0), C3);
+  }
+
+  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
+  // use.
+  {
+    SDValue Sh(0,0), Y(0,0);
+    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
+    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
+        N0.getNode()->hasOneUse()) {
+      Sh = N0; Y = N1;
+    } else if (N1.getOpcode() == ISD::SHL &&
+               isa<ConstantSDNode>(N1.getOperand(1)) &&
+               N1.getNode()->hasOneUse()) {
+      Sh = N1; Y = N0;
+    }
+
+    if (Sh.getNode()) {
+      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
+                                Sh.getOperand(0), Y);
+      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
+                         Mul, Sh.getOperand(1));
+    }
+  }
+
+  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
+  if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
+      isa<ConstantSDNode>(N0.getOperand(1)))
+    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
+                       DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT,
+                                   N0.getOperand(0), N1),
+                       DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT,
+                                   N0.getOperand(1), N1));
+
+  // reassociate mul
+  SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1);
+  if (RMUL.getNode() != 0)
+    return RMUL;
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitSDIV(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
+  EVT VT = N->getValueType(0);
+
+  // fold vector ops
+  if (VT.isVector()) {
+    SDValue FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.getNode()) return FoldedVOp;
+  }
+
+  // fold (sdiv c1, c2) -> c1/c2
+  if (N0C && N1C && !N1C->isNullValue())
+    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
+  // fold (sdiv X, 1) -> X
+  if (N1C && N1C->getSExtValue() == 1LL)
+    return N0;
+  // fold (sdiv X, -1) -> 0-X
+  if (N1C && N1C->isAllOnesValue())
+    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
+                       DAG.getConstant(0, VT), N0);
+  // If we know the sign bits of both operands are zero, strength reduce to a
+  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
+  if (!VT.isVector()) {
+    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
+      return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(),
+                         N0, N1);
+  }
+  // fold (sdiv X, pow2) -> simple ops after legalize
+  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap() &&
+      (isPowerOf2_64(N1C->getSExtValue()) ||
+       isPowerOf2_64(-N1C->getSExtValue()))) {
+    // If dividing by powers of two is cheap, then don't perform the following
+    // fold.
+    if (TLI.isPow2DivCheap())
+      return SDValue();
+
+    int64_t pow2 = N1C->getSExtValue();
+    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
+    unsigned lg2 = Log2_64(abs2);
+
+    // Splat the sign bit into the register
+    SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
+                              DAG.getConstant(VT.getSizeInBits()-1,
+                                              getShiftAmountTy()));
+    AddToWorkList(SGN.getNode());
+
+    // Add (N0 < 0) ? abs2 - 1 : 0;
+    SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN,
+                              DAG.getConstant(VT.getSizeInBits() - lg2,
+                                              getShiftAmountTy()));
+    SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL);
+    AddToWorkList(SRL.getNode());
+    AddToWorkList(ADD.getNode());    // Divide by pow2
+    SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD,
+                              DAG.getConstant(lg2, getShiftAmountTy()));
+
+    // If we're dividing by a positive value, we're done.  Otherwise, we must
+    // negate the result.
+    if (pow2 > 0)
+      return SRA;
+
+    AddToWorkList(SRA.getNode());
+    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
+                       DAG.getConstant(0, VT), SRA);
+  }
+
+  // if integer divide is expensive and we satisfy the requirements, emit an
+  // alternate sequence.
+  if (N1C && (N1C->getSExtValue() < -1 || N1C->getSExtValue() > 1) &&
+      !TLI.isIntDivCheap()) {
+    SDValue Op = BuildSDIV(N);
+    if (Op.getNode()) return Op;
+  }
+
+  // undef / X -> 0
+  if (N0.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(0, VT);
+  // X / undef -> undef
+  if (N1.getOpcode() == ISD::UNDEF)
+    return N1;
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitUDIV(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
+  EVT VT = N->getValueType(0);
+
+  // fold vector ops
+  if (VT.isVector()) {
+    SDValue FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.getNode()) return FoldedVOp;
+  }
+
+  // fold (udiv c1, c2) -> c1/c2
+  if (N0C && N1C && !N1C->isNullValue())
+    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
+  // fold (udiv x, (1 << c)) -> x >>u c
+  if (N1C && N1C->getAPIntValue().isPowerOf2())
+    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
+                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
+                                       getShiftAmountTy()));
+  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
+  if (N1.getOpcode() == ISD::SHL) {
+    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
+      if (SHC->getAPIntValue().isPowerOf2()) {
+        EVT ADDVT = N1.getOperand(1).getValueType();
+        SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT,
+                                  N1.getOperand(1),
+                                  DAG.getConstant(SHC->getAPIntValue()
+                                                                  .logBase2(),
+                                                  ADDVT));
+        AddToWorkList(Add.getNode());
+        return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add);
+      }
+    }
+  }
+  // fold (udiv x, c) -> alternate
+  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
+    SDValue Op = BuildUDIV(N);
+    if (Op.getNode()) return Op;
+  }
+
+  // undef / X -> 0
+  if (N0.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(0, VT);
+  // X / undef -> undef
+  if (N1.getOpcode() == ISD::UNDEF)
+    return N1;
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitSREM(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  EVT VT = N->getValueType(0);
+
+  // fold (srem c1, c2) -> c1%c2
+  if (N0C && N1C && !N1C->isNullValue())
+    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
+  // If we know the sign bits of both operands are zero, strength reduce to a
+  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
+  if (!VT.isVector()) {
+    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
+      return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1);
+  }
+
+  // If X/C can be simplified by the division-by-constant logic, lower
+  // X%C to the equivalent of X-X/C*C.
+  if (N1C && !N1C->isNullValue()) {
+    SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1);
+    AddToWorkList(Div.getNode());
+    SDValue OptimizedDiv = combine(Div.getNode());
+    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
+      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
+                                OptimizedDiv, N1);
+      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
+      AddToWorkList(Mul.getNode());
+      return Sub;
+    }
+  }
+
+  // undef % X -> 0
+  if (N0.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(0, VT);
+  // X % undef -> undef
+  if (N1.getOpcode() == ISD::UNDEF)
+    return N1;
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitUREM(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  EVT VT = N->getValueType(0);
+
+  // fold (urem c1, c2) -> c1%c2
+  if (N0C && N1C && !N1C->isNullValue())
+    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
+  // fold (urem x, pow2) -> (and x, pow2-1)
+  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
+    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0,
+                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
+  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
+  if (N1.getOpcode() == ISD::SHL) {
+    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
+      if (SHC->getAPIntValue().isPowerOf2()) {
+        SDValue Add =
+          DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1,
+                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
+                                 VT));
+        AddToWorkList(Add.getNode());
+        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add);
+      }
+    }
+  }
+
+  // If X/C can be simplified by the division-by-constant logic, lower
+  // X%C to the equivalent of X-X/C*C.
+  if (N1C && !N1C->isNullValue()) {
+    SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1);
+    AddToWorkList(Div.getNode());
+    SDValue OptimizedDiv = combine(Div.getNode());
+    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
+      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
+                                OptimizedDiv, N1);
+      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
+      AddToWorkList(Mul.getNode());
+      return Sub;
+    }
+  }
+
+  // undef % X -> 0
+  if (N0.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(0, VT);
+  // X % undef -> undef
+  if (N1.getOpcode() == ISD::UNDEF)
+    return N1;
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitMULHS(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  EVT VT = N->getValueType(0);
+
+  // fold (mulhs x, 0) -> 0
+  if (N1C && N1C->isNullValue())
+    return N1;
+  // fold (mulhs x, 1) -> (sra x, size(x)-1)
+  if (N1C && N1C->getAPIntValue() == 1)
+    return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0,
+                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
+                                       getShiftAmountTy()));
+  // fold (mulhs x, undef) -> 0
+  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(0, VT);
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitMULHU(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  EVT VT = N->getValueType(0);
+
+  // fold (mulhu x, 0) -> 0
+  if (N1C && N1C->isNullValue())
+    return N1;
+  // fold (mulhu x, 1) -> 0
+  if (N1C && N1C->getAPIntValue() == 1)
+    return DAG.getConstant(0, N0.getValueType());
+  // fold (mulhu x, undef) -> 0
+  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(0, VT);
+
+  return SDValue();
+}
+
+/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
+/// compute two values. LoOp and HiOp give the opcodes for the two computations
+/// that are being performed. Return true if a simplification was made.
+///
+SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
+                                                unsigned HiOp) {
+  // If the high half is not needed, just compute the low half.
+  bool HiExists = N->hasAnyUseOfValue(1);
+  if (!HiExists &&
+      (!LegalOperations ||
+       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
+    SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
+                              N->op_begin(), N->getNumOperands());
+    return CombineTo(N, Res, Res);
+  }
+
+  // If the low half is not needed, just compute the high half.
+  bool LoExists = N->hasAnyUseOfValue(0);
+  if (!LoExists &&
+      (!LegalOperations ||
+       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
+    SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
+                              N->op_begin(), N->getNumOperands());
+    return CombineTo(N, Res, Res);
+  }
+
+  // If both halves are used, return as it is.
+  if (LoExists && HiExists)
+    return SDValue();
+
+  // If the two computed results can be simplified separately, separate them.
+  if (LoExists) {
+    SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
+                             N->op_begin(), N->getNumOperands());
+    AddToWorkList(Lo.getNode());
+    SDValue LoOpt = combine(Lo.getNode());
+    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
+        (!LegalOperations ||
+         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
+      return CombineTo(N, LoOpt, LoOpt);
+  }
+
+  if (HiExists) {
+    SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
+                             N->op_begin(), N->getNumOperands());
+    AddToWorkList(Hi.getNode());
+    SDValue HiOpt = combine(Hi.getNode());
+    if (HiOpt.getNode() && HiOpt != Hi &&
+        (!LegalOperations ||
+         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
+      return CombineTo(N, HiOpt, HiOpt);
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
+  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
+  if (Res.getNode()) return Res;
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
+  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
+  if (Res.getNode()) return Res;
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
+  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
+  if (Res.getNode()) return Res;
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
+  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
+  if (Res.getNode()) return Res;
+
+  return SDValue();
+}
+
+/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
+/// two operands of the same opcode, try to simplify it.
+SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
+  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
+  EVT VT = N0.getValueType();
+  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
+
+  // Bail early if none of these transforms apply.
+  if (N0.getNode()->getNumOperands() == 0) return SDValue();
+
+  // For each of OP in AND/OR/XOR:
+  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
+  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
+  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
+  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
+  //
+  // do not sink logical op inside of a vector extend, since it may combine
+  // into a vsetcc.
+  EVT Op0VT = N0.getOperand(0).getValueType();
+  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
+       N0.getOpcode() == ISD::ANY_EXTEND  ||
+       N0.getOpcode() == ISD::SIGN_EXTEND ||
+       (N0.getOpcode() == ISD::TRUNCATE && TLI.isTypeLegal(Op0VT))) &&
+      !VT.isVector() &&
+      Op0VT == N1.getOperand(0).getValueType() &&
+      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
+    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
+                                 N0.getOperand(0).getValueType(),
+                                 N0.getOperand(0), N1.getOperand(0));
+    AddToWorkList(ORNode.getNode());
+    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode);
+  }
+
+  // For each of OP in SHL/SRL/SRA/AND...
+  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
+  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
+  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
+  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
+       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
+      N0.getOperand(1) == N1.getOperand(1)) {
+    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
+                                 N0.getOperand(0).getValueType(),
+                                 N0.getOperand(0), N1.getOperand(0));
+    AddToWorkList(ORNode.getNode());
+    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
+                       ORNode, N0.getOperand(1));
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitAND(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  SDValue LL, LR, RL, RR, CC0, CC1;
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  EVT VT = N1.getValueType();
+  unsigned BitWidth = VT.getSizeInBits();
+
+  // fold vector ops
+  if (VT.isVector()) {
+    SDValue FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.getNode()) return FoldedVOp;
+  }
+
+  // fold (and x, undef) -> 0
+  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(0, VT);
+  // fold (and c1, c2) -> c1&c2
+  if (N0C && N1C)
+    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
+  // canonicalize constant to RHS
+  if (N0C && !N1C)
+    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0);
+  // fold (and x, -1) -> x
+  if (N1C && N1C->isAllOnesValue())
+    return N0;
+  // if (and x, c) is known to be zero, return 0
+  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
+                                   APInt::getAllOnesValue(BitWidth)))
+    return DAG.getConstant(0, VT);
+  // reassociate and
+  SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1);
+  if (RAND.getNode() != 0)
+    return RAND;
+  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
+  if (N1C && N0.getOpcode() == ISD::OR)
+    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
+      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
+        return N1;
+  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
+  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
+    SDValue N0Op0 = N0.getOperand(0);
+    APInt Mask = ~N1C->getAPIntValue();
+    Mask.trunc(N0Op0.getValueSizeInBits());
+    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
+      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(),
+                                 N0.getValueType(), N0Op0);
+
+      // Replace uses of the AND with uses of the Zero extend node.
+      CombineTo(N, Zext);
+
+      // We actually want to replace all uses of the any_extend with the
+      // zero_extend, to avoid duplicating things.  This will later cause this
+      // AND to be folded.
+      CombineTo(N0.getNode(), Zext);
+      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+    }
+  }
+  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
+  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
+    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
+    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
+
+    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
+        LL.getValueType().isInteger()) {
+      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
+      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
+        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
+                                     LR.getValueType(), LL, RL);
+        AddToWorkList(ORNode.getNode());
+        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
+      }
+      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
+      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
+        SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(),
+                                      LR.getValueType(), LL, RL);
+        AddToWorkList(ANDNode.getNode());
+        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
+      }
+      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
+      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
+        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
+                                     LR.getValueType(), LL, RL);
+        AddToWorkList(ORNode.getNode());
+        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
+      }
+    }
+    // canonicalize equivalent to ll == rl
+    if (LL == RR && LR == RL) {
+      Op1 = ISD::getSetCCSwappedOperands(Op1);
+      std::swap(RL, RR);
+    }
+    if (LL == RL && LR == RR) {
+      bool isInteger = LL.getValueType().isInteger();
+      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
+      if (Result != ISD::SETCC_INVALID &&
+          (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
+        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
+                            LL, LR, Result);
+    }
+  }
+
+  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
+  if (N0.getOpcode() == N1.getOpcode()) {
+    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
+    if (Tmp.getNode()) return Tmp;
+  }
+
+  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
+  // fold (and (sra)) -> (and (srl)) when possible.
+  if (!VT.isVector() &&
+      SimplifyDemandedBits(SDValue(N, 0)))
+    return SDValue(N, 0);
+
+  // fold (zext_inreg (extload x)) -> (zextload x)
+  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    EVT MemVT = LN0->getMemoryVT();
+    // If we zero all the possible extended bits, then we can turn this into
+    // a zextload if we are running before legalize or the operation is legal.
+    unsigned BitWidth = N1.getValueSizeInBits();
+    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
+                                     BitWidth - MemVT.getSizeInBits())) &&
+        ((!LegalOperations && !LN0->isVolatile()) ||
+         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
+      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
+                                       LN0->getChain(), LN0->getBasePtr(),
+                                       LN0->getSrcValue(),
+                                       LN0->getSrcValueOffset(), MemVT,
+                                       LN0->isVolatile(), LN0->getAlignment());
+      AddToWorkList(N);
+      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
+      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+    }
+  }
+  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
+  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
+      N0.hasOneUse()) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    EVT MemVT = LN0->getMemoryVT();
+    // If we zero all the possible extended bits, then we can turn this into
+    // a zextload if we are running before legalize or the operation is legal.
+    unsigned BitWidth = N1.getValueSizeInBits();
+    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
+                                     BitWidth - MemVT.getSizeInBits())) &&
+        ((!LegalOperations && !LN0->isVolatile()) ||
+         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
+      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
+                                       LN0->getChain(),
+                                       LN0->getBasePtr(), LN0->getSrcValue(),
+                                       LN0->getSrcValueOffset(), MemVT,
+                                       LN0->isVolatile(), LN0->getAlignment());
+      AddToWorkList(N);
+      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
+      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+    }
+  }
+
+  // fold (and (load x), 255) -> (zextload x, i8)
+  // fold (and (extload x, i16), 255) -> (zextload x, i8)
+  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
+  if (N1C && (N0.getOpcode() == ISD::LOAD ||
+              (N0.getOpcode() == ISD::ANY_EXTEND &&
+               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
+    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
+    LoadSDNode *LN0 = HasAnyExt
+      ? cast<LoadSDNode>(N0.getOperand(0))
+      : cast<LoadSDNode>(N0);
+    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
+        LN0->isUnindexed() && N0.hasOneUse() && LN0->hasOneUse()) {
+      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
+      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
+        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
+        EVT LoadedVT = LN0->getMemoryVT();
+
+        if (ExtVT == LoadedVT &&
+            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
+          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
+          
+          SDValue NewLoad = 
+            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
+                           LN0->getChain(), LN0->getBasePtr(),
+                           LN0->getSrcValue(), LN0->getSrcValueOffset(),
+                           ExtVT, LN0->isVolatile(), LN0->getAlignment());
+          AddToWorkList(N);
+          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
+          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+        }
+        
+        // Do not change the width of a volatile load.
+        // Do not generate loads of non-round integer types since these can
+        // be expensive (and would be wrong if the type is not byte sized).
+        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
+            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
+          EVT PtrType = LN0->getOperand(1).getValueType();
+
+          unsigned Alignment = LN0->getAlignment();
+          SDValue NewPtr = LN0->getBasePtr();
+
+          // For big endian targets, we need to add an offset to the pointer
+          // to load the correct bytes.  For little endian systems, we merely
+          // need to read fewer bytes from the same pointer.
