Check in LLVM r95781.
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
new file mode 100644
index 0000000..6122a2a
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
@@ -0,0 +1,6325 @@
+//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements the SelectionDAG class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "SDNodeOrdering.h"
+#include "llvm/Constants.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalAlias.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/CallingConv.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetFrameInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/System/Mutex.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include <algorithm>
+#include <cmath>
+using namespace llvm;
+
+/// makeVTList - Return an instance of the SDVTList struct initialized with the
+/// specified members.
+static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
+  SDVTList Res = {VTs, NumVTs};
+  return Res;
+}
+
+static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
+  switch (VT.getSimpleVT().SimpleTy) {
+  default: llvm_unreachable("Unknown FP format");
+  case MVT::f32:     return &APFloat::IEEEsingle;
+  case MVT::f64:     return &APFloat::IEEEdouble;
+  case MVT::f80:     return &APFloat::x87DoubleExtended;
+  case MVT::f128:    return &APFloat::IEEEquad;
+  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
+  }
+}
+
+SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
+
+//===----------------------------------------------------------------------===//
+//                              ConstantFPSDNode Class
+//===----------------------------------------------------------------------===//
+
+/// isExactlyValue - We don't rely on operator== working on double values, as
+/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
+/// As such, this method can be used to do an exact bit-for-bit comparison of
+/// two floating point values.
+bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
+  return getValueAPF().bitwiseIsEqual(V);
+}
+
+bool ConstantFPSDNode::isValueValidForType(EVT VT,
+                                           const APFloat& Val) {
+  assert(VT.isFloatingPoint() && "Can only convert between FP types");
+
+  // PPC long double cannot be converted to any other type.
+  if (VT == MVT::ppcf128 ||
+      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
+    return false;
+
+  // convert modifies in place, so make a copy.
+  APFloat Val2 = APFloat(Val);
+  bool losesInfo;
+  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
+                      &losesInfo);
+  return !losesInfo;
+}
+
+//===----------------------------------------------------------------------===//
+//                              ISD Namespace
+//===----------------------------------------------------------------------===//
+
+/// isBuildVectorAllOnes - Return true if the specified node is a
+/// BUILD_VECTOR where all of the elements are ~0 or undef.
+bool ISD::isBuildVectorAllOnes(const SDNode *N) {
+  // Look through a bit convert.
+  if (N->getOpcode() == ISD::BIT_CONVERT)
+    N = N->getOperand(0).getNode();
+
+  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
+
+  unsigned i = 0, e = N->getNumOperands();
+
+  // Skip over all of the undef values.
+  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
+    ++i;
+
+  // Do not accept an all-undef vector.
+  if (i == e) return false;
+
+  // Do not accept build_vectors that aren't all constants or which have non-~0
+  // elements.
+  SDValue NotZero = N->getOperand(i);
+  if (isa<ConstantSDNode>(NotZero)) {
+    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
+      return false;
+  } else if (isa<ConstantFPSDNode>(NotZero)) {
+    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
+                bitcastToAPInt().isAllOnesValue())
+      return false;
+  } else
+    return false;
+
+  // Okay, we have at least one ~0 value, check to see if the rest match or are
+  // undefs.
+  for (++i; i != e; ++i)
+    if (N->getOperand(i) != NotZero &&
+        N->getOperand(i).getOpcode() != ISD::UNDEF)
+      return false;
+  return true;
+}
+
+
+/// isBuildVectorAllZeros - Return true if the specified node is a
+/// BUILD_VECTOR where all of the elements are 0 or undef.
+bool ISD::isBuildVectorAllZeros(const SDNode *N) {
+  // Look through a bit convert.
+  if (N->getOpcode() == ISD::BIT_CONVERT)
+    N = N->getOperand(0).getNode();
+
+  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
+
+  unsigned i = 0, e = N->getNumOperands();
+
+  // Skip over all of the undef values.
+  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
+    ++i;
+
+  // Do not accept an all-undef vector.
+  if (i == e) return false;
+
+  // Do not accept build_vectors that aren't all constants or which have non-0
+  // elements.
+  SDValue Zero = N->getOperand(i);
+  if (isa<ConstantSDNode>(Zero)) {
+    if (!cast<ConstantSDNode>(Zero)->isNullValue())
+      return false;
+  } else if (isa<ConstantFPSDNode>(Zero)) {
+    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
+      return false;
+  } else
+    return false;
+
+  // Okay, we have at least one 0 value, check to see if the rest match or are
+  // undefs.
+  for (++i; i != e; ++i)
+    if (N->getOperand(i) != Zero &&
+        N->getOperand(i).getOpcode() != ISD::UNDEF)
+      return false;
+  return true;
+}
+
+/// isScalarToVector - Return true if the specified node is a
+/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
+/// element is not an undef.