+          if (TLI.isBigEndian()) {
+            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
+            unsigned EVTStoreBytes = ExtVT.getStoreSize();
+            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
+            NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
+                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
+            Alignment = MinAlign(Alignment, PtrOff);
+          }
+
+          AddToWorkList(NewPtr.getNode());
+          
+          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
+          SDValue Load =
+            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
+                           LN0->getChain(), NewPtr,
+                           LN0->getSrcValue(), LN0->getSrcValueOffset(),
+                           ExtVT, LN0->isVolatile(), Alignment);
+          AddToWorkList(N);
+          CombineTo(LN0, Load, Load.getValue(1));
+          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+        }
+      }
+    }
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitOR(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  SDValue LL, LR, RL, RR, CC0, CC1;
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  EVT VT = N1.getValueType();
+
+  // fold vector ops
+  if (VT.isVector()) {
+    SDValue FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.getNode()) return FoldedVOp;
+  }
+
+  // fold (or x, undef) -> -1
+  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) {
+    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
+    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
+  }
+  // fold (or c1, c2) -> c1|c2
+  if (N0C && N1C)
+    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
+  // canonicalize constant to RHS
+  if (N0C && !N1C)
+    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0);
+  // fold (or x, 0) -> x
+  if (N1C && N1C->isNullValue())
+    return N0;
+  // fold (or x, -1) -> -1
+  if (N1C && N1C->isAllOnesValue())
+    return N1;
+  // fold (or x, c) -> c iff (x & ~c) == 0
+  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
+    return N1;
+  // reassociate or
+  SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1);
+  if (ROR.getNode() != 0)
+    return ROR;
+  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
+  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
+             isa<ConstantSDNode>(N0.getOperand(1))) {
+    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
+    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
+                       DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
+                                   N0.getOperand(0), N1),
+                       DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
+  }
+  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
+  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
+    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
+    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
+
+    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
+        LL.getValueType().isInteger()) {
+      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
+      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
+      if (cast<ConstantSDNode>(LR)->isNullValue() &&
+          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
+        SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(),
+                                     LR.getValueType(), LL, RL);
+        AddToWorkList(ORNode.getNode());
+        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
+      }
+      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
+      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
+      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
+          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
+        SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(),
+                                      LR.getValueType(), LL, RL);
+        AddToWorkList(ANDNode.getNode());
+        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
+      }
+    }
+    // canonicalize equivalent to ll == rl
+    if (LL == RR && LR == RL) {
+      Op1 = ISD::getSetCCSwappedOperands(Op1);
+      std::swap(RL, RR);
+    }
+    if (LL == RL && LR == RR) {
+      bool isInteger = LL.getValueType().isInteger();
+      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
+      if (Result != ISD::SETCC_INVALID &&
+          (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
+        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
+                            LL, LR, Result);
+    }
+  }
+
+  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
+  if (N0.getOpcode() == N1.getOpcode()) {
+    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
+    if (Tmp.getNode()) return Tmp;
+  }
+
+  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
+  if (N0.getOpcode() == ISD::AND &&
+      N1.getOpcode() == ISD::AND &&
+      N0.getOperand(1).getOpcode() == ISD::Constant &&
+      N1.getOperand(1).getOpcode() == ISD::Constant &&
+      // Don't increase # computations.
+      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
+    // We can only do this xform if we know that bits from X that are set in C2
+    // but not in C1 are already zero.  Likewise for Y.
+    const APInt &LHSMask =
+      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
+    const APInt &RHSMask =
+      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
+
+    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
+        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
+      SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
+                              N0.getOperand(0), N1.getOperand(0));
+      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X,
+                         DAG.getConstant(LHSMask | RHSMask, VT));
+    }
+  }
+
+  // See if this is some rotate idiom.
+  if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc()))
+    return SDValue(Rot, 0);
+
+  return SDValue();
+}
+
+/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
+static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
+  if (Op.getOpcode() == ISD::AND) {
+    if (isa<ConstantSDNode>(Op.getOperand(1))) {
+      Mask = Op.getOperand(1);
+      Op = Op.getOperand(0);
+    } else {
+      return false;
+    }
+  }
+
+  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
+    Shift = Op;
+    return true;
+  }
+
+  return false;
+}
+
+// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
+// idioms for rotate, and if the target supports rotation instructions, generate
+// a rot[lr].
+SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) {
+  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
+  EVT VT = LHS.getValueType();
+  if (!TLI.isTypeLegal(VT)) return 0;
+
+  // The target must have at least one rotate flavor.
+  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
+  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
+  if (!HasROTL && !HasROTR) return 0;
+
+  // Match "(X shl/srl V1) & V2" where V2 may not be present.
+  SDValue LHSShift;   // The shift.
+  SDValue LHSMask;    // AND value if any.
+  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
+    return 0; // Not part of a rotate.
+
+  SDValue RHSShift;   // The shift.
+  SDValue RHSMask;    // AND value if any.
+  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
+    return 0; // Not part of a rotate.
+
+  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
+    return 0;   // Not shifting the same value.
+
+  if (LHSShift.getOpcode() == RHSShift.getOpcode())
+    return 0;   // Shifts must disagree.
+
+  // Canonicalize shl to left side in a shl/srl pair.
+  if (RHSShift.getOpcode() == ISD::SHL) {
+    std::swap(LHS, RHS);
+    std::swap(LHSShift, RHSShift);
+    std::swap(LHSMask , RHSMask );
+  }
+
+  unsigned OpSizeInBits = VT.getSizeInBits();
+  SDValue LHSShiftArg = LHSShift.getOperand(0);
+  SDValue LHSShiftAmt = LHSShift.getOperand(1);
+  SDValue RHSShiftAmt = RHSShift.getOperand(1);
+
+  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
+  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
+  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
+      RHSShiftAmt.getOpcode() == ISD::Constant) {
+    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
+    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
+    if ((LShVal + RShVal) != OpSizeInBits)
+      return 0;
+
+    SDValue Rot;
+    if (HasROTL)
+      Rot = DAG.getNode(ISD::ROTL, DL, VT, LHSShiftArg, LHSShiftAmt);
+    else
+      Rot = DAG.getNode(ISD::ROTR, DL, VT, LHSShiftArg, RHSShiftAmt);
+
+    // If there is an AND of either shifted operand, apply it to the result.
+    if (LHSMask.getNode() || RHSMask.getNode()) {
+      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
+
+      if (LHSMask.getNode()) {
+        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
+        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
+      }
+      if (RHSMask.getNode()) {
+        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
+        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
+      }
+
+      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
+    }
+
+    return Rot.getNode();
+  }
+
+  // If there is a mask here, and we have a variable shift, we can't be sure
+  // that we're masking out the right stuff.
+  if (LHSMask.getNode() || RHSMask.getNode())
+    return 0;
+
+  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
+  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
+  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
+      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
+    if (ConstantSDNode *SUBC =
+          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
+      if (SUBC->getAPIntValue() == OpSizeInBits) {
+        if (HasROTL)
+          return DAG.getNode(ISD::ROTL, DL, VT,
+                             LHSShiftArg, LHSShiftAmt).getNode();
+        else
+          return DAG.getNode(ISD::ROTR, DL, VT,
+                             LHSShiftArg, RHSShiftAmt).getNode();
+      }
+    }
+  }
+
+  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
+  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
+  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
+      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
+    if (ConstantSDNode *SUBC =
+          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
+      if (SUBC->getAPIntValue() == OpSizeInBits) {
+        if (HasROTR)
+          return DAG.getNode(ISD::ROTR, DL, VT,
+                             LHSShiftArg, RHSShiftAmt).getNode();
+        else
+          return DAG.getNode(ISD::ROTL, DL, VT,
+                             LHSShiftArg, LHSShiftAmt).getNode();
+      }
+    }
+  }
+
+  // Look for sign/zext/any-extended or truncate cases:
+  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
+       || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
+       || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND
+       || LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
+      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
+       || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
+       || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND
+       || RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
+    SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
+    SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
+    if (RExtOp0.getOpcode() == ISD::SUB &&
+        RExtOp0.getOperand(1) == LExtOp0) {
+      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
+      //   (rotl x, y)
+      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
+      //   (rotr x, (sub 32, y))
+      if (ConstantSDNode *SUBC =
+            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
+        if (SUBC->getAPIntValue() == OpSizeInBits) {
+          return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
+                             LHSShiftArg,
+                             HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
+        }
+      }
+    } else if (LExtOp0.getOpcode() == ISD::SUB &&
+               RExtOp0 == LExtOp0.getOperand(1)) {
+      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
+      //   (rotr x, y)
+      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
+      //   (rotl x, (sub 32, y))
+      if (ConstantSDNode *SUBC =
+            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
+        if (SUBC->getAPIntValue() == OpSizeInBits) {
+          return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
+                             LHSShiftArg,
+                             HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
+        }
+      }
+    }
+  }
+
+  return 0;
+}
+
+SDValue DAGCombiner::visitXOR(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  SDValue LHS, RHS, CC;
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  EVT VT = N0.getValueType();
+
+  // fold vector ops
+  if (VT.isVector()) {
+    SDValue FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.getNode()) return FoldedVOp;
+  }
+
+  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
+  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
+    return DAG.getConstant(0, VT);
+  // fold (xor x, undef) -> undef
+  if (N0.getOpcode() == ISD::UNDEF)
+    return N0;
+  if (N1.getOpcode() == ISD::UNDEF)
+    return N1;
+  // fold (xor c1, c2) -> c1^c2
+  if (N0C && N1C)
+    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
+  // canonicalize constant to RHS
+  if (N0C && !N1C)
+    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
+  // fold (xor x, 0) -> x
+  if (N1C && N1C->isNullValue())
+    return N0;
+  // reassociate xor
+  SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1);
+  if (RXOR.getNode() != 0)
+    return RXOR;
+
+  // fold !(x cc y) -> (x !cc y)
+  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
+    bool isInt = LHS.getValueType().isInteger();
+    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
+                                               isInt);
+
+    if (!LegalOperations || TLI.isCondCodeLegal(NotCC, LHS.getValueType())) {
+      switch (N0.getOpcode()) {
+      default:
+        llvm_unreachable("Unhandled SetCC Equivalent!");
+      case ISD::SETCC:
+        return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC);
+      case ISD::SELECT_CC:
+        return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2),
+                               N0.getOperand(3), NotCC);
+      }
+    }
+  }
+
+  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
+  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
+      N0.getNode()->hasOneUse() &&
+      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
+    SDValue V = N0.getOperand(0);
+    V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V,
+                    DAG.getConstant(1, V.getValueType()));
+    AddToWorkList(V.getNode());
+    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V);
+  }
+
+  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
+  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
+      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
+    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
+    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
+      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
+      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
+      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
+      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
+      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
+    }
+  }
+  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
+  if (N1C && N1C->isAllOnesValue() &&
+      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
+    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
+    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
+      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
+      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
+      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
+      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
+      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
+    }
+  }
+  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
+  if (N1C && N0.getOpcode() == ISD::XOR) {
+    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
+    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+    if (N00C)
+      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1),
+                         DAG.getConstant(N1C->getAPIntValue() ^
+                                         N00C->getAPIntValue(), VT));
+    if (N01C)
+      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0),
+                         DAG.getConstant(N1C->getAPIntValue() ^
+                                         N01C->getAPIntValue(), VT));
+  }
+  // fold (xor x, x) -> 0
+  if (N0 == N1) {
+    if (!VT.isVector()) {
+      return DAG.getConstant(0, VT);
+    } else if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)){
+      // Produce a vector of zeros.
+      SDValue El = DAG.getConstant(0, VT.getVectorElementType());
+      std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
+      return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
+                         &Ops[0], Ops.size());
+    }
+  }
+
+  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
+  if (N0.getOpcode() == N1.getOpcode()) {
+    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
+    if (Tmp.getNode()) return Tmp;
+  }
+
+  // Simplify the expression using non-local knowledge.
+  if (!VT.isVector() &&
+      SimplifyDemandedBits(SDValue(N, 0)))
+    return SDValue(N, 0);
+
+  return SDValue();
+}
+
+/// visitShiftByConstant - Handle transforms common to the three shifts, when
+/// the shift amount is a constant.
+SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
+  SDNode *LHS = N->getOperand(0).getNode();
+  if (!LHS->hasOneUse()) return SDValue();
+
+  // We want to pull some binops through shifts, so that we have (and (shift))
+  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
+  // thing happens with address calculations, so it's important to canonicalize
+  // it.
+  bool HighBitSet = false;  // Can we transform this if the high bit is set?
+
+  switch (LHS->getOpcode()) {
+  default: return SDValue();
+  case ISD::OR:
+  case ISD::XOR:
+    HighBitSet = false; // We can only transform sra if the high bit is clear.
+    break;
+  case ISD::AND:
+    HighBitSet = true;  // We can only transform sra if the high bit is set.
+    break;
+  case ISD::ADD:
+    if (N->getOpcode() != ISD::SHL)
+      return SDValue(); // only shl(add) not sr[al](add).
+    HighBitSet = false; // We can only transform sra if the high bit is clear.
+    break;
+  }
+
+  // We require the RHS of the binop to be a constant as well.
+  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
+  if (!BinOpCst) return SDValue();
+
+  // FIXME: disable this unless the input to the binop is a shift by a constant.
+  // If it is not a shift, it pessimizes some common cases like:
+  //
+  //    void foo(int *X, int i) { X[i & 1235] = 1; }
+  //    int bar(int *X, int i) { return X[i & 255]; }
+  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
+  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
+       BinOpLHSVal->getOpcode() != ISD::SRA &&
+       BinOpLHSVal->getOpcode() != ISD::SRL) ||
+      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
+    return SDValue();
+
+  EVT VT = N->getValueType(0);
+
+  // If this is a signed shift right, and the high bit is modified by the
+  // logical operation, do not perform the transformation. The highBitSet
+  // boolean indicates the value of the high bit of the constant which would
+  // cause it to be modified for this operation.
+  if (N->getOpcode() == ISD::SRA) {
+    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
+    if (BinOpRHSSignSet != HighBitSet)
+      return SDValue();
+  }
+
+  // Fold the constants, shifting the binop RHS by the shift amount.
+  SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(),
+                               N->getValueType(0),
+                               LHS->getOperand(1), N->getOperand(1));
+
+  // Create the new shift.
+  SDValue NewShift = DAG.getNode(N->getOpcode(), LHS->getOperand(0).getDebugLoc(),
+                                 VT, LHS->getOperand(0), N->getOperand(1));
+
+  // Create the new binop.
+  return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS);
+}
+
+SDValue DAGCombiner::visitSHL(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  EVT VT = N0.getValueType();
+  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
+
+  // fold (shl c1, c2) -> c1<<c2
+  if (N0C && N1C)
+    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
+  // fold (shl 0, x) -> 0
+  if (N0C && N0C->isNullValue())
+    return N0;
+  // fold (shl x, c >= size(x)) -> undef
+  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
+    return DAG.getUNDEF(VT);
+  // fold (shl x, 0) -> x
+  if (N1C && N1C->isNullValue())
+    return N0;
+  // if (shl x, c) is known to be zero, return 0
+  if (DAG.MaskedValueIsZero(SDValue(N, 0),
+                            APInt::getAllOnesValue(OpSizeInBits)))
+    return DAG.getConstant(0, VT);
+  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
+  if (N1.getOpcode() == ISD::TRUNCATE &&
+      N1.getOperand(0).getOpcode() == ISD::AND &&
+      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
+    SDValue N101 = N1.getOperand(0).getOperand(1);
+    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
+      EVT TruncVT = N1.getValueType();
+      SDValue N100 = N1.getOperand(0).getOperand(0);
+      APInt TruncC = N101C->getAPIntValue();
+      TruncC.trunc(TruncVT.getSizeInBits());
+      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
+                         DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT,
+                                     DAG.getNode(ISD::TRUNCATE,
+                                                 N->getDebugLoc(),
+                                                 TruncVT, N100),
+                                     DAG.getConstant(TruncC, TruncVT)));
+    }
+  }
+
+  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
+    return SDValue(N, 0);
+
+  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
+  if (N1C && N0.getOpcode() == ISD::SHL &&
+      N0.getOperand(1).getOpcode() == ISD::Constant) {
+    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
+    uint64_t c2 = N1C->getZExtValue();
+    if (c1 + c2 > OpSizeInBits)
+      return DAG.getConstant(0, VT);
+    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
+                       DAG.getConstant(c1 + c2, N1.getValueType()));
+  }
+  // fold (shl (srl x, c1), c2) -> (shl (and x, (shl -1, c1)), (sub c2, c1)) or
+  //                               (srl (and x, (shl -1, c1)), (sub c1, c2))
+  if (N1C && N0.getOpcode() == ISD::SRL &&
+      N0.getOperand(1).getOpcode() == ISD::Constant) {
+    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
+    if (c1 < VT.getSizeInBits()) {
+      uint64_t c2 = N1C->getZExtValue();
+      SDValue HiBitsMask =
+        DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
+                                              VT.getSizeInBits() - c1),
+                        VT);
+      SDValue Mask = DAG.getNode(ISD::AND, N0.getDebugLoc(), VT,
+                                 N0.getOperand(0),
+                                 HiBitsMask);
+      if (c2 > c1)
+        return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, Mask,
+                           DAG.getConstant(c2-c1, N1.getValueType()));
+      else
+        return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Mask,
+                           DAG.getConstant(c1-c2, N1.getValueType()));
+    }
+  }
+  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
+  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
+    SDValue HiBitsMask =
+      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
+                                            VT.getSizeInBits() -
+                                              N1C->getZExtValue()),
+                      VT);
+    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
+                       HiBitsMask);
+  }
+
+  return N1C ? visitShiftByConstant(N, N1C->getZExtValue()) : SDValue();
+}
+
+SDValue DAGCombiner::visitSRA(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  EVT VT = N0.getValueType();
+  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
+
+  // fold (sra c1, c2) -> (sra c1, c2)
+  if (N0C && N1C)
+    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
+  // fold (sra 0, x) -> 0
+  if (N0C && N0C->isNullValue())
+    return N0;
+  // fold (sra -1, x) -> -1
+  if (N0C && N0C->isAllOnesValue())
+    return N0;
+  // fold (sra x, (setge c, size(x))) -> undef
+  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
+    return DAG.getUNDEF(VT);
+  // fold (sra x, 0) -> x
+  if (N1C && N1C->isNullValue())
+    return N0;
+  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
+  // sext_inreg.
+  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
+    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
+    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
+    if (VT.isVector())
+      ExtVT = EVT::getVectorVT(*DAG.getContext(),
+                               ExtVT, VT.getVectorNumElements());
+    if ((!LegalOperations ||
+         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
+      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
+                         N0.getOperand(0), DAG.getValueType(ExtVT));
+  }
+
+  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
+  if (N1C && N0.getOpcode() == ISD::SRA) {
+    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
+      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
+      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0),
+                         DAG.getConstant(Sum, N1C->getValueType(0)));
+    }
+  }
+
+  // fold (sra (shl X, m), (sub result_size, n))
+  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
+  // result_size - n != m.
+  // If truncate is free for the target sext(shl) is likely to result in better
+  // code.
+  if (N0.getOpcode() == ISD::SHL) {
+    // Get the two constanst of the shifts, CN0 = m, CN = n.
+    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+    if (N01C && N1C) {
+      // Determine what the truncate's result bitsize and type would be.
+      EVT TruncVT =
+        EVT::getIntegerVT(*DAG.getContext(), OpSizeInBits - N1C->getZExtValue());
+      // Determine the residual right-shift amount.
+      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
+
+      // If the shift is not a no-op (in which case this should be just a sign
+      // extend already), the truncated to type is legal, sign_extend is legal
+      // on that type, and the truncate to that type is both legal and free,
+      // perform the transform.
+      if ((ShiftAmt > 0) &&
+          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
+          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
+          TLI.isTruncateFree(VT, TruncVT)) {
+
+          SDValue Amt = DAG.getConstant(ShiftAmt, getShiftAmountTy());
+          SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT,
+                                      N0.getOperand(0), Amt);
+          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT,
+                                      Shift);
+          return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(),
+                             N->getValueType(0), Trunc);
+      }
+    }
+  }
+
+  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
+  if (N1.getOpcode() == ISD::TRUNCATE &&
+      N1.getOperand(0).getOpcode() == ISD::AND &&
+      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
+    SDValue N101 = N1.getOperand(0).getOperand(1);
+    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
+      EVT TruncVT = N1.getValueType();
+      SDValue N100 = N1.getOperand(0).getOperand(0);
+      APInt TruncC = N101C->getAPIntValue();
+      TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
+      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
+                         DAG.getNode(ISD::AND, N->getDebugLoc(),
+                                     TruncVT,
+                                     DAG.getNode(ISD::TRUNCATE,
+                                                 N->getDebugLoc(),
+                                                 TruncVT, N100),
+                                     DAG.getConstant(TruncC, TruncVT)));
+    }
+  }
+
+  // Simplify, based on bits shifted out of the LHS.