+bool ISD::isScalarToVector(const SDNode *N) {
+  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
+    return true;
+
+  if (N->getOpcode() != ISD::BUILD_VECTOR)
+    return false;
+  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
+    return false;
+  unsigned NumElems = N->getNumOperands();
+  for (unsigned i = 1; i < NumElems; ++i) {
+    SDValue V = N->getOperand(i);
+    if (V.getOpcode() != ISD::UNDEF)
+      return false;
+  }
+  return true;
+}
+
+/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
+/// when given the operation for (X op Y).
+ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
+  // To perform this operation, we just need to swap the L and G bits of the
+  // operation.
+  unsigned OldL = (Operation >> 2) & 1;
+  unsigned OldG = (Operation >> 1) & 1;
+  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
+                       (OldL << 1) |       // New G bit
+                       (OldG << 2));       // New L bit.
+}
+
+/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
+/// 'op' is a valid SetCC operation.
+ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
+  unsigned Operation = Op;
+  if (isInteger)
+    Operation ^= 7;   // Flip L, G, E bits, but not U.
+  else
+    Operation ^= 15;  // Flip all of the condition bits.
+
+  if (Operation > ISD::SETTRUE2)
+    Operation &= ~8;  // Don't let N and U bits get set.
+
+  return ISD::CondCode(Operation);
+}
+
+
+/// isSignedOp - For an integer comparison, return 1 if the comparison is a
+/// signed operation and 2 if the result is an unsigned comparison.  Return zero
+/// if the operation does not depend on the sign of the input (setne and seteq).
+static int isSignedOp(ISD::CondCode Opcode) {
+  switch (Opcode) {
+  default: llvm_unreachable("Illegal integer setcc operation!");
+  case ISD::SETEQ:
+  case ISD::SETNE: return 0;
+  case ISD::SETLT:
+  case ISD::SETLE:
+  case ISD::SETGT:
+  case ISD::SETGE: return 1;
+  case ISD::SETULT:
+  case ISD::SETULE:
+  case ISD::SETUGT:
+  case ISD::SETUGE: return 2;
+  }
+}
+
+/// getSetCCOrOperation - Return the result of a logical OR between different
+/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
+/// returns SETCC_INVALID if it is not possible to represent the resultant
+/// comparison.
+ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
+                                       bool isInteger) {
+  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
+    // Cannot fold a signed integer setcc with an unsigned integer setcc.
+    return ISD::SETCC_INVALID;
+
+  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
+
+  // If the N and U bits get set then the resultant comparison DOES suddenly
+  // care about orderedness, and is true when ordered.
+  if (Op > ISD::SETTRUE2)
+    Op &= ~16;     // Clear the U bit if the N bit is set.
+
+  // Canonicalize illegal integer setcc's.
+  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
+    Op = ISD::SETNE;
+
+  return ISD::CondCode(Op);
+}
+
+/// getSetCCAndOperation - Return the result of a logical AND between different
+/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
+/// function returns zero if it is not possible to represent the resultant
+/// comparison.
+ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
+                                        bool isInteger) {
+  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
+    // Cannot fold a signed setcc with an unsigned setcc.
+    return ISD::SETCC_INVALID;
+
+  // Combine all of the condition bits.
+  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
+
+  // Canonicalize illegal integer setcc's.
+  if (isInteger) {
+    switch (Result) {
+    default: break;
+    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
+    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
+    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
+    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
+    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
+    }
+  }
+
+  return Result;
+}
+
+const TargetMachine &SelectionDAG::getTarget() const {
+  return MF->getTarget();
+}
+
+//===----------------------------------------------------------------------===//
+//                           SDNode Profile Support
+//===----------------------------------------------------------------------===//
+
+/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
+///
+static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
+  ID.AddInteger(OpC);
+}
+
+/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
+/// solely with their pointer.
+static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
+  ID.AddPointer(VTList.VTs);
+}
+
+/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
+///
+static void AddNodeIDOperands(FoldingSetNodeID &ID,
+                              const SDValue *Ops, unsigned NumOps) {
+  for (; NumOps; --NumOps, ++Ops) {
+    ID.AddPointer(Ops->getNode());
+    ID.AddInteger(Ops->getResNo());
+  }
+}
+
+/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
+///
+static void AddNodeIDOperands(FoldingSetNodeID &ID,
+                              const SDUse *Ops, unsigned NumOps) {
+  for (; NumOps; --NumOps, ++Ops) {
+    ID.AddPointer(Ops->getNode());
+    ID.AddInteger(Ops->getResNo());
+  }
+}
+
+static void AddNodeIDNode(FoldingSetNodeID &ID,
+                          unsigned short OpC, SDVTList VTList,
+                          const SDValue *OpList, unsigned N) {
+  AddNodeIDOpcode(ID, OpC);
+  AddNodeIDValueTypes(ID, VTList);
+  AddNodeIDOperands(ID, OpList, N);
+}
+
+/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
+/// the NodeID data.