+  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
+    return SDValue(N, 0);
+
+
+  // If the sign bit is known to be zero, switch this to a SRL.
+  if (DAG.SignBitIsZero(N0))
+    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1);
+
+  return N1C ? visitShiftByConstant(N, N1C->getZExtValue()) : SDValue();
+}
+
+SDValue DAGCombiner::visitSRL(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  EVT VT = N0.getValueType();
+  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
+
+  // fold (srl c1, c2) -> c1 >>u c2
+  if (N0C && N1C)
+    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
+  // fold (srl 0, x) -> 0
+  if (N0C && N0C->isNullValue())
+    return N0;
+  // fold (srl x, c >= size(x)) -> undef
+  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
+    return DAG.getUNDEF(VT);
+  // fold (srl x, 0) -> x
+  if (N1C && N1C->isNullValue())
+    return N0;
+  // if (srl x, c) is known to be zero, return 0
+  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
+                                   APInt::getAllOnesValue(OpSizeInBits)))
+    return DAG.getConstant(0, VT);
+
+  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
+  if (N1C && N0.getOpcode() == ISD::SRL &&
+      N0.getOperand(1).getOpcode() == ISD::Constant) {
+    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
+    uint64_t c2 = N1C->getZExtValue();
+    if (c1 + c2 > OpSizeInBits)
+      return DAG.getConstant(0, VT);
+    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
+                       DAG.getConstant(c1 + c2, N1.getValueType()));
+  }
+
+  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
+  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
+    // Shifting in all undef bits?
+    EVT SmallVT = N0.getOperand(0).getValueType();
+    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
+      return DAG.getUNDEF(VT);
+
+    SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT,
+                                     N0.getOperand(0), N1);
+    AddToWorkList(SmallShift.getNode());
+    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift);
+  }
+
+  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
+  // bit, which is unmodified by sra.
+  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
+    if (N0.getOpcode() == ISD::SRA)
+      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1);
+  }
+
+  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
+  if (N1C && N0.getOpcode() == ISD::CTLZ &&
+      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
+    APInt KnownZero, KnownOne;
+    APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits());
+    DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
+
+    // If any of the input bits are KnownOne, then the input couldn't be all
+    // zeros, thus the result of the srl will always be zero.
+    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
+
+    // If all of the bits input the to ctlz node are known to be zero, then
+    // the result of the ctlz is "32" and the result of the shift is one.
+    APInt UnknownBits = ~KnownZero & Mask;
+    if (UnknownBits == 0) return DAG.getConstant(1, VT);
+
+    // Otherwise, check to see if there is exactly one bit input to the ctlz.
+    if ((UnknownBits & (UnknownBits - 1)) == 0) {
+      // Okay, we know that only that the single bit specified by UnknownBits
+      // could be set on input to the CTLZ node. If this bit is set, the SRL
+      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
+      // to an SRL/XOR pair, which is likely to simplify more.
+      unsigned ShAmt = UnknownBits.countTrailingZeros();
+      SDValue Op = N0.getOperand(0);
+
+      if (ShAmt) {
+        Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op,
+                         DAG.getConstant(ShAmt, getShiftAmountTy()));
+        AddToWorkList(Op.getNode());
+      }
+
+      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
+                         Op, DAG.getConstant(1, VT));
+    }
+  }
+
+  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
+  if (N1.getOpcode() == ISD::TRUNCATE &&
+      N1.getOperand(0).getOpcode() == ISD::AND &&
+      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
+    SDValue N101 = N1.getOperand(0).getOperand(1);
+    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
+      EVT TruncVT = N1.getValueType();
+      SDValue N100 = N1.getOperand(0).getOperand(0);
+      APInt TruncC = N101C->getAPIntValue();
+      TruncC.trunc(TruncVT.getSizeInBits());
+      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
+                         DAG.getNode(ISD::AND, N->getDebugLoc(),
+                                     TruncVT,
+                                     DAG.getNode(ISD::TRUNCATE,
+                                                 N->getDebugLoc(),
+                                                 TruncVT, N100),
+                                     DAG.getConstant(TruncC, TruncVT)));
+    }
+  }
+
+  // fold operands of srl based on knowledge that the low bits are not
+  // demanded.
+  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
+    return SDValue(N, 0);
+
+  if (N1C) {
+    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
+    if (NewSRL.getNode())
+      return NewSRL;
+  }
+
+  // Here is a common situation. We want to optimize:
+  //
+  //   %a = ...
+  //   %b = and i32 %a, 2
+  //   %c = srl i32 %b, 1
+  //   brcond i32 %c ...
+  //
+  // into
+  // 
+  //   %a = ...
+  //   %b = and %a, 2
+  //   %c = setcc eq %b, 0
+  //   brcond %c ...
+  //
+  // However when after the source operand of SRL is optimized into AND, the SRL
+  // itself may not be optimized further. Look for it and add the BRCOND into
+  // the worklist.
+  if (N->hasOneUse()) {
+    SDNode *Use = *N->use_begin();
+    if (Use->getOpcode() == ISD::BRCOND)
+      AddToWorkList(Use);
+    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
+      // Also look pass the truncate.
+      Use = *Use->use_begin();
+      if (Use->getOpcode() == ISD::BRCOND)
+        AddToWorkList(Use);
+    }
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitCTLZ(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  EVT VT = N->getValueType(0);
+
+  // fold (ctlz c1) -> c2
+  if (isa<ConstantSDNode>(N0))
+    return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0);
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitCTTZ(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  EVT VT = N->getValueType(0);
+
+  // fold (cttz c1) -> c2
+  if (isa<ConstantSDNode>(N0))
+    return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0);
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitCTPOP(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  EVT VT = N->getValueType(0);
+
+  // fold (ctpop c1) -> c2
+  if (isa<ConstantSDNode>(N0))
+    return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0);
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitSELECT(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  SDValue N2 = N->getOperand(2);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
+  EVT VT = N->getValueType(0);
+  EVT VT0 = N0.getValueType();
+
+  // fold (select C, X, X) -> X
+  if (N1 == N2)
+    return N1;
+  // fold (select true, X, Y) -> X
+  if (N0C && !N0C->isNullValue())
+    return N1;
+  // fold (select false, X, Y) -> Y
+  if (N0C && N0C->isNullValue())
+    return N2;
+  // fold (select C, 1, X) -> (or C, X)
+  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
+    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
+  // fold (select C, 0, 1) -> (xor C, 1)
+  if (VT.isInteger() &&
+      (VT0 == MVT::i1 ||
+       (VT0.isInteger() &&
+        TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent)) &&
+      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
+    SDValue XORNode;
+    if (VT == VT0)
+      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0,
+                         N0, DAG.getConstant(1, VT0));
+    XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0,
+                          N0, DAG.getConstant(1, VT0));
+    AddToWorkList(XORNode.getNode());
+    if (VT.bitsGT(VT0))
+      return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode);
+    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode);
+  }
+  // fold (select C, 0, X) -> (and (not C), X)
+  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
+    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
+    AddToWorkList(NOTNode.getNode());
+    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2);
+  }
+  // fold (select C, X, 1) -> (or (not C), X)
+  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
+    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
+    AddToWorkList(NOTNode.getNode());
+    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1);
+  }
+  // fold (select C, X, 0) -> (and C, X)
+  if (VT == MVT::i1 && N2C && N2C->isNullValue())
+    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
+  // fold (select X, X, Y) -> (or X, Y)
+  // fold (select X, 1, Y) -> (or X, Y)
+  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
+    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
+  // fold (select X, Y, X) -> (and X, Y)
+  // fold (select X, Y, 0) -> (and X, Y)
+  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
+    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
+
+  // If we can fold this based on the true/false value, do so.
+  if (SimplifySelectOps(N, N1, N2))
+    return SDValue(N, 0);  // Don't revisit N.
+
+  // fold selects based on a setcc into other things, such as min/max/abs
+  if (N0.getOpcode() == ISD::SETCC) {
+    // FIXME:
+    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
+    // having to say they don't support SELECT_CC on every type the DAG knows
+    // about, since there is no way to mark an opcode illegal at all value types
+    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
+        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
+      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT,
+                         N0.getOperand(0), N0.getOperand(1),
+                         N1, N2, N0.getOperand(2));
+    return SimplifySelect(N->getDebugLoc(), N0, N1, N2);
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  SDValue N2 = N->getOperand(2);
+  SDValue N3 = N->getOperand(3);
+  SDValue N4 = N->getOperand(4);
+  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
+
+  // fold select_cc lhs, rhs, x, x, cc -> x
+  if (N2 == N3)
+    return N2;
+
+  // Determine if the condition we're dealing with is constant
+  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
+                              N0, N1, CC, N->getDebugLoc(), false);
+  if (SCC.getNode()) AddToWorkList(SCC.getNode());
+
+  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
+    if (!SCCC->isNullValue())
+      return N2;    // cond always true -> true val
+    else
+      return N3;    // cond always false -> false val
+  }
+
+  // Fold to a simpler select_cc
+  if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC)
+    return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(),
+                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
+                       SCC.getOperand(2));
+
+  // If we can fold this based on the true/false value, do so.
+  if (SimplifySelectOps(N, N2, N3))
+    return SDValue(N, 0);  // Don't revisit N.
+
+  // fold select_cc into other things, such as min/max/abs
+  return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC);
+}
+
+SDValue DAGCombiner::visitSETCC(SDNode *N) {
+  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
+                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
+                       N->getDebugLoc());
+}
+
+// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
+// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
+// transformation. Returns true if extension are possible and the above
+// mentioned transformation is profitable.
+static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
+                                    unsigned ExtOpc,
+                                    SmallVector<SDNode*, 4> &ExtendNodes,
+                                    const TargetLowering &TLI) {
+  bool HasCopyToRegUses = false;
+  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
+  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
+                            UE = N0.getNode()->use_end();
+       UI != UE; ++UI) {
+    SDNode *User = *UI;
+    if (User == N)
+      continue;
+    if (UI.getUse().getResNo() != N0.getResNo())
+      continue;
+    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
+    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
+      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
+      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
+        // Sign bits will be lost after a zext.
+        return false;
+      bool Add = false;
+      for (unsigned i = 0; i != 2; ++i) {
+        SDValue UseOp = User->getOperand(i);
+        if (UseOp == N0)
+          continue;
+        if (!isa<ConstantSDNode>(UseOp))
+          return false;
+        Add = true;
+      }
+      if (Add)
+        ExtendNodes.push_back(User);
+      continue;
+    }
+    // If truncates aren't free and there are users we can't
+    // extend, it isn't worthwhile.
+    if (!isTruncFree)
+      return false;
+    // Remember if this value is live-out.
+    if (User->getOpcode() == ISD::CopyToReg)
+      HasCopyToRegUses = true;
+  }
+
+  if (HasCopyToRegUses) {
+    bool BothLiveOut = false;
+    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
+         UI != UE; ++UI) {
+      SDUse &Use = UI.getUse();
+      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
+        BothLiveOut = true;
+        break;
+      }
+    }
+    if (BothLiveOut)
+      // Both unextended and extended values are live out. There had better be
+      // good a reason for the transformation.
+      return ExtendNodes.size();
+  }
+  return true;
+}
+
+SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  EVT VT = N->getValueType(0);
+
+  // fold (sext c1) -> c1
+  if (isa<ConstantSDNode>(N0))
+    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0);
+
+  // fold (sext (sext x)) -> (sext x)
+  // fold (sext (aext x)) -> (sext x)
+  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
+    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT,
+                       N0.getOperand(0));
+
+  if (N0.getOpcode() == ISD::TRUNCATE) {
+    // fold (sext (truncate (load x))) -> (sext (smaller load x))
+    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
+    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
+    if (NarrowLoad.getNode()) {
+      if (NarrowLoad.getNode() != N0.getNode())
+        CombineTo(N0.getNode(), NarrowLoad);
+      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+    }
+
+    // See if the value being truncated is already sign extended.  If so, just
+    // eliminate the trunc/sext pair.
+    SDValue Op = N0.getOperand(0);
+    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
+    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
+    unsigned DestBits = VT.getScalarType().getSizeInBits();
+    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
+
+    if (OpBits == DestBits) {
+      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
+      // bits, it is already ready.
+      if (NumSignBits > DestBits-MidBits)
+        return Op;
+    } else if (OpBits < DestBits) {
+      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
+      // bits, just sext from i32.
+      if (NumSignBits > OpBits-MidBits)
+        return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op);
+    } else {
+      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
+      // bits, just truncate to i32.
+      if (NumSignBits > OpBits-MidBits)
+        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
+    }
+
+    // fold (sext (truncate x)) -> (sextinreg x).
+    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
+                                                 N0.getValueType())) {
+      if (OpBits < DestBits)
+        Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op);
+      else if (OpBits > DestBits)
+        Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op);
+      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op,
+                         DAG.getValueType(N0.getValueType()));
+    }
+  }
+
+  // fold (sext (load x)) -> (sext (truncate (sextload x)))
+  if (ISD::isNON_EXTLoad(N0.getNode()) &&
+      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
+       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
+    bool DoXform = true;
+    SmallVector<SDNode*, 4> SetCCs;
+    if (!N0.hasOneUse())
+      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
+    if (DoXform) {
+      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
+                                       LN0->getChain(),
+                                       LN0->getBasePtr(), LN0->getSrcValue(),
+                                       LN0->getSrcValueOffset(),
+                                       N0.getValueType(),
+                                       LN0->isVolatile(), LN0->getAlignment());
+      CombineTo(N, ExtLoad);
+      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
+                                  N0.getValueType(), ExtLoad);
+      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
+
+      // Extend SetCC uses if necessary.
+      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
+        SDNode *SetCC = SetCCs[i];
+        SmallVector<SDValue, 4> Ops;
+
+        for (unsigned j = 0; j != 2; ++j) {
+          SDValue SOp = SetCC->getOperand(j);
+          if (SOp == Trunc)
+            Ops.push_back(ExtLoad);
+          else
+            Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND,
+                                      N->getDebugLoc(), VT, SOp));
+        }
+
+        Ops.push_back(SetCC->getOperand(2));
+        CombineTo(SetCC, DAG.getNode(ISD::SETCC, N->getDebugLoc(),
+                                     SetCC->getValueType(0),
+                                     &Ops[0], Ops.size()));
+      }
+
+      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+    }
+  }
+
+  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
+  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
+  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
+      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    EVT MemVT = LN0->getMemoryVT();
+    if ((!LegalOperations && !LN0->isVolatile()) ||
+        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
+      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
+                                       LN0->getChain(),
+                                       LN0->getBasePtr(), LN0->getSrcValue(),
+                                       LN0->getSrcValueOffset(), MemVT,
+                                       LN0->isVolatile(), LN0->getAlignment());
+      CombineTo(N, ExtLoad);
+      CombineTo(N0.getNode(),
+                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
+                            N0.getValueType(), ExtLoad),
+                ExtLoad.getValue(1));
+      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+    }
+  }
+
+  if (N0.getOpcode() == ISD::SETCC) {
+    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
+    if (VT.isVector() &&
+        // We know that the # elements of the results is the same as the
+        // # elements of the compare (and the # elements of the compare result
+        // for that matter).  Check to see that they are the same size.  If so,
+        // we know that the element size of the sext'd result matches the
+        // element size of the compare operands.
+        VT.getSizeInBits() == N0.getOperand(0).getValueType().getSizeInBits() &&
+      
+        // Only do this before legalize for now.
+        !LegalOperations) {
+      return DAG.getVSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
+                           N0.getOperand(1),
+                           cast<CondCodeSDNode>(N0.getOperand(2))->get());
+    }
+    
+    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
+    SDValue NegOne =
+      DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
+    SDValue SCC =
+      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
+                       NegOne, DAG.getConstant(0, VT),
+                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
+    if (SCC.getNode()) return SCC;
+    if (!LegalOperations ||
+        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(VT)))
+      return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
+                         DAG.getSetCC(N->getDebugLoc(),
+                                      TLI.getSetCCResultType(VT),
+                                      N0.getOperand(0), N0.getOperand(1),
+                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
+                         NegOne, DAG.getConstant(0, VT));
+  }
+  
+  
+
+  // fold (sext x) -> (zext x) if the sign bit is known zero.
+  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
+      DAG.SignBitIsZero(N0))
+    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  EVT VT = N->getValueType(0);
+
+  // fold (zext c1) -> c1
+  if (isa<ConstantSDNode>(N0))
+    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
+  // fold (zext (zext x)) -> (zext x)
+  // fold (zext (aext x)) -> (zext x)
+  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
+    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT,
+                       N0.getOperand(0));
+
+  // fold (zext (truncate (load x))) -> (zext (smaller load x))
+  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
+  if (N0.getOpcode() == ISD::TRUNCATE) {
+    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
+    if (NarrowLoad.getNode()) {
+      if (NarrowLoad.getNode() != N0.getNode())
+        CombineTo(N0.getNode(), NarrowLoad);
+      return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, NarrowLoad);
+    }
+  }
+
+  // fold (zext (truncate x)) -> (and x, mask)
+  if (N0.getOpcode() == ISD::TRUNCATE &&
+      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) &&
+      (!TLI.isTruncateFree(N0.getOperand(0).getValueType(),
+                           N0.getValueType()) ||
+       !TLI.isZExtFree(N0.getValueType(), VT))) {
+    SDValue Op = N0.getOperand(0);
+    if (Op.getValueType().bitsLT(VT)) {
+      Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op);
+    } else if (Op.getValueType().bitsGT(VT)) {
+      Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
+    }
+    return DAG.getZeroExtendInReg(Op, N->getDebugLoc(),
+                                  N0.getValueType().getScalarType());
+  }
+
+  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
+  // if either of the casts is not free.
+  if (N0.getOpcode() == ISD::AND &&
+      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
+      N0.getOperand(1).getOpcode() == ISD::Constant &&
+      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
+                           N0.getValueType()) ||
+       !TLI.isZExtFree(N0.getValueType(), VT))) {
+    SDValue X = N0.getOperand(0).getOperand(0);
+    if (X.getValueType().bitsLT(VT)) {
+      X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X);
+    } else if (X.getValueType().bitsGT(VT)) {
+      X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
+    }
+    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
+    Mask.zext(VT.getSizeInBits());
+    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
+                       X, DAG.getConstant(Mask, VT));
+  }
+
+  // fold (zext (load x)) -> (zext (truncate (zextload x)))
+  if (ISD::isNON_EXTLoad(N0.getNode()) &&
+      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
+       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
+    bool DoXform = true;
+    SmallVector<SDNode*, 4> SetCCs;
+    if (!N0.hasOneUse())
+      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
+    if (DoXform) {
+      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
+                                       LN0->getChain(),
+                                       LN0->getBasePtr(), LN0->getSrcValue(),
+                                       LN0->getSrcValueOffset(),
+                                       N0.getValueType(),
+                                       LN0->isVolatile(), LN0->getAlignment());
+      CombineTo(N, ExtLoad);
+      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
+                                  N0.getValueType(), ExtLoad);
+      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
+
+      // Extend SetCC uses if necessary.