+static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
+  switch (N->getOpcode()) {
+  case ISD::TargetExternalSymbol:
+  case ISD::ExternalSymbol:
+    llvm_unreachable("Should only be used on nodes with operands");
+  default: break;  // Normal nodes don't need extra info.
+  case ISD::TargetConstant:
+  case ISD::Constant:
+    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
+    break;
+  case ISD::TargetConstantFP:
+  case ISD::ConstantFP: {
+    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
+    break;
+  }
+  case ISD::TargetGlobalAddress:
+  case ISD::GlobalAddress:
+  case ISD::TargetGlobalTLSAddress:
+  case ISD::GlobalTLSAddress: {
+    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
+    ID.AddPointer(GA->getGlobal());
+    ID.AddInteger(GA->getOffset());
+    ID.AddInteger(GA->getTargetFlags());
+    break;
+  }
+  case ISD::BasicBlock:
+    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
+    break;
+  case ISD::Register:
+    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
+    break;
+
+  case ISD::SRCVALUE:
+    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
+    break;
+  case ISD::FrameIndex:
+  case ISD::TargetFrameIndex:
+    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
+    break;
+  case ISD::JumpTable:
+  case ISD::TargetJumpTable:
+    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
+    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
+    break;
+  case ISD::ConstantPool:
+  case ISD::TargetConstantPool: {
+    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
+    ID.AddInteger(CP->getAlignment());
+    ID.AddInteger(CP->getOffset());
+    if (CP->isMachineConstantPoolEntry())
+      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
+    else
+      ID.AddPointer(CP->getConstVal());
+    ID.AddInteger(CP->getTargetFlags());
+    break;
+  }
+  case ISD::LOAD: {
+    const LoadSDNode *LD = cast<LoadSDNode>(N);
+    ID.AddInteger(LD->getMemoryVT().getRawBits());
+    ID.AddInteger(LD->getRawSubclassData());
+    break;
+  }
+  case ISD::STORE: {
+    const StoreSDNode *ST = cast<StoreSDNode>(N);
+    ID.AddInteger(ST->getMemoryVT().getRawBits());
+    ID.AddInteger(ST->getRawSubclassData());
+    break;
+  }
+  case ISD::ATOMIC_CMP_SWAP:
+  case ISD::ATOMIC_SWAP:
+  case ISD::ATOMIC_LOAD_ADD:
+  case ISD::ATOMIC_LOAD_SUB:
+  case ISD::ATOMIC_LOAD_AND:
+  case ISD::ATOMIC_LOAD_OR:
+  case ISD::ATOMIC_LOAD_XOR:
+  case ISD::ATOMIC_LOAD_NAND:
+  case ISD::ATOMIC_LOAD_MIN:
+  case ISD::ATOMIC_LOAD_MAX:
+  case ISD::ATOMIC_LOAD_UMIN:
+  case ISD::ATOMIC_LOAD_UMAX: {
+    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
+    ID.AddInteger(AT->getMemoryVT().getRawBits());
+    ID.AddInteger(AT->getRawSubclassData());
+    break;
+  }
+  case ISD::VECTOR_SHUFFLE: {
+    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
+    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
+         i != e; ++i)
+      ID.AddInteger(SVN->getMaskElt(i));
+    break;
+  }
+  case ISD::TargetBlockAddress:
+  case ISD::BlockAddress: {
+    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
+    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
+    break;
+  }
+  } // end switch (N->getOpcode())
+}
+
+/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
+/// data.
+static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
+  AddNodeIDOpcode(ID, N->getOpcode());
+  // Add the return value info.
+  AddNodeIDValueTypes(ID, N->getVTList());
+  // Add the operand info.
+  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
+
+  // Handle SDNode leafs with special info.
+  AddNodeIDCustom(ID, N);
+}
+
+/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
+/// the CSE map that carries volatility, indexing mode, and
+/// extension/truncation information.
+///
+static inline unsigned
+encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile) {
+  assert((ConvType & 3) == ConvType &&
+         "ConvType may not require more than 2 bits!");
+  assert((AM & 7) == AM &&
+         "AM may not require more than 3 bits!");
+  return ConvType |
+         (AM << 2) |
+         (isVolatile << 5);
+}
+
+//===----------------------------------------------------------------------===//
+//                              SelectionDAG Class
+//===----------------------------------------------------------------------===//
+
+/// doNotCSE - Return true if CSE should not be performed for this node.
+static bool doNotCSE(SDNode *N) {
+  if (N->getValueType(0) == MVT::Flag)
+    return true; // Never CSE anything that produces a flag.
+
+  switch (N->getOpcode()) {
+  default: break;
+  case ISD::HANDLENODE:
+  case ISD::EH_LABEL:
+    return true;   // Never CSE these nodes.
+  }
+
+  // Check that remaining values produced are not flags.
+  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
+    if (N->getValueType(i) == MVT::Flag)
+      return true; // Never CSE anything that produces a flag.