+      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
+        SDNode *SetCC = SetCCs[i];
+        SmallVector<SDValue, 4> Ops;
+
+        for (unsigned j = 0; j != 2; ++j) {
+          SDValue SOp = SetCC->getOperand(j);
+          if (SOp == Trunc)
+            Ops.push_back(ExtLoad);
+          else
+            Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND,
+                                      N->getDebugLoc(), VT, SOp));
+        }
+
+        Ops.push_back(SetCC->getOperand(2));
+        CombineTo(SetCC, DAG.getNode(ISD::SETCC, N->getDebugLoc(),
+                                     SetCC->getValueType(0),
+                                     &Ops[0], Ops.size()));
+      }
+
+      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+    }
+  }
+
+  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
+  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
+  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
+      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    EVT MemVT = LN0->getMemoryVT();
+    if ((!LegalOperations && !LN0->isVolatile()) ||
+        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
+      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
+                                       LN0->getChain(),
+                                       LN0->getBasePtr(), LN0->getSrcValue(),
+                                       LN0->getSrcValueOffset(), MemVT,
+                                       LN0->isVolatile(), LN0->getAlignment());
+      CombineTo(N, ExtLoad);
+      CombineTo(N0.getNode(),
+                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(),
+                            ExtLoad),
+                ExtLoad.getValue(1));
+      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+    }
+  }
+
+  // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
+  if (N0.getOpcode() == ISD::SETCC) {
+    SDValue SCC =
+      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
+                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
+                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
+    if (SCC.getNode()) return SCC;
+  }
+
+  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
+  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
+      isa<ConstantSDNode>(N0.getOperand(1)) &&
+      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
+      N0.hasOneUse()) {
+    if (N0.getOpcode() == ISD::SHL) {
+      // If the original shl may be shifting out bits, do not perform this
+      // transformation.
+      unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
+      unsigned KnownZeroBits = N0.getOperand(0).getValueType().getSizeInBits() -
+        N0.getOperand(0).getOperand(0).getValueType().getSizeInBits();
+      if (ShAmt > KnownZeroBits)
+        return SDValue();
+    }
+    DebugLoc dl = N->getDebugLoc();
+    return DAG.getNode(N0.getOpcode(), dl, VT,
+                       DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0.getOperand(0)),
+                       DAG.getNode(ISD::ZERO_EXTEND, dl,
+                                   N0.getOperand(1).getValueType(),
+                                   N0.getOperand(1)));
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  EVT VT = N->getValueType(0);
+
+  // fold (aext c1) -> c1
+  if (isa<ConstantSDNode>(N0))
+    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0);
+  // fold (aext (aext x)) -> (aext x)
+  // fold (aext (zext x)) -> (zext x)
+  // fold (aext (sext x)) -> (sext x)
+  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
+      N0.getOpcode() == ISD::ZERO_EXTEND ||
+      N0.getOpcode() == ISD::SIGN_EXTEND)
+    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0));
+
+  // fold (aext (truncate (load x))) -> (aext (smaller load x))
+  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
+  if (N0.getOpcode() == ISD::TRUNCATE) {
+    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
+    if (NarrowLoad.getNode()) {
+      if (NarrowLoad.getNode() != N0.getNode())
+        CombineTo(N0.getNode(), NarrowLoad);
+      return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, NarrowLoad);
+    }
+  }
+
+  // fold (aext (truncate x))
+  if (N0.getOpcode() == ISD::TRUNCATE) {
+    SDValue TruncOp = N0.getOperand(0);
+    if (TruncOp.getValueType() == VT)
+      return TruncOp; // x iff x size == zext size.
+    if (TruncOp.getValueType().bitsGT(VT))
+      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp);
+    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp);
+  }
+
+  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
+  // if the trunc is not free.
+  if (N0.getOpcode() == ISD::AND &&
+      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
+      N0.getOperand(1).getOpcode() == ISD::Constant &&
+      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
+                          N0.getValueType())) {
+    SDValue X = N0.getOperand(0).getOperand(0);
+    if (X.getValueType().bitsLT(VT)) {
+      X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X);
+    } else if (X.getValueType().bitsGT(VT)) {
+      X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X);
+    }
+    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
+    Mask.zext(VT.getSizeInBits());
+    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
+                       X, DAG.getConstant(Mask, VT));
+  }
+
+  // fold (aext (load x)) -> (aext (truncate (extload x)))
+  if (ISD::isNON_EXTLoad(N0.getNode()) &&
+      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
+       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
+    bool DoXform = true;
+    SmallVector<SDNode*, 4> SetCCs;
+    if (!N0.hasOneUse())
+      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
+    if (DoXform) {
+      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
+                                       LN0->getChain(),
+                                       LN0->getBasePtr(), LN0->getSrcValue(),
+                                       LN0->getSrcValueOffset(),
+                                       N0.getValueType(),
+                                       LN0->isVolatile(), LN0->getAlignment());
+      CombineTo(N, ExtLoad);
+      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
+                                  N0.getValueType(), ExtLoad);
+      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
+
+      // Extend SetCC uses if necessary.
+      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
+        SDNode *SetCC = SetCCs[i];
+        SmallVector<SDValue, 4> Ops;
+
+        for (unsigned j = 0; j != 2; ++j) {
+          SDValue SOp = SetCC->getOperand(j);
+          if (SOp == Trunc)
+            Ops.push_back(ExtLoad);
+          else
+            Ops.push_back(DAG.getNode(ISD::ANY_EXTEND,
+                                      N->getDebugLoc(), VT, SOp));
+        }
+
+        Ops.push_back(SetCC->getOperand(2));
+        CombineTo(SetCC, DAG.getNode(ISD::SETCC, N->getDebugLoc(),
+                                     SetCC->getValueType(0),
+                                     &Ops[0], Ops.size()));
+      }
+
+      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+    }
+  }
+
+  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
+  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
+  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
+  if (N0.getOpcode() == ISD::LOAD &&
+      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
+      N0.hasOneUse()) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    EVT MemVT = LN0->getMemoryVT();
+    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(),
+                                     VT, LN0->getChain(), LN0->getBasePtr(),
+                                     LN0->getSrcValue(),
+                                     LN0->getSrcValueOffset(), MemVT,
+                                     LN0->isVolatile(), LN0->getAlignment());
+    CombineTo(N, ExtLoad);
+    CombineTo(N0.getNode(),
+              DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
+                          N0.getValueType(), ExtLoad),
+              ExtLoad.getValue(1));
+    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+  }
+
+  // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
+  if (N0.getOpcode() == ISD::SETCC) {
+    SDValue SCC =
+      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
+                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
+                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
+    if (SCC.getNode())
+      return SCC;
+  }
+
+  return SDValue();
+}
+
+/// GetDemandedBits - See if the specified operand can be simplified with the
+/// knowledge that only the bits specified by Mask are used.  If so, return the
+/// simpler operand, otherwise return a null SDValue.
+SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
+  switch (V.getOpcode()) {
+  default: break;
+  case ISD::OR:
+  case ISD::XOR:
+    // If the LHS or RHS don't contribute bits to the or, drop them.
+    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
+      return V.getOperand(1);
+    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
+      return V.getOperand(0);
+    break;
+  case ISD::SRL:
+    // Only look at single-use SRLs.
+    if (!V.getNode()->hasOneUse())
+      break;
+    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
+      // See if we can recursively simplify the LHS.
+      unsigned Amt = RHSC->getZExtValue();
+
+      // Watch out for shift count overflow though.
+      if (Amt >= Mask.getBitWidth()) break;
+      APInt NewMask = Mask << Amt;
+      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
+      if (SimplifyLHS.getNode())
+        return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(),
+                           SimplifyLHS, V.getOperand(1));
+    }
+  }
+  return SDValue();
+}
+
+/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
+/// bits and then truncated to a narrower type and where N is a multiple
+/// of number of bits of the narrower type, transform it to a narrower load
+/// from address + N / num of bits of new type. If the result is to be
+/// extended, also fold the extension to form a extending load.
+SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
+  unsigned Opc = N->getOpcode();
+  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
+  SDValue N0 = N->getOperand(0);
+  EVT VT = N->getValueType(0);
+  EVT ExtVT = VT;
+
+  // This transformation isn't valid for vector loads.
+  if (VT.isVector())
+    return SDValue();
+
+  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
+  // extended to VT.
+  if (Opc == ISD::SIGN_EXTEND_INREG) {
+    ExtType = ISD::SEXTLOAD;
+    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
+    if (LegalOperations && !TLI.isLoadExtLegal(ISD::SEXTLOAD, ExtVT))
+      return SDValue();
+  }
+
+  unsigned EVTBits = ExtVT.getSizeInBits();
+  unsigned ShAmt = 0;
+  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse() && ExtVT.isRound()) {
+    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+      ShAmt = N01->getZExtValue();
+      // Is the shift amount a multiple of size of VT?
+      if ((ShAmt & (EVTBits-1)) == 0) {
+        N0 = N0.getOperand(0);
+        // Is the load width a multiple of size of VT?
+        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
+          return SDValue();
+      }
+    }
+  }
+
+  // Do not generate loads of non-round integer types since these can
+  // be expensive (and would be wrong if the type is not byte sized).
+  if (isa<LoadSDNode>(N0) && N0.hasOneUse() && ExtVT.isRound() &&
+      cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits() > EVTBits &&
+      // Do not change the width of a volatile load.
+      !cast<LoadSDNode>(N0)->isVolatile()) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    EVT PtrType = N0.getOperand(1).getValueType();
+
+    // For big endian targets, we need to adjust the offset to the pointer to
+    // load the correct bytes.
+    if (TLI.isBigEndian()) {
+      unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
+      unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
+      ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
+    }
+
+    uint64_t PtrOff =  ShAmt / 8;
+    unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
+    SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(),
+                                 PtrType, LN0->getBasePtr(),
+                                 DAG.getConstant(PtrOff, PtrType));
+    AddToWorkList(NewPtr.getNode());
+
+    SDValue Load = (ExtType == ISD::NON_EXTLOAD)
+      ? DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr,
+                    LN0->getSrcValue(), LN0->getSrcValueOffset() + PtrOff,
+                    LN0->isVolatile(), NewAlign)
+      : DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(), NewPtr,
+                       LN0->getSrcValue(), LN0->getSrcValueOffset() + PtrOff,
+                       ExtVT, LN0->isVolatile(), NewAlign);
+
+    // Replace the old load's chain with the new load's chain.
+    WorkListRemover DeadNodes(*this);
+    DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1),
+                                  &DeadNodes);
+
+    // Return the new loaded value.
+    return Load;
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  EVT VT = N->getValueType(0);
+  EVT EVT = cast<VTSDNode>(N1)->getVT();
+  unsigned VTBits = VT.getScalarType().getSizeInBits();
+  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
+
+  // fold (sext_in_reg c1) -> c1
+  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
+    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1);
+
+  // If the input is already sign extended, just drop the extension.
+  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
+    return N0;
+
+  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
+  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
+      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) {
+    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
+                       N0.getOperand(0), N1);
+  }
+
+  // fold (sext_in_reg (sext x)) -> (sext x)
+  // fold (sext_in_reg (aext x)) -> (sext x)
+  // if x is small enough.
+  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
+    SDValue N00 = N0.getOperand(0);
+    if (N00.getValueType().getScalarType().getSizeInBits() < EVTBits)
+      return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1);
+  }
+
+  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
+  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
+    return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT);
+
+  // fold operands of sext_in_reg based on knowledge that the top bits are not
+  // demanded.
+  if (SimplifyDemandedBits(SDValue(N, 0)))
+    return SDValue(N, 0);
+
+  // fold (sext_in_reg (load x)) -> (smaller sextload x)
+  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
+  SDValue NarrowLoad = ReduceLoadWidth(N);
+  if (NarrowLoad.getNode())
+    return NarrowLoad;
+
+  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
+  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
+  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
+  if (N0.getOpcode() == ISD::SRL) {
+    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
+      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
+        // We can turn this into an SRA iff the input to the SRL is already sign
+        // extended enough.
+        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
+        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
+          return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT,
+                             N0.getOperand(0), N0.getOperand(1));
+      }
+  }
+
+  // fold (sext_inreg (extload x)) -> (sextload x)
+  if (ISD::isEXTLoad(N0.getNode()) &&
+      ISD::isUNINDEXEDLoad(N0.getNode()) &&
+      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
+      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
+       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
+                                     LN0->getChain(),
+                                     LN0->getBasePtr(), LN0->getSrcValue(),
+                                     LN0->getSrcValueOffset(), EVT,
+                                     LN0->isVolatile(), LN0->getAlignment());
+    CombineTo(N, ExtLoad);
+    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
+    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+  }
+  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
+  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
+      N0.hasOneUse() &&
+      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
+      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
+       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
+                                     LN0->getChain(),
+                                     LN0->getBasePtr(), LN0->getSrcValue(),
+                                     LN0->getSrcValueOffset(), EVT,
+                                     LN0->isVolatile(), LN0->getAlignment());
+    CombineTo(N, ExtLoad);
+    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
+    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+  }
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  EVT VT = N->getValueType(0);
+
+  // noop truncate
+  if (N0.getValueType() == N->getValueType(0))
+    return N0;
+  // fold (truncate c1) -> c1
+  if (isa<ConstantSDNode>(N0))
+    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0);
+  // fold (truncate (truncate x)) -> (truncate x)
+  if (N0.getOpcode() == ISD::TRUNCATE)
+    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
+  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
+  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
+      N0.getOpcode() == ISD::ANY_EXTEND) {
+    if (N0.getOperand(0).getValueType().bitsLT(VT))
+      // if the source is smaller than the dest, we still need an extend
+      return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
+                         N0.getOperand(0));
+    else if (N0.getOperand(0).getValueType().bitsGT(VT))
+      // if the source is larger than the dest, than we just need the truncate
+      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
+    else
+      // if the source and dest are the same type, we can drop both the extend
+      // and the truncate.
+      return N0.getOperand(0);
+  }
+
+  // See if we can simplify the input to this truncate through knowledge that
+  // only the low bits are being used.  For example "trunc (or (shl x, 8), y)"
+  // -> trunc y
+  SDValue Shorter =
+    GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
+                                             VT.getSizeInBits()));
+  if (Shorter.getNode())
+    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter);
+
+  // fold (truncate (load x)) -> (smaller load x)
+  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
+  return ReduceLoadWidth(N);
+}
+
+static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
+  SDValue Elt = N->getOperand(i);
+  if (Elt.getOpcode() != ISD::MERGE_VALUES)
+    return Elt.getNode();
+  return Elt.getOperand(Elt.getResNo()).getNode();
+}
+
+/// CombineConsecutiveLoads - build_pair (load, load) -> load
+/// if load locations are consecutive.
+SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
+  assert(N->getOpcode() == ISD::BUILD_PAIR);
+
+  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
+  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
+  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse())
+    return SDValue();
+  EVT LD1VT = LD1->getValueType(0);
+
+  if (ISD::isNON_EXTLoad(LD2) &&
+      LD2->hasOneUse() &&
+      // If both are volatile this would reduce the number of volatile loads.
+      // If one is volatile it might be ok, but play conservative and bail out.
+      !LD1->isVolatile() &&
+      !LD2->isVolatile() &&
+      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
+    unsigned Align = LD1->getAlignment();
+    unsigned NewAlign = TLI.getTargetData()->
+      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
+
+    if (NewAlign <= Align &&
+        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
+      return DAG.getLoad(VT, N->getDebugLoc(), LD1->getChain(),
+                         LD1->getBasePtr(), LD1->getSrcValue(),
+                         LD1->getSrcValueOffset(), false, Align);
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitBIT_CONVERT(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  EVT VT = N->getValueType(0);
+
+  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
+  // Only do this before legalize, since afterward the target may be depending
+  // on the bitconvert.
+  // First check to see if this is all constant.
+  if (!LegalTypes &&
+      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
+      VT.isVector()) {
+    bool isSimple = true;
+    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
+      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
+          N0.getOperand(i).getOpcode() != ISD::Constant &&
+          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
+        isSimple = false;
+        break;
+      }
+
+    EVT DestEltVT = N->getValueType(0).getVectorElementType();
+    assert(!DestEltVT.isVector() &&
+           "Element type of vector ValueType must not be vector!");
+    if (isSimple)
+      return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.getNode(), DestEltVT);
+  }
+
+  // If the input is a constant, let getNode fold it.
+  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
+    SDValue Res = DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, N0);
+    if (Res.getNode() != N) {
+      if (!LegalOperations ||
+          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
+        return Res;
+
+      // Folding it resulted in an illegal node, and it's too late to
+      // do that. Clean up the old node and forego the transformation.
+      // Ideally this won't happen very often, because instcombine
+      // and the earlier dagcombine runs (where illegal nodes are
+      // permitted) should have folded most of them already.
+      DAG.DeleteNode(Res.getNode());
+    }
+  }
+
+  // (conv (conv x, t1), t2) -> (conv x, t2)
+  if (N0.getOpcode() == ISD::BIT_CONVERT)
+    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT,
+                       N0.getOperand(0));
+
+  // fold (conv (load x)) -> (load (conv*)x)
+  // If the resultant load doesn't need a higher alignment than the original!
+  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
+      // Do not change the width of a volatile load.
+      !cast<LoadSDNode>(N0)->isVolatile() &&
+      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    unsigned Align = TLI.getTargetData()->
+      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
+    unsigned OrigAlign = LN0->getAlignment();
+
+    if (Align <= OrigAlign) {
+      SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(),
+                                 LN0->getBasePtr(),
+                                 LN0->getSrcValue(), LN0->getSrcValueOffset(),
+                                 LN0->isVolatile(), OrigAlign);
+      AddToWorkList(N);
+      CombineTo(N0.getNode(),
+                DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
+                            N0.getValueType(), Load),
+                Load.getValue(1));
+      return Load;
+    }
+  }
+
+  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
+  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
+  // This often reduces constant pool loads.
+  if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) &&
+      N0.getNode()->hasOneUse() && VT.isInteger() && !VT.isVector()) {
+    SDValue NewConv = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(), VT,
+                                  N0.getOperand(0));
+    AddToWorkList(NewConv.getNode());
+
+    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
+    if (N0.getOpcode() == ISD::FNEG)
+      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
+                         NewConv, DAG.getConstant(SignBit, VT));
+    assert(N0.getOpcode() == ISD::FABS);
+    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
+                       NewConv, DAG.getConstant(~SignBit, VT));
+  }
+
+  // fold (bitconvert (fcopysign cst, x)) ->
+  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
+  // Note that we don't handle (copysign x, cst) because this can always be
+  // folded to an fneg or fabs.
+  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
+      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
+      VT.isInteger() && !VT.isVector()) {
+    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
+    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
+    if (TLI.isTypeLegal(IntXVT) || !LegalTypes) {
+      SDValue X = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
+                              IntXVT, N0.getOperand(1));
+      AddToWorkList(X.getNode());
+
+      // If X has a different width than the result/lhs, sext it or truncate it.
+      unsigned VTWidth = VT.getSizeInBits();
+      if (OrigXWidth < VTWidth) {
+        X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X);
+        AddToWorkList(X.getNode());
+      } else if (OrigXWidth > VTWidth) {
+        // To get the sign bit in the right place, we have to shift it right
+        // before truncating.