+
+  return false;
+}
+
+/// RemoveDeadNodes - This method deletes all unreachable nodes in the
+/// SelectionDAG.
+void SelectionDAG::RemoveDeadNodes() {
+  // Create a dummy node (which is not added to allnodes), that adds a reference
+  // to the root node, preventing it from being deleted.
+  HandleSDNode Dummy(getRoot());
+
+  SmallVector<SDNode*, 128> DeadNodes;
+
+  // Add all obviously-dead nodes to the DeadNodes worklist.
+  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
+    if (I->use_empty())
+      DeadNodes.push_back(I);
+
+  RemoveDeadNodes(DeadNodes);
+
+  // If the root changed (e.g. it was a dead load, update the root).
+  setRoot(Dummy.getValue());
+}
+
+/// RemoveDeadNodes - This method deletes the unreachable nodes in the
+/// given list, and any nodes that become unreachable as a result.
+void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
+                                   DAGUpdateListener *UpdateListener) {
+
+  // Process the worklist, deleting the nodes and adding their uses to the
+  // worklist.
+  while (!DeadNodes.empty()) {
+    SDNode *N = DeadNodes.pop_back_val();
+
+    if (UpdateListener)
+      UpdateListener->NodeDeleted(N, 0);
+
+    // Take the node out of the appropriate CSE map.
+    RemoveNodeFromCSEMaps(N);
+
+    // Next, brutally remove the operand list.  This is safe to do, as there are
+    // no cycles in the graph.
+    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
+      SDUse &Use = *I++;
+      SDNode *Operand = Use.getNode();
+      Use.set(SDValue());
+
+      // Now that we removed this operand, see if there are no uses of it left.
+      if (Operand->use_empty())
+        DeadNodes.push_back(Operand);
+    }
+
+    DeallocateNode(N);
+  }
+}
+
+void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
+  SmallVector<SDNode*, 16> DeadNodes(1, N);
+  RemoveDeadNodes(DeadNodes, UpdateListener);
+}
+
+void SelectionDAG::DeleteNode(SDNode *N) {
+  // First take this out of the appropriate CSE map.
+  RemoveNodeFromCSEMaps(N);
+
+  // Finally, remove uses due to operands of this node, remove from the
+  // AllNodes list, and delete the node.
+  DeleteNodeNotInCSEMaps(N);
+}
+
+void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
+  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
+  assert(N->use_empty() && "Cannot delete a node that is not dead!");
+
+  // Drop all of the operands and decrement used node's use counts.
+  N->DropOperands();
+
+  DeallocateNode(N);
+}
+
+void SelectionDAG::DeallocateNode(SDNode *N) {
+  if (N->OperandsNeedDelete)
+    delete[] N->OperandList;
+
+  // Set the opcode to DELETED_NODE to help catch bugs when node
+  // memory is reallocated.
+  N->NodeType = ISD::DELETED_NODE;
+
+  NodeAllocator.Deallocate(AllNodes.remove(N));
+
+  // Remove the ordering of this node.
+  Ordering->remove(N);
+}
+
+/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
+/// correspond to it.  This is useful when we're about to delete or repurpose
+/// the node.  We don't want future request for structurally identical nodes
+/// to return N anymore.
+bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
+  bool Erased = false;
+  switch (N->getOpcode()) {
+  case ISD::EntryToken:
+    llvm_unreachable("EntryToken should not be in CSEMaps!");
+    return false;
+  case ISD::HANDLENODE: return false;  // noop.
+  case ISD::CONDCODE:
+    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
+           "Cond code doesn't exist!");
+    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
+    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
+    break;
+  case ISD::ExternalSymbol:
+    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
+    break;
+  case ISD::TargetExternalSymbol: {
+    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
+    Erased = TargetExternalSymbols.erase(
+               std::pair<std::string,unsigned char>(ESN->getSymbol(),
+                                                    ESN->getTargetFlags()));
+    break;
+  }
+  case ISD::VALUETYPE: {
+    EVT VT = cast<VTSDNode>(N)->getVT();
+    if (VT.isExtended()) {
+      Erased = ExtendedValueTypeNodes.erase(VT);
+    } else {
+      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
+      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
+    }
+    break;
+  }
+  default:
+    // Remove it from the CSE Map.
+    Erased = CSEMap.RemoveNode(N);
+    break;
+  }
+#ifndef NDEBUG
+  // Verify that the node was actually in one of the CSE maps, unless it has a
+  // flag result (which cannot be CSE'd) or is one of the special cases that are
+  // not subject to CSE.
+  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
+      !N->isMachineOpcode() && !doNotCSE(N)) {
+    N->dump(this);
+    dbgs() << "\n";
+    llvm_unreachable("Node is not in map!");
+  }
+#endif
+  return Erased;
+}
+
+/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
+/// maps and modified in place. Add it back to the CSE maps, unless an identical
+/// node already exists, in which case transfer all its users to the existing
+/// node. This transfer can potentially trigger recursive merging.