+        X = DAG.getNode(ISD::SRL, X.getDebugLoc(),
+                        X.getValueType(), X,
+                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
+        AddToWorkList(X.getNode());
+        X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
+        AddToWorkList(X.getNode());
+      }
+
+      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
+      X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT,
+                      X, DAG.getConstant(SignBit, VT));
+      AddToWorkList(X.getNode());
+
+      SDValue Cst = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
+                                VT, N0.getOperand(0));
+      Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT,
+                        Cst, DAG.getConstant(~SignBit, VT));
+      AddToWorkList(Cst.getNode());
+
+      return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst);
+    }
+  }
+
+  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
+  if (N0.getOpcode() == ISD::BUILD_PAIR) {
+    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
+    if (CombineLD.getNode())
+      return CombineLD;
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
+  EVT VT = N->getValueType(0);
+  return CombineConsecutiveLoads(N, VT);
+}
+
+/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
+/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
+/// destination element value type.
+SDValue DAGCombiner::
+ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
+  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
+
+  // If this is already the right type, we're done.
+  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
+
+  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
+  unsigned DstBitSize = DstEltVT.getSizeInBits();
+
+  // If this is a conversion of N elements of one type to N elements of another
+  // type, convert each element.  This handles FP<->INT cases.
+  if (SrcBitSize == DstBitSize) {
+    SmallVector<SDValue, 8> Ops;
+    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
+      SDValue Op = BV->getOperand(i);
+      // If the vector element type is not legal, the BUILD_VECTOR operands
+      // are promoted and implicitly truncated.  Make that explicit here.
+      if (Op.getValueType() != SrcEltVT)
+        Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op);
+      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, BV->getDebugLoc(),
+                                DstEltVT, Op));
+      AddToWorkList(Ops.back().getNode());
+    }
+    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
+                              BV->getValueType(0).getVectorNumElements());
+    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
+                       &Ops[0], Ops.size());
+  }
+
+  // Otherwise, we're growing or shrinking the elements.  To avoid having to
+  // handle annoying details of growing/shrinking FP values, we convert them to
+  // int first.
+  if (SrcEltVT.isFloatingPoint()) {
+    // Convert the input float vector to a int vector where the elements are the
+    // same sizes.
+    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
+    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
+    BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).getNode();
+    SrcEltVT = IntVT;
+  }
+
+  // Now we know the input is an integer vector.  If the output is a FP type,
+  // convert to integer first, then to FP of the right size.
+  if (DstEltVT.isFloatingPoint()) {
+    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
+    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
+    SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).getNode();
+
+    // Next, convert to FP elements of the same size.
+    return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
+  }
+
+  // Okay, we know the src/dst types are both integers of differing types.
+  // Handling growing first.
+  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
+  if (SrcBitSize < DstBitSize) {
+    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
+
+    SmallVector<SDValue, 8> Ops;
+    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
+         i += NumInputsPerOutput) {
+      bool isLE = TLI.isLittleEndian();
+      APInt NewBits = APInt(DstBitSize, 0);
+      bool EltIsUndef = true;
+      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
+        // Shift the previously computed bits over.
+        NewBits <<= SrcBitSize;
+        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
+        if (Op.getOpcode() == ISD::UNDEF) continue;
+        EltIsUndef = false;
+
+        NewBits |= (APInt(cast<ConstantSDNode>(Op)->getAPIntValue()).
+                    zextOrTrunc(SrcBitSize).zext(DstBitSize));
+      }
+
+      if (EltIsUndef)
+        Ops.push_back(DAG.getUNDEF(DstEltVT));
+      else
+        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
+    }
+
+    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
+    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
+                       &Ops[0], Ops.size());
+  }
+
+  // Finally, this must be the case where we are shrinking elements: each input
+  // turns into multiple outputs.
+  bool isS2V = ISD::isScalarToVector(BV);
+  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
+  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
+                            NumOutputsPerInput*BV->getNumOperands());
+  SmallVector<SDValue, 8> Ops;
+
+  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
+    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
+      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
+        Ops.push_back(DAG.getUNDEF(DstEltVT));
+      continue;
+    }
+
+    APInt OpVal = APInt(cast<ConstantSDNode>(BV->getOperand(i))->
+                        getAPIntValue()).zextOrTrunc(SrcBitSize);
+
+    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
+      APInt ThisVal = APInt(OpVal).trunc(DstBitSize);
+      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
+      if (isS2V && i == 0 && j == 0 && APInt(ThisVal).zext(SrcBitSize) == OpVal)
+        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
+        return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
+                           Ops[0]);
+      OpVal = OpVal.lshr(DstBitSize);
+    }
+
+    // For big endian targets, swap the order of the pieces of each element.
+    if (TLI.isBigEndian())
+      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
+  }
+
+  return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
+                     &Ops[0], Ops.size());
+}
+
+SDValue DAGCombiner::visitFADD(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+  EVT VT = N->getValueType(0);
+
+  // fold vector ops
+  if (VT.isVector()) {
+    SDValue FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.getNode()) return FoldedVOp;
+  }
+
+  // fold (fadd c1, c2) -> (fadd c1, c2)
+  if (N0CFP && N1CFP && VT != MVT::ppcf128)
+    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1);
+  // canonicalize constant to RHS
+  if (N0CFP && !N1CFP)
+    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0);
+  // fold (fadd A, 0) -> A
+  if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
+    return N0;
+  // fold (fadd A, (fneg B)) -> (fsub A, B)
+  if (isNegatibleForFree(N1, LegalOperations) == 2)
+    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0,
+                       GetNegatedExpression(N1, DAG, LegalOperations));
+  // fold (fadd (fneg A), B) -> (fsub B, A)
+  if (isNegatibleForFree(N0, LegalOperations) == 2)
+    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1,
+                       GetNegatedExpression(N0, DAG, LegalOperations));
+
+  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
+  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
+      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
+    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0),
+                       DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
+                                   N0.getOperand(1), N1));
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitFSUB(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+  EVT VT = N->getValueType(0);
+
+  // fold vector ops
+  if (VT.isVector()) {
+    SDValue FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.getNode()) return FoldedVOp;
+  }
+
+  // fold (fsub c1, c2) -> c1-c2
+  if (N0CFP && N1CFP && VT != MVT::ppcf128)
+    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1);
+  // fold (fsub A, 0) -> A
+  if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
+    return N0;
+  // fold (fsub 0, B) -> -B
+  if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
+    if (isNegatibleForFree(N1, LegalOperations))
+      return GetNegatedExpression(N1, DAG, LegalOperations);
+    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
+      return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N1);
+  }
+  // fold (fsub A, (fneg B)) -> (fadd A, B)
+  if (isNegatibleForFree(N1, LegalOperations))
+    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0,
+                       GetNegatedExpression(N1, DAG, LegalOperations));
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitFMUL(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+  EVT VT = N->getValueType(0);
+
+  // fold vector ops
+  if (VT.isVector()) {
+    SDValue FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.getNode()) return FoldedVOp;
+  }
+
+  // fold (fmul c1, c2) -> c1*c2
+  if (N0CFP && N1CFP && VT != MVT::ppcf128)
+    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1);
+  // canonicalize constant to RHS
+  if (N0CFP && !N1CFP)
+    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0);
+  // fold (fmul A, 0) -> 0
+  if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
+    return N1;
+  // fold (fmul A, 0) -> 0, vector edition.
+  if (UnsafeFPMath && ISD::isBuildVectorAllZeros(N1.getNode()))
+    return N1;
+  // fold (fmul X, 2.0) -> (fadd X, X)
+  if (N1CFP && N1CFP->isExactlyValue(+2.0))
+    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0);
+  // fold (fmul X, -1.0) -> (fneg X)
+  if (N1CFP && N1CFP->isExactlyValue(-1.0))
+    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
+      return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0);
+
+  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
+  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations)) {
+    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations)) {
+      // Both can be negated for free, check to see if at least one is cheaper
+      // negated.
+      if (LHSNeg == 2 || RHSNeg == 2)
+        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
+                           GetNegatedExpression(N0, DAG, LegalOperations),
+                           GetNegatedExpression(N1, DAG, LegalOperations));
+    }
+  }
+
+  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
+  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
+      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
+    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0),
+                       DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
+                                   N0.getOperand(1), N1));
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitFDIV(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+  EVT VT = N->getValueType(0);
+
+  // fold vector ops
+  if (VT.isVector()) {
+    SDValue FoldedVOp = SimplifyVBinOp(N);
+    if (FoldedVOp.getNode()) return FoldedVOp;
+  }
+
+  // fold (fdiv c1, c2) -> c1/c2
+  if (N0CFP && N1CFP && VT != MVT::ppcf128)
+    return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1);
+
+
+  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
+  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations)) {
+    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations)) {
+      // Both can be negated for free, check to see if at least one is cheaper
+      // negated.
+      if (LHSNeg == 2 || RHSNeg == 2)
+        return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT,
+                           GetNegatedExpression(N0, DAG, LegalOperations),
+                           GetNegatedExpression(N1, DAG, LegalOperations));
+    }
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitFREM(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+  EVT VT = N->getValueType(0);
+
+  // fold (frem c1, c2) -> fmod(c1,c2)
+  if (N0CFP && N1CFP && VT != MVT::ppcf128)
+    return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1);
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+  EVT VT = N->getValueType(0);
+
+  if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold
+    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1);
+
+  if (N1CFP) {
+    const APFloat& V = N1CFP->getValueAPF();
+    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
+    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
+    if (!V.isNegative()) {
+      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
+        return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
+    } else {
+      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
+        return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
+                           DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0));
+    }
+  }
+
+  // copysign(fabs(x), y) -> copysign(x, y)
+  // copysign(fneg(x), y) -> copysign(x, y)
+  // copysign(copysign(x,z), y) -> copysign(x, y)
+  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
+      N0.getOpcode() == ISD::FCOPYSIGN)
+    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
+                       N0.getOperand(0), N1);
+
+  // copysign(x, abs(y)) -> abs(x)
+  if (N1.getOpcode() == ISD::FABS)
+    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
+
+  // copysign(x, copysign(y,z)) -> copysign(x, z)
+  if (N1.getOpcode() == ISD::FCOPYSIGN)
+    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
+                       N0, N1.getOperand(1));
+
+  // copysign(x, fp_extend(y)) -> copysign(x, y)
+  // copysign(x, fp_round(y)) -> copysign(x, y)
+  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
+    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
+                       N0, N1.getOperand(0));
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  EVT VT = N->getValueType(0);
+  EVT OpVT = N0.getValueType();
+
+  // fold (sint_to_fp c1) -> c1fp
+  if (N0C && OpVT != MVT::ppcf128)
+    return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
+
+  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
+  // but UINT_TO_FP is legal on this target, try to convert.
+  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
+      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
+    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
+    if (DAG.SignBitIsZero(N0))
+      return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+  EVT VT = N->getValueType(0);
+  EVT OpVT = N0.getValueType();
+
+  // fold (uint_to_fp c1) -> c1fp
+  if (N0C && OpVT != MVT::ppcf128)
+    return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
+
+  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
+  // but SINT_TO_FP is legal on this target, try to convert.
+  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
+      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
+    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
+    if (DAG.SignBitIsZero(N0))
+      return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  EVT VT = N->getValueType(0);
+
+  // fold (fp_to_sint c1fp) -> c1
+  if (N0CFP)
+    return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0);
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  EVT VT = N->getValueType(0);
+
+  // fold (fp_to_uint c1fp) -> c1
+  if (N0CFP && VT != MVT::ppcf128)
+    return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0);
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  EVT VT = N->getValueType(0);
+
+  // fold (fp_round c1fp) -> c1fp
+  if (N0CFP && N0.getValueType() != MVT::ppcf128)
+    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1);
+
+  // fold (fp_round (fp_extend x)) -> x
+  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
+    return N0.getOperand(0);
+
+  // fold (fp_round (fp_round x)) -> (fp_round x)
+  if (N0.getOpcode() == ISD::FP_ROUND) {
+    // This is a value preserving truncation if both round's are.
+    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
+                   N0.getNode()->getConstantOperandVal(1) == 1;
+    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0),
+                       DAG.getIntPtrConstant(IsTrunc));
+  }
+
+  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
+  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
+    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT,
+                              N0.getOperand(0), N1);
+    AddToWorkList(Tmp.getNode());
+    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
+                       Tmp, N0.getOperand(1));
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  EVT VT = N->getValueType(0);
+  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+
+  // fold (fp_round_inreg c1fp) -> c1fp
+  if (N0CFP && (TLI.isTypeLegal(EVT) || !LegalTypes)) {
+    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
+    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round);
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  EVT VT = N->getValueType(0);
+
+  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
+  if (N->hasOneUse() &&
+      N->use_begin()->getOpcode() == ISD::FP_ROUND)
+    return SDValue();
+
+  // fold (fp_extend c1fp) -> c1fp
+  if (N0CFP && VT != MVT::ppcf128)
+    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0);
+
+  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
+  // value of X.
+  if (N0.getOpcode() == ISD::FP_ROUND
+      && N0.getNode()->getConstantOperandVal(1) == 1) {
+    SDValue In = N0.getOperand(0);
+    if (In.getValueType() == VT) return In;
+    if (VT.bitsLT(In.getValueType()))
+      return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT,
+                         In, N0.getOperand(1));
+    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In);
+  }
+
+  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
+  if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
+      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
+       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
+    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
+                                     LN0->getChain(),
+                                     LN0->getBasePtr(), LN0->getSrcValue(),
+                                     LN0->getSrcValueOffset(),
+                                     N0.getValueType(),
+                                     LN0->isVolatile(), LN0->getAlignment());
+    CombineTo(N, ExtLoad);
+    CombineTo(N0.getNode(),
+              DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(),
+                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
+              ExtLoad.getValue(1));
+    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitFNEG(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  EVT VT = N->getValueType(0);
+
+  if (isNegatibleForFree(N0, LegalOperations))
+    return GetNegatedExpression(N0, DAG, LegalOperations);
+
+  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
+  // constant pool values.
+  if (N0.getOpcode() == ISD::BIT_CONVERT && 
+      !VT.isVector() &&
+      N0.getNode()->hasOneUse() &&
+      N0.getOperand(0).getValueType().isInteger()) {
+    SDValue Int = N0.getOperand(0);
+    EVT IntVT = Int.getValueType();
+    if (IntVT.isInteger() && !IntVT.isVector()) {
+      Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
+              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
+      AddToWorkList(Int.getNode());
+      return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
+                         VT, Int);
+    }
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitFABS(SDNode *N) {
+  SDValue N0 = N->getOperand(0);
+  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+  EVT VT = N->getValueType(0);
+
+  // fold (fabs c1) -> fabs(c1)
+  if (N0CFP && VT != MVT::ppcf128)
+    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
+  // fold (fabs (fabs x)) -> (fabs x)
+  if (N0.getOpcode() == ISD::FABS)
+    return N->getOperand(0);
+  // fold (fabs (fneg x)) -> (fabs x)
+  // fold (fabs (fcopysign x, y)) -> (fabs x)
+  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
+    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0));
+
+  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
+  // constant pool values.
+  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.getNode()->hasOneUse() &&
+      N0.getOperand(0).getValueType().isInteger() &&
+      !N0.getOperand(0).getValueType().isVector()) {
+    SDValue Int = N0.getOperand(0);
+    EVT IntVT = Int.getValueType();
+    if (IntVT.isInteger() && !IntVT.isVector()) {
+      Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
+             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
+      AddToWorkList(Int.getNode());
+      return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
+                         N->getValueType(0), Int);
+    }
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitBRCOND(SDNode *N) {
+  SDValue Chain = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+  SDValue N2 = N->getOperand(2);
+
+  // If N is a constant we could fold this into a fallthrough or unconditional
+  // branch. However that doesn't happen very often in normal code, because
+  // Instcombine/SimplifyCFG should have handled the available opportunities.
+  // If we did this folding here, it would be necessary to update the
+  // MachineBasicBlock CFG, which is awkward.
+
+  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
+  // on the target.
+  if (N1.getOpcode() == ISD::SETCC &&
+      TLI.isOperationLegalOrCustom(ISD::BR_CC, MVT::Other)) {
+    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
+                       Chain, N1.getOperand(2),
+                       N1.getOperand(0), N1.getOperand(1), N2);
+  }
+
+  SDNode *Trunc = 0;
+  if (N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) {
+    // Look pass truncate.
+    Trunc = N1.getNode();
+    N1 = N1.getOperand(0);
+  }
+
+  if (N1.hasOneUse() && N1.getOpcode() == ISD::SRL) {
+    // Match this pattern so that we can generate simpler code:
+    //
+    //   %a = ...
+    //   %b = and i32 %a, 2
+    //   %c = srl i32 %b, 1
+    //   brcond i32 %c ...
+    //
+    // into
+    // 
+    //   %a = ...
+    //   %b = and i32 %a, 2
+    //   %c = setcc eq %b, 0
+    //   brcond %c ...
+    //
+    // This applies only when the AND constant value has one bit set and the
+    // SRL constant is equal to the log2 of the AND constant. The back-end is
+    // smart enough to convert the result into a TEST/JMP sequence.
+    SDValue Op0 = N1.getOperand(0);
+    SDValue Op1 = N1.getOperand(1);
+
+    if (Op0.getOpcode() == ISD::AND &&
+        Op1.getOpcode() == ISD::Constant) {
+      SDValue AndOp1 = Op0.getOperand(1);
+
+      if (AndOp1.getOpcode() == ISD::Constant) {
+        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
+
+        if (AndConst.isPowerOf2() &&
+            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
+          SDValue SetCC =
+            DAG.getSetCC(N->getDebugLoc(),
+                         TLI.getSetCCResultType(Op0.getValueType()),
+                         Op0, DAG.getConstant(0, Op0.getValueType()),
+                         ISD::SETNE);
+
+          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
+                                          MVT::Other, Chain, SetCC, N2);
+          // Don't add the new BRCond into the worklist or else SimplifySelectCC
+          // will convert it back to (X & C1) >> C2.
+          CombineTo(N, NewBRCond, false);
+          // Truncate is dead.
+          if (Trunc) {
+            removeFromWorkList(Trunc);
+            DAG.DeleteNode(Trunc);
+          }
+          // Replace the uses of SRL with SETCC
+          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
+          removeFromWorkList(N1.getNode());
+          DAG.DeleteNode(N1.getNode());
+          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+        }
+      }
+    }
+  }
+
+  return SDValue();
+}
+
+// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
+//
+SDValue DAGCombiner::visitBR_CC(SDNode *N) {
+  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
+  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
+
+  // If N is a constant we could fold this into a fallthrough or unconditional
+  // branch. However that doesn't happen very often in normal code, because
+  // Instcombine/SimplifyCFG should have handled the available opportunities.
+  // If we did this folding here, it would be necessary to update the
+  // MachineBasicBlock CFG, which is awkward.
+
+  // Use SimplifySetCC to simplify SETCC's.
+  SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()),
+                               CondLHS, CondRHS, CC->get(), N->getDebugLoc(),
+                               false);
+  if (Simp.getNode()) AddToWorkList(Simp.getNode());
+
+  // fold to a simpler setcc
+  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
+    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
+                       N->getOperand(0), Simp.getOperand(2),
+                       Simp.getOperand(0), Simp.getOperand(1),
+                       N->getOperand(4));
+
+  return SDValue();
+}
+
+/// CombineToPreIndexedLoadStore - Try turning a load / store into a
+/// pre-indexed load / store when the base pointer is an add or subtract
+/// and it has other uses besides the load / store. After the
+/// transformation, the new indexed load / store has effectively folded
+/// the add / subtract in and all of its other uses are redirected to the
+/// new load / store.
+bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
+  if (!LegalOperations)
+    return false;
+
+  bool isLoad = true;
+  SDValue Ptr;
+  EVT VT;
+  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
+    if (LD->isIndexed())
+      return false;
+    VT = LD->getMemoryVT();
+    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
+        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
+      return false;
+    Ptr = LD->getBasePtr();
+  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
+    if (ST->isIndexed())
+      return false;
+    VT = ST->getMemoryVT();
+    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
+        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
+      return false;
+    Ptr = ST->getBasePtr();
+    isLoad = false;
+  } else {
+    return false;
+  }
+
+  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
+  // out.  There is no reason to make this a preinc/predec.
+  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
+      Ptr.getNode()->hasOneUse())
+    return false;
+
+  // Ask the target to do addressing mode selection.
+  SDValue BasePtr;
+  SDValue Offset;
+  ISD::MemIndexedMode AM = ISD::UNINDEXED;
+  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
+    return false;
+  // Don't create a indexed load / store with zero offset.
+  if (isa<ConstantSDNode>(Offset) &&
+      cast<ConstantSDNode>(Offset)->isNullValue())
+    return false;
+
+  // Try turning it into a pre-indexed load / store except when:
+  // 1) The new base ptr is a frame index.
+  // 2) If N is a store and the new base ptr is either the same as or is a
+  //    predecessor of the value being stored.
+  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
+  //    that would create a cycle.
+  // 4) All uses are load / store ops that use it as old base ptr.
+
+  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
+  // (plus the implicit offset) to a register to preinc anyway.
+  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
+    return false;
+
+  // Check #2.
+  if (!isLoad) {
+    SDValue Val = cast<StoreSDNode>(N)->getValue();
+    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
+      return false;
+  }
+
+  // Now check for #3 and #4.
+  bool RealUse = false;
+  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
+         E = Ptr.getNode()->use_end(); I != E; ++I) {
+    SDNode *Use = *I;
+    if (Use == N)
+      continue;
+    if (Use->isPredecessorOf(N))
+      return false;
+
+    if (!((Use->getOpcode() == ISD::LOAD &&
+           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
+          (Use->getOpcode() == ISD::STORE &&
+           cast<StoreSDNode>(Use)->getBasePtr() == Ptr)))
+      RealUse = true;
+  }
+
+  if (!RealUse)
+    return false;
+
+  SDValue Result;
+  if (isLoad)
+    Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
+                                BasePtr, Offset, AM);
+  else
+    Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
+                                 BasePtr, Offset, AM);
+  ++PreIndexedNodes;
+  ++NodesCombined;
+  DEBUG(dbgs() << "\nReplacing.4 ";
+        N->dump(&DAG);
+        dbgs() << "\nWith: ";
+        Result.getNode()->dump(&DAG);
+        dbgs() << '\n');
+  WorkListRemover DeadNodes(*this);
+  if (isLoad) {
+    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0),
+                                  &DeadNodes);
+    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2),
+                                  &DeadNodes);
+  } else {
+    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1),
+                                  &DeadNodes);
+  }
+
+  // Finally, since the node is now dead, remove it from the graph.
+  DAG.DeleteNode(N);
+
+  // Replace the uses of Ptr with uses of the updated base value.
+  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
+                                &DeadNodes);
+  removeFromWorkList(Ptr.getNode());
+  DAG.DeleteNode(Ptr.getNode());
+
+  return true;
+}
+
+/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
+/// add / sub of the base pointer node into a post-indexed load / store.
+/// The transformation folded the add / subtract into the new indexed
+/// load / store effectively and all of its uses are redirected to the
+/// new load / store.
+bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
+  if (!LegalOperations)
+    return false;
+
+  bool isLoad = true;
+  SDValue Ptr;
+  EVT VT;
+  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
+    if (LD->isIndexed())
+      return false;
+    VT = LD->getMemoryVT();
+    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
+        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
+      return false;
+    Ptr = LD->getBasePtr();
+  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
+    if (ST->isIndexed())
+      return false;
+    VT = ST->getMemoryVT();
+    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
+        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
+      return false;
+    Ptr = ST->getBasePtr();
+    isLoad = false;
+  } else {
+    return false;
+  }
+
+  if (Ptr.getNode()->hasOneUse())
+    return false;
+
+  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
+         E = Ptr.getNode()->use_end(); I != E; ++I) {
+    SDNode *Op = *I;
+    if (Op == N ||
+        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
+      continue;
+
+    SDValue BasePtr;
+    SDValue Offset;
+    ISD::MemIndexedMode AM = ISD::UNINDEXED;
+    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
+      if (Ptr == Offset && Op->getOpcode() == ISD::ADD)
+        std::swap(BasePtr, Offset);
+      if (Ptr != BasePtr)
+        continue;
+      // Don't create a indexed load / store with zero offset.
+      if (isa<ConstantSDNode>(Offset) &&
+          cast<ConstantSDNode>(Offset)->isNullValue())
+        continue;
+
+      // Try turning it into a post-indexed load / store except when
+      // 1) All uses are load / store ops that use it as base ptr.
+      // 2) Op must be independent of N, i.e. Op is neither a predecessor
+      //    nor a successor of N. Otherwise, if Op is folded that would
+      //    create a cycle.
+
+      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
+        continue;
+
+      // Check for #1.
+      bool TryNext = false;
+      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
+             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
+        SDNode *Use = *II;
+        if (Use == Ptr.getNode())
+          continue;
+
+        // If all the uses are load / store addresses, then don't do the
+        // transformation.
+        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
+          bool RealUse = false;
+          for (SDNode::use_iterator III = Use->use_begin(),
+                 EEE = Use->use_end(); III != EEE; ++III) {
+            SDNode *UseUse = *III;
+            if (!((UseUse->getOpcode() == ISD::LOAD &&
+                   cast<LoadSDNode>(UseUse)->getBasePtr().getNode() == Use) ||
+                  (UseUse->getOpcode() == ISD::STORE &&
+                   cast<StoreSDNode>(UseUse)->getBasePtr().getNode() == Use)))
+              RealUse = true;
+          }
+
+          if (!RealUse) {
+            TryNext = true;
+            break;
+          }
+        }
+      }
+
+      if (TryNext)
+        continue;
+
+      // Check for #2
+      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
+        SDValue Result = isLoad
+          ? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
+                               BasePtr, Offset, AM)
+          : DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
+                                BasePtr, Offset, AM);
+        ++PostIndexedNodes;
+        ++NodesCombined;
+        DEBUG(dbgs() << "\nReplacing.5 ";
+              N->dump(&DAG);
+              dbgs() << "\nWith: ";
+              Result.getNode()->dump(&DAG);
+              dbgs() << '\n');
+        WorkListRemover DeadNodes(*this);
+        if (isLoad) {
+          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0),
+                                        &DeadNodes);
+          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2),
+                                        &DeadNodes);
+        } else {
+          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1),
+                                        &DeadNodes);
+        }
+
+        // Finally, since the node is now dead, remove it from the graph.
+        DAG.DeleteNode(N);
+
+        // Replace the uses of Use with uses of the updated base value.
+        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
+                                      Result.getValue(isLoad ? 1 : 0),
+                                      &DeadNodes);
+        removeFromWorkList(Op);
+        DAG.DeleteNode(Op);
+        return true;
+      }
+    }
+  }
+
+  return false;
+}
+
+SDValue DAGCombiner::visitLOAD(SDNode *N) {
+  LoadSDNode *LD  = cast<LoadSDNode>(N);
+  SDValue Chain = LD->getChain();
+  SDValue Ptr   = LD->getBasePtr();
+
+  // Try to infer better alignment information than the load already has.
+  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
+    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
+      if (Align > LD->getAlignment())
+        return DAG.getExtLoad(LD->getExtensionType(), N->getDebugLoc(),
+                              LD->getValueType(0),
+                              Chain, Ptr, LD->getSrcValue(),
+                              LD->getSrcValueOffset(), LD->getMemoryVT(),
+                              LD->isVolatile(), Align);
+    }
+  }
+
+  // If load is not volatile and there are no uses of the loaded value (and
+  // the updated indexed value in case of indexed loads), change uses of the
+  // chain value into uses of the chain input (i.e. delete the dead load).
+  if (!LD->isVolatile()) {
+    if (N->getValueType(1) == MVT::Other) {
+      // Unindexed loads.
+      if (N->hasNUsesOfValue(0, 0)) {
+        // It's not safe to use the two value CombineTo variant here. e.g.
+        // v1, chain2 = load chain1, loc
+        // v2, chain3 = load chain2, loc
+        // v3         = add v2, c
+        // Now we replace use of chain2 with chain1.  This makes the second load
+        // isomorphic to the one we are deleting, and thus makes this load live.
+        DEBUG(dbgs() << "\nReplacing.6 ";
+              N->dump(&DAG);
+              dbgs() << "\nWith chain: ";
+              Chain.getNode()->dump(&DAG);
+              dbgs() << "\n");
+        WorkListRemover DeadNodes(*this);
+        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain, &DeadNodes);
+
+        if (N->use_empty()) {
+          removeFromWorkList(N);
+          DAG.DeleteNode(N);
+        }
+
+        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+      }
+    } else {
+      // Indexed loads.
+      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
+      if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
+        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
+        DEBUG(dbgs() << "\nReplacing.6 ";
+              N->dump(&DAG);
+              dbgs() << "\nWith: ";
+              Undef.getNode()->dump(&DAG);
+              dbgs() << " and 2 other values\n");
+        WorkListRemover DeadNodes(*this);
+        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef, &DeadNodes);
+        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
+                                      DAG.getUNDEF(N->getValueType(1)),
+                                      &DeadNodes);
+        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain, &DeadNodes);
+        removeFromWorkList(N);
+        DAG.DeleteNode(N);
+        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
+      }
+    }
+  }
+
+  // If this load is directly stored, replace the load value with the stored
+  // value.
+  // TODO: Handle store large -> read small portion.
+  // TODO: Handle TRUNCSTORE/LOADEXT
+  if (LD->getExtensionType() == ISD::NON_EXTLOAD &&
+      !LD->isVolatile()) {
+    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
+      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
+      if (PrevST->getBasePtr() == Ptr &&
+          PrevST->getValue().getValueType() == N->getValueType(0))
+      return CombineTo(N, Chain.getOperand(1), Chain);
+    }
+  }
+
+  if (CombinerAA) {
+    // Walk up chain skipping non-aliasing memory nodes.
+    SDValue BetterChain = FindBetterChain(N, Chain);
+
+    // If there is a better chain.
+    if (Chain != BetterChain) {
+      SDValue ReplLoad;
+
+      // Replace the chain to void dependency.
+      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
+        ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(),
+                               BetterChain, Ptr,
+                               LD->getSrcValue(), LD->getSrcValueOffset(),
+                               LD->isVolatile(), LD->getAlignment());
+      } else {
+        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getDebugLoc(),
+                                  LD->getValueType(0),
+                                  BetterChain, Ptr, LD->getSrcValue(),
+                                  LD->getSrcValueOffset(),
+                                  LD->getMemoryVT(),
+                                  LD->isVolatile(),
+                                  LD->getAlignment());
+      }
+
+      // Create token factor to keep old chain connected.
+      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
+                                  MVT::Other, Chain, ReplLoad.getValue(1));
+      
+      // Make sure the new and old chains are cleaned up.
+      AddToWorkList(Token.getNode());
+      
+      // Replace uses with load result and token factor. Don't add users
+      // to work list.
+      return CombineTo(N, ReplLoad.getValue(0), Token, false);
+    }
+  }
+
+  // Try transforming N to an indexed load.
+  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
+    return SDValue(N, 0);
+
+  return SDValue();
+}
+
+
+/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
+/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
+/// of the loaded bits, try narrowing the load and store if it would end up
+/// being a win for performance or code size.
+SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
+  StoreSDNode *ST  = cast<StoreSDNode>(N);
+  if (ST->isVolatile())
+    return SDValue();
+
+  SDValue Chain = ST->getChain();
+  SDValue Value = ST->getValue();
+  SDValue Ptr   = ST->getBasePtr();
+  EVT VT = Value.getValueType();
+
+  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
+    return SDValue();
+
+  unsigned Opc = Value.getOpcode();
+  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
+      Value.getOperand(1).getOpcode() != ISD::Constant)
+    return SDValue();
+
+  SDValue N0 = Value.getOperand(0);
+  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse()) {
+    LoadSDNode *LD = cast<LoadSDNode>(N0);
+    if (LD->getBasePtr() != Ptr)
+      return SDValue();
+
+    // Find the type to narrow it the load / op / store to.
+    SDValue N1 = Value.getOperand(1);
+    unsigned BitWidth = N1.getValueSizeInBits();
+    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
+    if (Opc == ISD::AND)
+      Imm ^= APInt::getAllOnesValue(BitWidth);
+    if (Imm == 0 || Imm.isAllOnesValue())
+      return SDValue();
+    unsigned ShAmt = Imm.countTrailingZeros();
+    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
+    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
+    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
+    while (NewBW < BitWidth &&
+           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
+             TLI.isNarrowingProfitable(VT, NewVT))) {
+      NewBW = NextPowerOf2(NewBW);
+      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
+    }
+    if (NewBW >= BitWidth)
+      return SDValue();
+
+    // If the lsb changed does not start at the type bitwidth boundary,
+    // start at the previous one.
+    if (ShAmt % NewBW)
+      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
+    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, ShAmt + NewBW);
+    if ((Imm & Mask) == Imm) {
+      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
+      if (Opc == ISD::AND)
+        NewImm ^= APInt::getAllOnesValue(NewBW);
+      uint64_t PtrOff = ShAmt / 8;
+      // For big endian targets, we need to adjust the offset to the pointer to
+      // load the correct bytes.
+      if (TLI.isBigEndian())
+        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
+
+      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
+      if (NewAlign <
+          TLI.getTargetData()->getABITypeAlignment(NewVT.getTypeForEVT(*DAG.getContext())))
+        return SDValue();
+
+      SDValue NewPtr = DAG.getNode(ISD::ADD, LD->getDebugLoc(),
+                                   Ptr.getValueType(), Ptr,
+                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
+      SDValue NewLD = DAG.getLoad(NewVT, N0.getDebugLoc(),
+                                  LD->getChain(), NewPtr,
+                                  LD->getSrcValue(), LD->getSrcValueOffset(),
+                                  LD->isVolatile(), NewAlign);
+      SDValue NewVal = DAG.getNode(Opc, Value.getDebugLoc(), NewVT, NewLD,
+                                   DAG.getConstant(NewImm, NewVT));
+      SDValue NewST = DAG.getStore(Chain, N->getDebugLoc(),
+                                   NewVal, NewPtr,
+                                   ST->getSrcValue(), ST->getSrcValueOffset(),
+                                   false, NewAlign);
+
+      AddToWorkList(NewPtr.getNode());
+      AddToWorkList(NewLD.getNode());
+      AddToWorkList(NewVal.getNode());
+      WorkListRemover DeadNodes(*this);
+      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1),
+                                    &DeadNodes);
+      ++OpsNarrowed;
+      return NewST;
+    }
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitSTORE(SDNode *N) {
+  StoreSDNode *ST  = cast<StoreSDNode>(N);
+  SDValue Chain = ST->getChain();
+  SDValue Value = ST->getValue();
+  SDValue Ptr   = ST->getBasePtr();
+
+  // Try to infer better alignment information than the store already has.
+  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
+    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
+      if (Align > ST->getAlignment())
+        return DAG.getTruncStore(Chain, N->getDebugLoc(), Value,
+                                 Ptr, ST->getSrcValue(),
+                                 ST->getSrcValueOffset(), ST->getMemoryVT(),
+                                 ST->isVolatile(), Align);
+    }
+  }
+
+  // If this is a store of a bit convert, store the input value if the
+  // resultant store does not need a higher alignment than the original.
+  if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
+      ST->isUnindexed()) {
+    unsigned OrigAlign = ST->getAlignment();
+    EVT SVT = Value.getOperand(0).getValueType();
+    unsigned Align = TLI.getTargetData()->
+      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
+    if (Align <= OrigAlign &&
+        ((!LegalOperations && !ST->isVolatile()) ||
+         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
+      return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0),
+                          Ptr, ST->getSrcValue(),
+                          ST->getSrcValueOffset(), ST->isVolatile(), OrigAlign);
+  }
+
+  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
+  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
+    // NOTE: If the original store is volatile, this transform must not increase
+    // the number of stores.  For example, on x86-32 an f64 can be stored in one
+    // processor operation but an i64 (which is not legal) requires two.  So the
+    // transform should not be done in this case.
+    if (Value.getOpcode() != ISD::TargetConstantFP) {
+      SDValue Tmp;
+      switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
+      default: llvm_unreachable("Unknown FP type");
+      case MVT::f80:    // We don't do this for these yet.
+      case MVT::f128:
+      case MVT::ppcf128:
+        break;
+      case MVT::f32:
+        if (((TLI.isTypeLegal(MVT::i32) || !LegalTypes) && !LegalOperations &&
+             !ST->isVolatile()) ||
+            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
+          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
+                              bitcastToAPInt().getZExtValue(), MVT::i32);
+          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
+                              Ptr, ST->getSrcValue(),
+                              ST->getSrcValueOffset(), ST->isVolatile(),
+                              ST->getAlignment());
+        }
+        break;
+      case MVT::f64:
+        if (((TLI.isTypeLegal(MVT::i64) || !LegalTypes) && !LegalOperations &&
+             !ST->isVolatile()) ||
+            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
+          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
+                                getZExtValue(), MVT::i64);
+          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
+                              Ptr, ST->getSrcValue(),
+                              ST->getSrcValueOffset(), ST->isVolatile(),
+                              ST->getAlignment());
+        } else if (!ST->isVolatile() &&
+                   TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
+          // Many FP stores are not made apparent until after legalize, e.g. for
+          // argument passing.  Since this is so common, custom legalize the
+          // 64-bit integer store into two 32-bit stores.
+          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
+          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
+          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
+          if (TLI.isBigEndian()) std::swap(Lo, Hi);
+
+          int SVOffset = ST->getSrcValueOffset();
+          unsigned Alignment = ST->getAlignment();
+          bool isVolatile = ST->isVolatile();
+
+          SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo,
+                                     Ptr, ST->getSrcValue(),
+                                     ST->getSrcValueOffset(),
+                                     isVolatile, ST->getAlignment());
+          Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr,
+                            DAG.getConstant(4, Ptr.getValueType()));
+          SVOffset += 4;
+          Alignment = MinAlign(Alignment, 4U);
+          SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi,
+                                     Ptr, ST->getSrcValue(),
+                                     SVOffset, isVolatile, Alignment);
+          return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
+                             St0, St1);
+        }
+
+        break;
+      }
+    }
+  }
+
+  if (CombinerAA) {
+    // Walk up chain skipping non-aliasing memory nodes.