+///
+void
+SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
+                                       DAGUpdateListener *UpdateListener) {
+  // For node types that aren't CSE'd, just act as if no identical node
+  // already exists.
+  if (!doNotCSE(N)) {
+    SDNode *Existing = CSEMap.GetOrInsertNode(N);
+    if (Existing != N) {
+      // If there was already an existing matching node, use ReplaceAllUsesWith
+      // to replace the dead one with the existing one.  This can cause
+      // recursive merging of other unrelated nodes down the line.
+      ReplaceAllUsesWith(N, Existing, UpdateListener);
+
+      // N is now dead.  Inform the listener if it exists and delete it.
+      if (UpdateListener)
+        UpdateListener->NodeDeleted(N, Existing);
+      DeleteNodeNotInCSEMaps(N);
+      return;
+    }
+  }
+
+  // If the node doesn't already exist, we updated it.  Inform a listener if
+  // it exists.
+  if (UpdateListener)
+    UpdateListener->NodeUpdated(N);
+}
+
+/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
+/// were replaced with those specified.  If this node is never memoized,
+/// return null, otherwise return a pointer to the slot it would take.  If a
+/// node already exists with these operands, the slot will be non-null.
+SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
+                                           void *&InsertPos) {
+  if (doNotCSE(N))
+    return 0;
+
+  SDValue Ops[] = { Op };
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
+  AddNodeIDCustom(ID, N);
+  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
+  return Node;
+}
+
+/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
+/// were replaced with those specified.  If this node is never memoized,
+/// return null, otherwise return a pointer to the slot it would take.  If a
+/// node already exists with these operands, the slot will be non-null.
+SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
+                                           SDValue Op1, SDValue Op2,
+                                           void *&InsertPos) {
+  if (doNotCSE(N))
+    return 0;
+
+  SDValue Ops[] = { Op1, Op2 };
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
+  AddNodeIDCustom(ID, N);
+  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
+  return Node;
+}
+
+
+/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
+/// were replaced with those specified.  If this node is never memoized,
+/// return null, otherwise return a pointer to the slot it would take.  If a
+/// node already exists with these operands, the slot will be non-null.
+SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
+                                           const SDValue *Ops,unsigned NumOps,
+                                           void *&InsertPos) {
+  if (doNotCSE(N))
+    return 0;
+
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
+  AddNodeIDCustom(ID, N);
+  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
+  return Node;
+}
+
+/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
+void SelectionDAG::VerifyNode(SDNode *N) {
+  switch (N->getOpcode()) {
+  default:
+    break;
+  case ISD::BUILD_PAIR: {
+    EVT VT = N->getValueType(0);
+    assert(N->getNumValues() == 1 && "Too many results!");
+    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
+           "Wrong return type!");
+    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
+    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
+           "Mismatched operand types!");
+    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
+           "Wrong operand type!");
+    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
+           "Wrong return type size");
+    break;
+  }
+  case ISD::BUILD_VECTOR: {
+    assert(N->getNumValues() == 1 && "Too many results!");
+    assert(N->getValueType(0).isVector() && "Wrong return type!");
+    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
+           "Wrong number of operands!");
+    EVT EltVT = N->getValueType(0).getVectorElementType();
+    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
+      assert((I->getValueType() == EltVT ||
+             (EltVT.isInteger() && I->getValueType().isInteger() &&
+              EltVT.bitsLE(I->getValueType()))) &&
+            "Wrong operand type!");
+    break;
+  }
+  }
+}
+
+/// getEVTAlignment - Compute the default alignment value for the
+/// given type.
+///
+unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
+  const Type *Ty = VT == MVT::iPTR ?
+                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
+                   VT.getTypeForEVT(*getContext());
+
+  return TLI.getTargetData()->getABITypeAlignment(Ty);
+}
+
+// EntryNode could meaningfully have debug info if we can find it...
+SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
+  : TLI(tli), FLI(fli), DW(0),
+    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
+              getVTList(MVT::Other)),
+    Root(getEntryNode()), Ordering(0) {
+  AllNodes.push_back(&EntryNode);
+  Ordering = new SDNodeOrdering();
+}
+
+void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
+                        DwarfWriter *dw) {
+  MF = &mf;
+  MMI = mmi;
+  DW = dw;
+  Context = &mf.getFunction()->getContext();
+}
+
+SelectionDAG::~SelectionDAG() {
+  allnodes_clear();
+  delete Ordering;
+}
+
+void SelectionDAG::allnodes_clear() {
+  assert(&*AllNodes.begin() == &EntryNode);
+  AllNodes.remove(AllNodes.begin());
+  while (!AllNodes.empty())
+    DeallocateNode(AllNodes.begin());
+}
+
+void SelectionDAG::clear() {
+  allnodes_clear();
+  OperandAllocator.Reset();
+  CSEMap.clear();
+
+  ExtendedValueTypeNodes.clear();
+  ExternalSymbols.clear();
+  TargetExternalSymbols.clear();
+  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
+            static_cast<CondCodeSDNode*>(0));
+  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
+            static_cast<SDNode*>(0));
+
+  EntryNode.UseList = 0;
+  AllNodes.push_back(&EntryNode);
+  Root = getEntryNode();
+  Ordering = new SDNodeOrdering();
+}
+
+SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
+  return VT.bitsGT(Op.getValueType()) ?