+    SDValue BetterChain = FindBetterChain(N, Chain);
+
+    // If there is a better chain.
+    if (Chain != BetterChain) {
+      SDValue ReplStore;
+
+      // Replace the chain to avoid dependency.
+      if (ST->isTruncatingStore()) {
+        ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr,
+                                      ST->getSrcValue(),ST->getSrcValueOffset(),
+                                      ST->getMemoryVT(),
+                                      ST->isVolatile(), ST->getAlignment());
+      } else {
+        ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr,
+                                 ST->getSrcValue(), ST->getSrcValueOffset(),
+                                 ST->isVolatile(), ST->getAlignment());
+      }
+
+      // Create token to keep both nodes around.
+      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
+                                  MVT::Other, Chain, ReplStore);
+
+      // Make sure the new and old chains are cleaned up.
+      AddToWorkList(Token.getNode());
+
+      // Don't add users to work list.
+      return CombineTo(N, Token, false);
+    }
+  }
+
+  // Try transforming N to an indexed store.
+  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
+    return SDValue(N, 0);
+
+  // FIXME: is there such a thing as a truncating indexed store?
+  if (ST->isTruncatingStore() && ST->isUnindexed() &&
+      Value.getValueType().isInteger()) {
+    // See if we can simplify the input to this truncstore with knowledge that
+    // only the low bits are being used.  For example:
+    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
+    SDValue Shorter =
+      GetDemandedBits(Value,
+                      APInt::getLowBitsSet(Value.getValueSizeInBits(),
+                                           ST->getMemoryVT().getSizeInBits()));
+    AddToWorkList(Value.getNode());
+    if (Shorter.getNode())
+      return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter,
+                               Ptr, ST->getSrcValue(),
+                               ST->getSrcValueOffset(), ST->getMemoryVT(),
+                               ST->isVolatile(), ST->getAlignment());
+
+    // Otherwise, see if we can simplify the operation with
+    // SimplifyDemandedBits, which only works if the value has a single use.
+    if (SimplifyDemandedBits(Value,
+                             APInt::getLowBitsSet(
+                               Value.getValueType().getScalarType().getSizeInBits(),
+                               ST->getMemoryVT().getSizeInBits())))
+      return SDValue(N, 0);
+  }
+
+  // If this is a load followed by a store to the same location, then the store
+  // is dead/noop.
+  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
+    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
+        ST->isUnindexed() && !ST->isVolatile() &&
+        // There can't be any side effects between the load and store, such as
+        // a call or store.
+        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
+      // The store is dead, remove it.
+      return Chain;
+    }
+  }
+
+  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
+  // truncating store.  We can do this even if this is already a truncstore.
+  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
+      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
+      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
+                            ST->getMemoryVT())) {
+    return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0),
+                             Ptr, ST->getSrcValue(),
+                             ST->getSrcValueOffset(), ST->getMemoryVT(),
+                             ST->isVolatile(), ST->getAlignment());
+  }
+
+  return ReduceLoadOpStoreWidth(N);
+}
+
+SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
+  SDValue InVec = N->getOperand(0);
+  SDValue InVal = N->getOperand(1);
+  SDValue EltNo = N->getOperand(2);
+
+  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
+  // vector with the inserted element.
+  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
+    unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
+    SmallVector<SDValue, 8> Ops(InVec.getNode()->op_begin(),
+                                InVec.getNode()->op_end());
+    if (Elt < Ops.size())
+      Ops[Elt] = InVal;
+    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
+                       InVec.getValueType(), &Ops[0], Ops.size());
+  }
+  // If the invec is an UNDEF and if EltNo is a constant, create a new 
+  // BUILD_VECTOR with undef elements and the inserted element.
+  if (!LegalOperations && InVec.getOpcode() == ISD::UNDEF && 
+      isa<ConstantSDNode>(EltNo)) {
+    EVT VT = InVec.getValueType();
+    EVT EltVT = VT.getVectorElementType();
+    unsigned NElts = VT.getVectorNumElements();
+    SmallVector<SDValue, 8> Ops(NElts, DAG.getUNDEF(EltVT));
+
+    unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
+    if (Elt < Ops.size())
+      Ops[Elt] = InVal;
+    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
+                       InVec.getValueType(), &Ops[0], Ops.size());
+  }
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
+  // (vextract (scalar_to_vector val, 0) -> val
+  SDValue InVec = N->getOperand(0);
+
+ if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
+   // Check if the result type doesn't match the inserted element type. A
+   // SCALAR_TO_VECTOR may truncate the inserted element and the
+   // EXTRACT_VECTOR_ELT may widen the extracted vector.
+   EVT EltVT = InVec.getValueType().getVectorElementType();
+   SDValue InOp = InVec.getOperand(0);
+   EVT NVT = N->getValueType(0);
+   if (InOp.getValueType() != NVT) {
+     assert(InOp.getValueType().isInteger() && NVT.isInteger());
+     return DAG.getSExtOrTrunc(InOp, InVec.getDebugLoc(), NVT);
+   }
+   return InOp;
+ }
+
+  // Perform only after legalization to ensure build_vector / vector_shuffle
+  // optimizations have already been done.
+  if (!LegalOperations) return SDValue();
+
+  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
+  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
+  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
+  SDValue EltNo = N->getOperand(1);
+
+  if (isa<ConstantSDNode>(EltNo)) {
+    unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
+    bool NewLoad = false;
+    bool BCNumEltsChanged = false;
+    EVT VT = InVec.getValueType();
+    EVT ExtVT = VT.getVectorElementType();
+    EVT LVT = ExtVT;
+
+    if (InVec.getOpcode() == ISD::BIT_CONVERT) {
+      EVT BCVT = InVec.getOperand(0).getValueType();
+      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
+        return SDValue();
+      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
+        BCNumEltsChanged = true;
+      InVec = InVec.getOperand(0);
+      ExtVT = BCVT.getVectorElementType();
+      NewLoad = true;
+    }
+
+    LoadSDNode *LN0 = NULL;
+    const ShuffleVectorSDNode *SVN = NULL;
+    if (ISD::isNormalLoad(InVec.getNode())) {
+      LN0 = cast<LoadSDNode>(InVec);
+    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
+               InVec.getOperand(0).getValueType() == ExtVT &&
+               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
+      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
+    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
+      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
+      // =>
+      // (load $addr+1*size)
+
+      // If the bit convert changed the number of elements, it is unsafe
+      // to examine the mask.
+      if (BCNumEltsChanged)
+        return SDValue();
+
+      // Select the input vector, guarding against out of range extract vector.
+      unsigned NumElems = VT.getVectorNumElements();
+      int Idx = (Elt > NumElems) ? -1 : SVN->getMaskElt(Elt);
+      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
+
+      if (InVec.getOpcode() == ISD::BIT_CONVERT)
+        InVec = InVec.getOperand(0);
+      if (ISD::isNormalLoad(InVec.getNode())) {
+        LN0 = cast<LoadSDNode>(InVec);
+        Elt = (Idx < (int)NumElems) ? Idx : Idx - NumElems;
+      }
+    }
+
+    if (!LN0 || !LN0->hasOneUse() || LN0->isVolatile())
+      return SDValue();
+
+    unsigned Align = LN0->getAlignment();
+    if (NewLoad) {
+      // Check the resultant load doesn't need a higher alignment than the
+      // original load.
+      unsigned NewAlign =
+        TLI.getTargetData()->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
+
+      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
+        return SDValue();
+
+      Align = NewAlign;
+    }
+
+    SDValue NewPtr = LN0->getBasePtr();
+    if (Elt) {
+      unsigned PtrOff = LVT.getSizeInBits() * Elt / 8;
+      EVT PtrType = NewPtr.getValueType();
+      if (TLI.isBigEndian())
+        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
+      NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr,
+                           DAG.getConstant(PtrOff, PtrType));
+    }
+
+    return DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr,
+                       LN0->getSrcValue(), LN0->getSrcValueOffset(),
+                       LN0->isVolatile(), Align);
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
+  unsigned NumInScalars = N->getNumOperands();
+  EVT VT = N->getValueType(0);
+
+  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
+  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
+  // at most two distinct vectors, turn this into a shuffle node.
+  SDValue VecIn1, VecIn2;
+  for (unsigned i = 0; i != NumInScalars; ++i) {
+    // Ignore undef inputs.
+    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
+
+    // If this input is something other than a EXTRACT_VECTOR_ELT with a
+    // constant index, bail out.
+    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
+      VecIn1 = VecIn2 = SDValue(0, 0);
+      break;
+    }
+
+    // If the input vector type disagrees with the result of the build_vector,
+    // we can't make a shuffle.
+    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
+    if (ExtractedFromVec.getValueType() != VT) {
+      VecIn1 = VecIn2 = SDValue(0, 0);
+      break;
+    }
+
+    // Otherwise, remember this.  We allow up to two distinct input vectors.
+    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
+      continue;
+
+    if (VecIn1.getNode() == 0) {
+      VecIn1 = ExtractedFromVec;
+    } else if (VecIn2.getNode() == 0) {
+      VecIn2 = ExtractedFromVec;
+    } else {
+      // Too many inputs.
+      VecIn1 = VecIn2 = SDValue(0, 0);
+      break;
+    }
+  }
+
+  // If everything is good, we can make a shuffle operation.
+  if (VecIn1.getNode()) {
+    SmallVector<int, 8> Mask;
+    for (unsigned i = 0; i != NumInScalars; ++i) {
+      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
+        Mask.push_back(-1);
+        continue;
+      }
+
+      // If extracting from the first vector, just use the index directly.
+      SDValue Extract = N->getOperand(i);
+      SDValue ExtVal = Extract.getOperand(1);
+      if (Extract.getOperand(0) == VecIn1) {
+        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
+        if (ExtIndex > VT.getVectorNumElements())
+          return SDValue();
+        
+        Mask.push_back(ExtIndex);
+        continue;
+      }
+
+      // Otherwise, use InIdx + VecSize
+      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
+      Mask.push_back(Idx+NumInScalars);
+    }
+
+    // Add count and size info.
+    if (!TLI.isTypeLegal(VT) && LegalTypes)
+      return SDValue();
+
+    // Return the new VECTOR_SHUFFLE node.
+    SDValue Ops[2];
+    Ops[0] = VecIn1;
+    Ops[1] = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
+    return DAG.getVectorShuffle(VT, N->getDebugLoc(), Ops[0], Ops[1], &Mask[0]);
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
+  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
+  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
+  // inputs come from at most two distinct vectors, turn this into a shuffle
+  // node.
+
+  // If we only have one input vector, we don't need to do any concatenation.
+  if (N->getNumOperands() == 1)
+    return N->getOperand(0);
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
+  return SDValue();
+  
+  EVT VT = N->getValueType(0);
+  unsigned NumElts = VT.getVectorNumElements();
+
+  SDValue N0 = N->getOperand(0);
+
+  assert(N0.getValueType().getVectorNumElements() == NumElts &&
+        "Vector shuffle must be normalized in DAG");
+
+  // FIXME: implement canonicalizations from DAG.getVectorShuffle()
+
+  // If it is a splat, check if the argument vector is a build_vector with
+  // all scalar elements the same.
+  if (cast<ShuffleVectorSDNode>(N)->isSplat()) {
+    SDNode *V = N0.getNode();
+    
+
+    // If this is a bit convert that changes the element type of the vector but
+    // not the number of vector elements, look through it.  Be careful not to
+    // look though conversions that change things like v4f32 to v2f64.
+    if (V->getOpcode() == ISD::BIT_CONVERT) {
+      SDValue ConvInput = V->getOperand(0);
+      if (ConvInput.getValueType().isVector() &&
+          ConvInput.getValueType().getVectorNumElements() == NumElts)
+        V = ConvInput.getNode();
+    }
+
+    if (V->getOpcode() == ISD::BUILD_VECTOR) {
+      unsigned NumElems = V->getNumOperands();
+      unsigned BaseIdx = cast<ShuffleVectorSDNode>(N)->getSplatIndex();
+      if (NumElems > BaseIdx) {
+        SDValue Base;
+        bool AllSame = true;
+        for (unsigned i = 0; i != NumElems; ++i) {
+          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
+            Base = V->getOperand(i);
+            break;
+          }
+        }
+        // Splat of <u, u, u, u>, return <u, u, u, u>
+        if (!Base.getNode())
+          return N0;
+        for (unsigned i = 0; i != NumElems; ++i) {
+          if (V->getOperand(i) != Base) {
+            AllSame = false;
+            break;
+          }
+        }
+        // Splat of <x, x, x, x>, return <x, x, x, x>
+        if (AllSame)
+          return N0;
+      }
+    }
+  }
+  return SDValue();
+}
+
+/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
+/// an AND to a vector_shuffle with the destination vector and a zero vector.
+/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
+///      vector_shuffle V, Zero, <0, 4, 2, 4>
+SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
+  EVT VT = N->getValueType(0);
+  DebugLoc dl = N->getDebugLoc();
+  SDValue LHS = N->getOperand(0);
+  SDValue RHS = N->getOperand(1);
+  if (N->getOpcode() == ISD::AND) {
+    if (RHS.getOpcode() == ISD::BIT_CONVERT)
+      RHS = RHS.getOperand(0);
+    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
+      SmallVector<int, 8> Indices;
+      unsigned NumElts = RHS.getNumOperands();
+      for (unsigned i = 0; i != NumElts; ++i) {
+        SDValue Elt = RHS.getOperand(i);
+        if (!isa<ConstantSDNode>(Elt))
+          return SDValue();
+        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
+          Indices.push_back(i);
+        else if (cast<ConstantSDNode>(Elt)->isNullValue())
+          Indices.push_back(NumElts);
+        else
+          return SDValue();
+      }
+
+      // Let's see if the target supports this vector_shuffle.
+      EVT RVT = RHS.getValueType();
+      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
+        return SDValue();
+
+      // Return the new VECTOR_SHUFFLE node.
+      EVT EltVT = RVT.getVectorElementType();
+      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
+                                     DAG.getConstant(0, EltVT));
+      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
+                                 RVT, &ZeroOps[0], ZeroOps.size());
+      LHS = DAG.getNode(ISD::BIT_CONVERT, dl, RVT, LHS);
+      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
+      return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Shuf);
+    }
+  }
+
+  return SDValue();
+}
+
+/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
+SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
+  // After legalize, the target may be depending on adds and other
+  // binary ops to provide legal ways to construct constants or other
+  // things. Simplifying them may result in a loss of legality.
+  if (LegalOperations) return SDValue();
+
+  EVT VT = N->getValueType(0);
+  assert(VT.isVector() && "SimplifyVBinOp only works on vectors!");
+
+  EVT EltType = VT.getVectorElementType();
+  SDValue LHS = N->getOperand(0);
+  SDValue RHS = N->getOperand(1);
+  SDValue Shuffle = XformToShuffleWithZero(N);
+  if (Shuffle.getNode()) return Shuffle;
+
+  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
+  // this operation.
+  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
+      RHS.getOpcode() == ISD::BUILD_VECTOR) {
+    SmallVector<SDValue, 8> Ops;
+    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
+      SDValue LHSOp = LHS.getOperand(i);
+      SDValue RHSOp = RHS.getOperand(i);
+      // If these two elements can't be folded, bail out.
+      if ((LHSOp.getOpcode() != ISD::UNDEF &&
+           LHSOp.getOpcode() != ISD::Constant &&
+           LHSOp.getOpcode() != ISD::ConstantFP) ||
+          (RHSOp.getOpcode() != ISD::UNDEF &&
+           RHSOp.getOpcode() != ISD::Constant &&
+           RHSOp.getOpcode() != ISD::ConstantFP))
+        break;
+
+      // Can't fold divide by zero.
+      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
+          N->getOpcode() == ISD::FDIV) {
+        if ((RHSOp.getOpcode() == ISD::Constant &&
+             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
+            (RHSOp.getOpcode() == ISD::ConstantFP &&
+             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
+          break;
+      }
+
+      Ops.push_back(DAG.getNode(N->getOpcode(), LHS.getDebugLoc(),
+                                EltType, LHSOp, RHSOp));
+      AddToWorkList(Ops.back().getNode());
+      assert((Ops.back().getOpcode() == ISD::UNDEF ||
+              Ops.back().getOpcode() == ISD::Constant ||
+              Ops.back().getOpcode() == ISD::ConstantFP) &&
+             "Scalar binop didn't fold!");
+    }
+
+    if (Ops.size() == LHS.getNumOperands()) {
+      EVT VT = LHS.getValueType();
+      return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
+                         &Ops[0], Ops.size());
+    }
+  }
+
+  return SDValue();
+}
+
+SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0,
+                                    SDValue N1, SDValue N2){
+  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
+
+  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
+                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
+
+  // If we got a simplified select_cc node back from SimplifySelectCC, then
+  // break it down into a new SETCC node, and a new SELECT node, and then return
+  // the SELECT node, since we were called with a SELECT node.
+  if (SCC.getNode()) {
+    // Check to see if we got a select_cc back (to turn into setcc/select).
+    // Otherwise, just return whatever node we got back, like fabs.
+    if (SCC.getOpcode() == ISD::SELECT_CC) {
+      SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(),
+                                  N0.getValueType(),
+                                  SCC.getOperand(0), SCC.getOperand(1),
+                                  SCC.getOperand(4));
+      AddToWorkList(SETCC.getNode());
+      return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(),
+                         SCC.getOperand(2), SCC.getOperand(3), SETCC);
+    }
+
+    return SCC;
+  }
+  return SDValue();
+}
+
+/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
+/// are the two values being selected between, see if we can simplify the
+/// select.  Callers of this should assume that TheSelect is deleted if this
+/// returns true.  As such, they should return the appropriate thing (e.g. the
+/// node) back to the top-level of the DAG combiner loop to avoid it being
+/// looked at.
+bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
+                                    SDValue RHS) {
+
+  // If this is a select from two identical things, try to pull the operation
+  // through the select.
+  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
+    // If this is a load and the token chain is identical, replace the select
+    // of two loads with a load through a select of the address to load from.
+    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
+    // constants have been dropped into the constant pool.
+    if (LHS.getOpcode() == ISD::LOAD &&
+        // Do not let this transformation reduce the number of volatile loads.
+        !cast<LoadSDNode>(LHS)->isVolatile() &&
+        !cast<LoadSDNode>(RHS)->isVolatile() &&
+        // Token chains must be identical.
+        LHS.getOperand(0) == RHS.getOperand(0)) {
+      LoadSDNode *LLD = cast<LoadSDNode>(LHS);
+      LoadSDNode *RLD = cast<LoadSDNode>(RHS);
+
+      // If this is an EXTLOAD, the VT's must match.
+      if (LLD->getMemoryVT() == RLD->getMemoryVT()) {
+        // FIXME: this discards src value information.  This is
+        // over-conservative. It would be beneficial to be able to remember
+        // both potential memory locations.  Since we are discarding
+        // src value info, don't do the transformation if the memory
+        // locations are not in the default address space.