+    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
+    getNode(ISD::TRUNCATE, DL, VT, Op);
+}
+
+SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
+  return VT.bitsGT(Op.getValueType()) ?
+    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
+    getNode(ISD::TRUNCATE, DL, VT, Op);
+}
+
+SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
+  assert(!VT.isVector() &&
+         "getZeroExtendInReg should use the vector element type instead of "
+         "the vector type!");
+  if (Op.getValueType() == VT) return Op;
+  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
+  APInt Imm = APInt::getLowBitsSet(BitWidth,
+                                   VT.getSizeInBits());
+  return getNode(ISD::AND, DL, Op.getValueType(), Op,
+                 getConstant(Imm, Op.getValueType()));
+}
+
+/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
+///
+SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
+  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
+  SDValue NegOne =
+    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
+  return getNode(ISD::XOR, DL, VT, Val, NegOne);
+}
+
+SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
+  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
+  assert((EltVT.getSizeInBits() >= 64 ||
+         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
+         "getConstant with a uint64_t value that doesn't fit in the type!");
+  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
+}
+
+SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
+  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
+}
+
+SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
+  assert(VT.isInteger() && "Cannot create FP integer constant!");
+
+  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
+  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
+         "APInt size does not match type size!");
+
+  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
+  ID.AddPointer(&Val);
+  void *IP = 0;
+  SDNode *N = NULL;
+  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
+    if (!VT.isVector())
+      return SDValue(N, 0);
+
+  if (!N) {
+    N = NodeAllocator.Allocate<ConstantSDNode>();
+    new (N) ConstantSDNode(isT, &Val, EltVT);
+    CSEMap.InsertNode(N, IP);
+    AllNodes.push_back(N);
+  }
+
+  SDValue Result(N, 0);
+  if (VT.isVector()) {
+    SmallVector<SDValue, 8> Ops;
+    Ops.assign(VT.getVectorNumElements(), Result);
+    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
+                     VT, &Ops[0], Ops.size());
+  }
+  return Result;
+}
+
+SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
+  return getConstant(Val, TLI.getPointerTy(), isTarget);
+}
+
+
+SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
+  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
+}
+
+SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
+  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
+
+  EVT EltVT =
+    VT.isVector() ? VT.getVectorElementType() : VT;
+
+  // Do the map lookup using the actual bit pattern for the floating point
+  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
+  // we don't have issues with SNANs.
+  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
+  ID.AddPointer(&V);
+  void *IP = 0;
+  SDNode *N = NULL;
+  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
+    if (!VT.isVector())
+      return SDValue(N, 0);
+
+  if (!N) {
+    N = NodeAllocator.Allocate<ConstantFPSDNode>();
+    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
+    CSEMap.InsertNode(N, IP);
+    AllNodes.push_back(N);
+  }
+
+  SDValue Result(N, 0);
+  if (VT.isVector()) {
+    SmallVector<SDValue, 8> Ops;
+    Ops.assign(VT.getVectorNumElements(), Result);
+    // FIXME DebugLoc info might be appropriate here
+    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
+                     VT, &Ops[0], Ops.size());
+  }
+  return Result;
+}
+
+SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
+  EVT EltVT =
+    VT.isVector() ? VT.getVectorElementType() : VT;
+  if (EltVT==MVT::f32)
+    return getConstantFP(APFloat((float)Val), VT, isTarget);
+  else
+    return getConstantFP(APFloat(Val), VT, isTarget);
+}
+
+SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
+                                       EVT VT, int64_t Offset,
+                                       bool isTargetGA,
+                                       unsigned char TargetFlags) {
+  assert((TargetFlags == 0 || isTargetGA) &&
+         "Cannot set target flags on target-independent globals");
+
+  // Truncate (with sign-extension) the offset value to the pointer size.
+  EVT PTy = TLI.getPointerTy();
+  unsigned BitWidth = PTy.getSizeInBits();
+  if (BitWidth < 64)
+    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
+
+  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
+  if (!GVar) {
+    // If GV is an alias then use the aliasee for determining thread-localness.
+    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
+      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
+  }
+
+  unsigned Opc;
+  if (GVar && GVar->isThreadLocal())
+    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
+  else
+    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
+
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
+  ID.AddPointer(GV);
+  ID.AddInteger(Offset);
+  ID.AddInteger(TargetFlags);
+  void *IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+    return SDValue(E, 0);
+
+  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
+  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
+  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
+  ID.AddInteger(FI);
+  void *IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+    return SDValue(E, 0);
+
+  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
+  new (N) FrameIndexSDNode(FI, VT, isTarget);
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
+                                   unsigned char TargetFlags) {
+  assert((TargetFlags == 0 || isTarget) &&
+         "Cannot set target flags on target-independent jump tables");
+  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
+  ID.AddInteger(JTI);
+  ID.AddInteger(TargetFlags);
+  void *IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+    return SDValue(E, 0);
+
+  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
+  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
+                                      unsigned Alignment, int Offset,
+                                      bool isTarget,
+                                      unsigned char TargetFlags) {
+  assert((TargetFlags == 0 || isTarget) &&
+         "Cannot set target flags on target-independent globals");
+  if (Alignment == 0)
+    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
+  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
+  ID.AddInteger(Alignment);
+  ID.AddInteger(Offset);
+  ID.AddPointer(C);
+  ID.AddInteger(TargetFlags);
+  void *IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+    return SDValue(E, 0);
+
+  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
+  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+
+SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
+                                      unsigned Alignment, int Offset,
+                                      bool isTarget,
+                                      unsigned char TargetFlags) {
+  assert((TargetFlags == 0 || isTarget) &&
+         "Cannot set target flags on target-independent globals");
+  if (Alignment == 0)
+    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
+  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
+  ID.AddInteger(Alignment);
+  ID.AddInteger(Offset);
+  C->AddSelectionDAGCSEId(ID);
+  ID.AddInteger(TargetFlags);
+  void *IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+    return SDValue(E, 0);
+
+  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
+  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
+  ID.AddPointer(MBB);
+  void *IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+    return SDValue(E, 0);
+
+  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
+  new (N) BasicBlockSDNode(MBB);
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getValueType(EVT VT) {
+  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
+      ValueTypeNodes.size())
+    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
+
+  SDNode *&N = VT.isExtended() ?
+    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
+
+  if (N) return SDValue(N, 0);
+  N = NodeAllocator.Allocate<VTSDNode>();
+  new (N) VTSDNode(VT);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
+  SDNode *&N = ExternalSymbols[Sym];
+  if (N) return SDValue(N, 0);
+  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
+  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
+                                              unsigned char TargetFlags) {
+  SDNode *&N =
+    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
+                                                               TargetFlags)];
+  if (N) return SDValue(N, 0);
+  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
+  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
+  if ((unsigned)Cond >= CondCodeNodes.size())
+    CondCodeNodes.resize(Cond+1);
+
+  if (CondCodeNodes[Cond] == 0) {
+    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
+    new (N) CondCodeSDNode(Cond);
+    CondCodeNodes[Cond] = N;
+    AllNodes.push_back(N);
+  }
+
+  return SDValue(CondCodeNodes[Cond], 0);
+}
+
+// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
+// the shuffle mask M that point at N1 to point at N2, and indices that point
+// N2 to point at N1.
+static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
+  std::swap(N1, N2);
+  int NElts = M.size();
+  for (int i = 0; i != NElts; ++i) {
+    if (M[i] >= NElts)
+      M[i] -= NElts;
+    else if (M[i] >= 0)
+      M[i] += NElts;
+  }
+}
+
+SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
+                                       SDValue N2, const int *Mask) {
+  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
+  assert(VT.isVector() && N1.getValueType().isVector() &&
+         "Vector Shuffle VTs must be a vectors");
+  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
+         && "Vector Shuffle VTs must have same element type");
+
+  // Canonicalize shuffle undef, undef -> undef
+  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
+    return getUNDEF(VT);
+
+  // Validate that all indices in Mask are within the range of the elements
+  // input to the shuffle.
+  unsigned NElts = VT.getVectorNumElements();
+  SmallVector<int, 8> MaskVec;
+  for (unsigned i = 0; i != NElts; ++i) {
+    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
+    MaskVec.push_back(Mask[i]);
+  }
+
+  // Canonicalize shuffle v, v -> v, undef
+  if (N1 == N2) {
+    N2 = getUNDEF(VT);
+    for (unsigned i = 0; i != NElts; ++i)
+      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
+  }
+
+  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
+  if (N1.getOpcode() == ISD::UNDEF)
+    commuteShuffle(N1, N2, MaskVec);
+
+  // Canonicalize all index into lhs, -> shuffle lhs, undef
+  // Canonicalize all index into rhs, -> shuffle rhs, undef
+  bool AllLHS = true, AllRHS = true;
+  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
+  for (unsigned i = 0; i != NElts; ++i) {
+    if (MaskVec[i] >= (int)NElts) {
+      if (N2Undef)
+        MaskVec[i] = -1;
+      else
+        AllLHS = false;
+    } else if (MaskVec[i] >= 0) {
+      AllRHS = false;
+    }
+  }
+  if (AllLHS && AllRHS)
+    return getUNDEF(VT);
+  if (AllLHS && !N2Undef)
+    N2 = getUNDEF(VT);
+  if (AllRHS) {
+    N1 = getUNDEF(VT);
+    commuteShuffle(N1, N2, MaskVec);
+  }
+
+  // If Identity shuffle, or all shuffle in to undef, return that node.