+        unsigned LLDAddrSpace = 0, RLDAddrSpace = 0;
+        if (const Value *LLDVal = LLD->getMemOperand()->getValue()) {
+          if (const PointerType *PT = dyn_cast<PointerType>(LLDVal->getType()))
+            LLDAddrSpace = PT->getAddressSpace();
+        }
+        if (const Value *RLDVal = RLD->getMemOperand()->getValue()) {
+          if (const PointerType *PT = dyn_cast<PointerType>(RLDVal->getType()))
+            RLDAddrSpace = PT->getAddressSpace();
+        }
+        SDValue Addr;
+        if (LLDAddrSpace == 0 && RLDAddrSpace == 0) {
+          if (TheSelect->getOpcode() == ISD::SELECT) {
+            // Check that the condition doesn't reach either load.  If so, folding
+            // this will induce a cycle into the DAG.
+            if ((!LLD->hasAnyUseOfValue(1) ||
+                 !LLD->isPredecessorOf(TheSelect->getOperand(0).getNode())) &&
+                (!RLD->hasAnyUseOfValue(1) ||
+                 !RLD->isPredecessorOf(TheSelect->getOperand(0).getNode()))) {
+              Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
+                                 LLD->getBasePtr().getValueType(),
+                                 TheSelect->getOperand(0), LLD->getBasePtr(),
+                                 RLD->getBasePtr());
+            }
+          } else {
+            // Check that the condition doesn't reach either load.  If so, folding
+            // this will induce a cycle into the DAG.
+            if ((!LLD->hasAnyUseOfValue(1) ||
+                 (!LLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
+                  !LLD->isPredecessorOf(TheSelect->getOperand(1).getNode()))) &&
+                (!RLD->hasAnyUseOfValue(1) ||
+                 (!RLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
+                  !RLD->isPredecessorOf(TheSelect->getOperand(1).getNode())))) {
+              Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
+                                 LLD->getBasePtr().getValueType(),
+                                 TheSelect->getOperand(0),
+                                 TheSelect->getOperand(1),
+                                 LLD->getBasePtr(), RLD->getBasePtr(),
+                                 TheSelect->getOperand(4));
+            }
+          }
+        }
+
+        if (Addr.getNode()) {
+          SDValue Load;
+          if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
+            Load = DAG.getLoad(TheSelect->getValueType(0),
+                               TheSelect->getDebugLoc(),
+                               LLD->getChain(),
+                               Addr, 0, 0,
+                               LLD->isVolatile(),
+                               LLD->getAlignment());
+          } else {
+            Load = DAG.getExtLoad(LLD->getExtensionType(),
+                                  TheSelect->getDebugLoc(),
+                                  TheSelect->getValueType(0),
+                                  LLD->getChain(), Addr, 0, 0,
+                                  LLD->getMemoryVT(),
+                                  LLD->isVolatile(),
+                                  LLD->getAlignment());
+          }
+
+          // Users of the select now use the result of the load.
+          CombineTo(TheSelect, Load);
+
+          // Users of the old loads now use the new load's chain.  We know the
+          // old-load value is dead now.
+          CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
+          CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
+          return true;
+        }
+      }
+    }
+  }
+
+  return false;
+}
+
+/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
+/// where 'cond' is the comparison specified by CC.
+SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
+                                      SDValue N2, SDValue N3,
+                                      ISD::CondCode CC, bool NotExtCompare) {
+  // (x ? y : y) -> y.
+  if (N2 == N3) return N2;
+  
+  EVT VT = N2.getValueType();
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
+  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
+  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
+
+  // Determine if the condition we're dealing with is constant
+  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
+                              N0, N1, CC, DL, false);
+  if (SCC.getNode()) AddToWorkList(SCC.getNode());
+  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
+
+  // fold select_cc true, x, y -> x
+  if (SCCC && !SCCC->isNullValue())
+    return N2;
+  // fold select_cc false, x, y -> y
+  if (SCCC && SCCC->isNullValue())
+    return N3;
+
+  // Check to see if we can simplify the select into an fabs node
+  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
+    // Allow either -0.0 or 0.0
+    if (CFP->getValueAPF().isZero()) {
+      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
+      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
+          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
+          N2 == N3.getOperand(0))
+        return DAG.getNode(ISD::FABS, DL, VT, N0);
+
+      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
+      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
+          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
+          N2.getOperand(0) == N3)
+        return DAG.getNode(ISD::FABS, DL, VT, N3);
+    }
+  }
+  
+  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
+  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
+  // in it.  This is a win when the constant is not otherwise available because
+  // it replaces two constant pool loads with one.  We only do this if the FP
+  // type is known to be legal, because if it isn't, then we are before legalize
+  // types an we want the other legalization to happen first (e.g. to avoid
+  // messing with soft float) and if the ConstantFP is not legal, because if
+  // it is legal, we may not need to store the FP constant in a constant pool.
+  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
+    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
+      if (TLI.isTypeLegal(N2.getValueType()) &&
+          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
+           TargetLowering::Legal) &&
+          // If both constants have multiple uses, then we won't need to do an
+          // extra load, they are likely around in registers for other users.
+          (TV->hasOneUse() || FV->hasOneUse())) {
+        Constant *Elts[] = {
+          const_cast<ConstantFP*>(FV->getConstantFPValue()),
+          const_cast<ConstantFP*>(TV->getConstantFPValue())
+        };
+        const Type *FPTy = Elts[0]->getType();
+        const TargetData &TD = *TLI.getTargetData();
+        
+        // Create a ConstantArray of the two constants.
+        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts, 2);
+        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
+                                            TD.getPrefTypeAlignment(FPTy));
+        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
+
+        // Get the offsets to the 0 and 1 element of the array so that we can
+        // select between them.
+        SDValue Zero = DAG.getIntPtrConstant(0);
+        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
+        SDValue One = DAG.getIntPtrConstant(EltSize);
+        
+        SDValue Cond = DAG.getSetCC(DL,
+                                    TLI.getSetCCResultType(N0.getValueType()),
+                                    N0, N1, CC);
+        SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(),
+                                        Cond, One, Zero);
+        CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
+                            CstOffset);
+        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
+                           PseudoSourceValue::getConstantPool(), 0, false,
+                           Alignment);
+
+      }
+    }  
+
+  // Check to see if we can perform the "gzip trick", transforming
+  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
+  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
+      N0.getValueType().isInteger() &&
+      N2.getValueType().isInteger() &&
+      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
+       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
+    EVT XType = N0.getValueType();
+    EVT AType = N2.getValueType();
+    if (XType.bitsGE(AType)) {
+      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
+      // single-bit constant.
+      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
+        unsigned ShCtV = N2C->getAPIntValue().logBase2();
+        ShCtV = XType.getSizeInBits()-ShCtV-1;
+        SDValue ShCt = DAG.getConstant(ShCtV, getShiftAmountTy());
+        SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(),
+                                    XType, N0, ShCt);
+        AddToWorkList(Shift.getNode());
+
+        if (XType.bitsGT(AType)) {
+          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
+          AddToWorkList(Shift.getNode());
+        }
+
+        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
+      }
+
+      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(),
+                                  XType, N0,
+                                  DAG.getConstant(XType.getSizeInBits()-1,
+                                                  getShiftAmountTy()));
+      AddToWorkList(Shift.getNode());
+
+      if (XType.bitsGT(AType)) {
+        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
+        AddToWorkList(Shift.getNode());
+      }
+
+      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
+    }
+  }
+
+  // fold select C, 16, 0 -> shl C, 4
+  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
+      TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent) {
+
+    // If the caller doesn't want us to simplify this into a zext of a compare,
+    // don't do it.
+    if (NotExtCompare && N2C->getAPIntValue() == 1)
+      return SDValue();
+
+    // Get a SetCC of the condition
+    // FIXME: Should probably make sure that setcc is legal if we ever have a
+    // target where it isn't.
+    SDValue Temp, SCC;
+    // cast from setcc result type to select result type
+    if (LegalTypes) {
+      SCC  = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()),
+                          N0, N1, CC);
+      if (N2.getValueType().bitsLT(SCC.getValueType()))
+        Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(), N2.getValueType());
+      else
+        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
+                           N2.getValueType(), SCC);
+    } else {
+      SCC  = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC);
+      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
+                         N2.getValueType(), SCC);
+    }
+
+    AddToWorkList(SCC.getNode());
+    AddToWorkList(Temp.getNode());
+
+    if (N2C->getAPIntValue() == 1)
+      return Temp;
+
+    // shl setcc result by log2 n2c
+    return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
+                       DAG.getConstant(N2C->getAPIntValue().logBase2(),
+                                       getShiftAmountTy()));
+  }
+
+  // Check to see if this is the equivalent of setcc
+  // FIXME: Turn all of these into setcc if setcc if setcc is legal
+  // otherwise, go ahead with the folds.
+  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
+    EVT XType = N0.getValueType();
+    if (!LegalOperations ||
+        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) {
+      SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC);
+      if (Res.getValueType() != VT)
+        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
+      return Res;
+    }
+
+    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
+    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
+        (!LegalOperations ||
+         TLI.isOperationLegal(ISD::CTLZ, XType))) {
+      SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0);
+      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
+                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
+                                         getShiftAmountTy()));
+    }
+    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
+    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
+      SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(),
+                                  XType, DAG.getConstant(0, XType), N0);
+      SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType);
+      return DAG.getNode(ISD::SRL, DL, XType,
+                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
+                         DAG.getConstant(XType.getSizeInBits()-1,
+                                         getShiftAmountTy()));
+    }
+    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
+    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
+      SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0,
+                                 DAG.getConstant(XType.getSizeInBits()-1,
+                                                 getShiftAmountTy()));
+      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
+    }
+  }
+
+  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
+  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
+  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
+      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
+      N2.getOperand(0) == N1 && N0.getValueType().isInteger()) {
+    EVT XType = N0.getValueType();
+    SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType, N0,
+                                DAG.getConstant(XType.getSizeInBits()-1,
+                                                getShiftAmountTy()));
+    SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(), XType,
+                              N0, Shift);
+    AddToWorkList(Shift.getNode());
+    AddToWorkList(Add.getNode());
+    return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
+  }
+  // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
+  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
+  if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
+      N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
+    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
+      EVT XType = N0.getValueType();
+      if (SubC->isNullValue() && XType.isInteger()) {
+        SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType,
+                                    N0,
+                                    DAG.getConstant(XType.getSizeInBits()-1,
+                                                    getShiftAmountTy()));
+        SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(),
+                                  XType, N0, Shift);
+        AddToWorkList(Shift.getNode());
+        AddToWorkList(Add.getNode());
+        return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
+      }
+    }
+  }
+
+  return SDValue();
+}
+
+/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
+SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
+                                   SDValue N1, ISD::CondCode Cond,
+                                   DebugLoc DL, bool foldBooleans) {
+  TargetLowering::DAGCombinerInfo
+    DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
+  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
+}
+
+/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number.  See:
+/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+SDValue DAGCombiner::BuildSDIV(SDNode *N) {
+  std::vector<SDNode*> Built;
+  SDValue S = TLI.BuildSDIV(N, DAG, &Built);
+
+  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
+       ii != ee; ++ii)
+    AddToWorkList(*ii);
+  return S;
+}
+
+/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number.  See:
+/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+SDValue DAGCombiner::BuildUDIV(SDNode *N) {
+  std::vector<SDNode*> Built;
+  SDValue S = TLI.BuildUDIV(N, DAG, &Built);
+
+  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
+       ii != ee; ++ii)
+    AddToWorkList(*ii);
+  return S;
+}
+
+/// FindBaseOffset - Return true if base is a frame index, which is known not
+// to alias with anything but itself.  Provides base object and offset as results.
+static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
+                           GlobalValue *&GV, void *&CV) {
+  // Assume it is a primitive operation.
+  Base = Ptr; Offset = 0; GV = 0; CV = 0;
+
+  // If it's an adding a simple constant then integrate the offset.
+  if (Base.getOpcode() == ISD::ADD) {
+    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
+      Base = Base.getOperand(0);
+      Offset += C->getZExtValue();
+    }
+  }
+  
+  // Return the underlying GlobalValue, and update the Offset.  Return false
+  // for GlobalAddressSDNode since the same GlobalAddress may be represented
+  // by multiple nodes with different offsets.
+  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
+    GV = G->getGlobal();
+    Offset += G->getOffset();
+    return false;
+  }
+
+  // Return the underlying Constant value, and update the Offset.  Return false
+  // for ConstantSDNodes since the same constant pool entry may be represented
+  // by multiple nodes with different offsets.
+  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
+    CV = C->isMachineConstantPoolEntry() ? (void *)C->getMachineCPVal()
+                                         : (void *)C->getConstVal();
+    Offset += C->getOffset();
+    return false;
+  }
+  // If it's any of the following then it can't alias with anything but itself.
+  return isa<FrameIndexSDNode>(Base);
+}
+
+/// isAlias - Return true if there is any possibility that the two addresses
+/// overlap.
+bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
+                          const Value *SrcValue1, int SrcValueOffset1,
+                          unsigned SrcValueAlign1,
+                          SDValue Ptr2, int64_t Size2,
+                          const Value *SrcValue2, int SrcValueOffset2,
+                          unsigned SrcValueAlign2) const {
+  // If they are the same then they must be aliases.
+  if (Ptr1 == Ptr2) return true;
+
+  // Gather base node and offset information.
+  SDValue Base1, Base2;
+  int64_t Offset1, Offset2;
+  GlobalValue *GV1, *GV2;
+  void *CV1, *CV2;
+  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
+  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
+
+  // If they have a same base address then check to see if they overlap.
+  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
+    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
+
+  // If we know what the bases are, and they aren't identical, then we know they
+  // cannot alias.
+  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
+    return false;
+
+  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
+  // compared to the size and offset of the access, we may be able to prove they
+  // do not alias.  This check is conservative for now to catch cases created by
+  // splitting vector types.
+  if ((SrcValueAlign1 == SrcValueAlign2) &&
+      (SrcValueOffset1 != SrcValueOffset2) &&
+      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
+    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
+    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
+    
+    // There is no overlap between these relatively aligned accesses of similar
+    // size, return no alias.
+    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
+      return false;
+  }
+  
+  if (CombinerGlobalAA) {
+    // Use alias analysis information.
+    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
+    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
+    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
+    AliasAnalysis::AliasResult AAResult =
+                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
+    if (AAResult == AliasAnalysis::NoAlias)
+      return false;
+  }
+
+  // Otherwise we have to assume they alias.
+  return true;
+}
+
+/// FindAliasInfo - Extracts the relevant alias information from the memory
+/// node.  Returns true if the operand was a load.
+bool DAGCombiner::FindAliasInfo(SDNode *N,
+                        SDValue &Ptr, int64_t &Size,
+                        const Value *&SrcValue, 
+                        int &SrcValueOffset,
+                        unsigned &SrcValueAlign) const {
+  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+    Ptr = LD->getBasePtr();
+    Size = LD->getMemoryVT().getSizeInBits() >> 3;
+    SrcValue = LD->getSrcValue();
+    SrcValueOffset = LD->getSrcValueOffset();
+    SrcValueAlign = LD->getOriginalAlignment();
+    return true;
+  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+    Ptr = ST->getBasePtr();
+    Size = ST->getMemoryVT().getSizeInBits() >> 3;
+    SrcValue = ST->getSrcValue();
+    SrcValueOffset = ST->getSrcValueOffset();
+    SrcValueAlign = ST->getOriginalAlignment();
+  } else {
+    llvm_unreachable("FindAliasInfo expected a memory operand");
+  }
+
+  return false;
+}
+
+/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
+/// looking for aliasing nodes and adding them to the Aliases vector.
+void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
+                                   SmallVector<SDValue, 8> &Aliases) {
+  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
+  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
+
+  // Get alias information for node.
+  SDValue Ptr;
+  int64_t Size;
+  const Value *SrcValue;
+  int SrcValueOffset;
+  unsigned SrcValueAlign;
+  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset, 
+                              SrcValueAlign);
+
+  // Starting off.
+  Chains.push_back(OriginalChain);
+  unsigned Depth = 0;
+  
+  // Look at each chain and determine if it is an alias.  If so, add it to the
+  // aliases list.  If not, then continue up the chain looking for the next
+  // candidate.
+  while (!Chains.empty()) {
+    SDValue Chain = Chains.back();
+    Chains.pop_back();
+    
+    // For TokenFactor nodes, look at each operand and only continue up the 
+    // chain until we find two aliases.  If we've seen two aliases, assume we'll 
+    // find more and revert to original chain since the xform is unlikely to be
+    // profitable.
+    // 
+    // FIXME: The depth check could be made to return the last non-aliasing 
+    // chain we found before we hit a tokenfactor rather than the original
+    // chain.
+    if (Depth > 6 || Aliases.size() == 2) {
+      Aliases.clear();
+      Aliases.push_back(OriginalChain);
+      break;
+    }
+
+    // Don't bother if we've been before.
+    if (!Visited.insert(Chain.getNode()))
+      continue;
+
+    switch (Chain.getOpcode()) {
+    case ISD::EntryToken:
+      // Entry token is ideal chain operand, but handled in FindBetterChain.
+      break;
+
+    case ISD::LOAD:
+    case ISD::STORE: {
+      // Get alias information for Chain.
+      SDValue OpPtr;
+      int64_t OpSize;
+      const Value *OpSrcValue;
+      int OpSrcValueOffset;
+      unsigned OpSrcValueAlign;
+      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
+                                    OpSrcValue, OpSrcValueOffset,
+                                    OpSrcValueAlign);
+
+      // If chain is alias then stop here.
+      if (!(IsLoad && IsOpLoad) &&
+          isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
+                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
+                  OpSrcValueAlign)) {
+        Aliases.push_back(Chain);
+      } else {
+        // Look further up the chain.
+        Chains.push_back(Chain.getOperand(0));
+        ++Depth;
+      }
+      break;
+    }
+
+    case ISD::TokenFactor:
+      // We have to check each of the operands of the token factor for "small"
+      // token factors, so we queue them up.  Adding the operands to the queue
+      // (stack) in reverse order maintains the original order and increases the
+      // likelihood that getNode will find a matching token factor (CSE.)
+      if (Chain.getNumOperands() > 16) {
+        Aliases.push_back(Chain);
+        break;
+      }
+      for (unsigned n = Chain.getNumOperands(); n;)
+        Chains.push_back(Chain.getOperand(--n));
+      ++Depth;
+      break;
+
+    default:
+      // For all other instructions we will just have to take what we can get.
+      Aliases.push_back(Chain);
+      break;
+    }
+  }
+}
+
+/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
+/// for a better chain (aliasing node.)
+SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
+  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
+
+  // Accumulate all the aliases to this node.
+  GatherAllAliases(N, OldChain, Aliases);
+
+  if (Aliases.size() == 0) {
+    // If no operands then chain to entry token.
+    return DAG.getEntryNode();
+  } else if (Aliases.size() == 1) {
+    // If a single operand then chain to it.  We don't need to revisit it.
+    return Aliases[0];
+  }
+  
+  // Construct a custom tailored token factor.
+  return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other, 
+                     &Aliases[0], Aliases.size());
+}
+
+// SelectionDAG::Combine - This is the entry point for the file.
+//
+void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
+                           CodeGenOpt::Level OptLevel) {
+  /// run - This is the main entry point to this class.
+  ///
+  DAGCombiner(*this, AA, OptLevel).Run(Level);
+}