+  bool AllUndef = true;
+  bool Identity = true;
+  for (unsigned i = 0; i != NElts; ++i) {
+    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
+    if (MaskVec[i] >= 0) AllUndef = false;
+  }
+  if (Identity && NElts == N1.getValueType().getVectorNumElements())
+    return N1;
+  if (AllUndef)
+    return getUNDEF(VT);
+
+  FoldingSetNodeID ID;
+  SDValue Ops[2] = { N1, N2 };
+  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
+  for (unsigned i = 0; i != NElts; ++i)
+    ID.AddInteger(MaskVec[i]);
+
+  void* IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+    return SDValue(E, 0);
+
+  // Allocate the mask array for the node out of the BumpPtrAllocator, since
+  // SDNode doesn't have access to it.  This memory will be "leaked" when
+  // the node is deallocated, but recovered when the NodeAllocator is released.
+  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
+  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
+
+  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
+  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
+                                       SDValue Val, SDValue DTy,
+                                       SDValue STy, SDValue Rnd, SDValue Sat,
+                                       ISD::CvtCode Code) {
+  // If the src and dest types are the same and the conversion is between
+  // integer types of the same sign or two floats, no conversion is necessary.
+  if (DTy == STy &&
+      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
+    return Val;
+
+  FoldingSetNodeID ID;
+  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
+  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
+  void* IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+    return SDValue(E, 0);
+
+  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
+  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
+  ID.AddInteger(RegNo);
+  void *IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+    return SDValue(E, 0);
+
+  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
+  new (N) RegisterSDNode(RegNo, VT);
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
+                               SDValue Root,
+                               unsigned LabelID) {
+  FoldingSetNodeID ID;
+  SDValue Ops[] = { Root };
+  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
+  ID.AddInteger(LabelID);
+  void *IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+    return SDValue(E, 0);
+
+  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
+  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
+                                      bool isTarget,
+                                      unsigned char TargetFlags) {
+  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
+
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
+  ID.AddPointer(BA);
+  ID.AddInteger(TargetFlags);
+  void *IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+    return SDValue(E, 0);
+
+  SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
+  new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getSrcValue(const Value *V) {
+  assert((!V || isa<PointerType>(V->getType())) &&
+         "SrcValue is not a pointer?");
+
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
+  ID.AddPointer(V);
+
+  void *IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+    return SDValue(E, 0);
+
+  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
+  new (N) SrcValueSDNode(V);
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+/// getShiftAmountOperand - Return the specified value casted to
+/// the target's desired shift amount type.
+SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
+  EVT OpTy = Op.getValueType();
+  MVT ShTy = TLI.getShiftAmountTy();
+  if (OpTy == ShTy || OpTy.isVector()) return Op;
+
+  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
+  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
+}
+
+/// CreateStackTemporary - Create a stack temporary, suitable for holding the
+/// specified value type.
+SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
+  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
+  unsigned ByteSize = VT.getStoreSize();
+  const Type *Ty = VT.getTypeForEVT(*getContext());
+  unsigned StackAlign =
+  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
+
+  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
+  return getFrameIndex(FrameIdx, TLI.getPointerTy());
+}
+
+/// CreateStackTemporary - Create a stack temporary suitable for holding
+/// either of the specified value types.
+SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
+  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
+                            VT2.getStoreSizeInBits())/8;
+  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
+  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
+  const TargetData *TD = TLI.getTargetData();
+  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
+                            TD->getPrefTypeAlignment(Ty2));
+
+  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
+  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
+  return getFrameIndex(FrameIdx, TLI.getPointerTy());
+}
+
+SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
+                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
+  // These setcc operations always fold.
+  switch (Cond) {
+  default: break;
+  case ISD::SETFALSE:
+  case ISD::SETFALSE2: return getConstant(0, VT);
+  case ISD::SETTRUE:
+  case ISD::SETTRUE2:  return getConstant(1, VT);
+
+  case ISD::SETOEQ:
+  case ISD::SETOGT:
+  case ISD::SETOGE:
+  case ISD::SETOLT:
+  case ISD::SETOLE:
+  case ISD::SETONE:
+  case ISD::SETO:
+  case ISD::SETUO:
+  case ISD::SETUEQ:
+  case ISD::SETUNE:
+    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
+    break;
+  }
+
+  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
+    const APInt &C2 = N2C->getAPIntValue();
+    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
+      const APInt &C1 = N1C->getAPIntValue();
+
+      switch (Cond) {
+      default: llvm_unreachable("Unknown integer setcc!");
+      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
+      case ISD::SETNE:  return getConstant(C1 != C2, VT);
+      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
+      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
+      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
+      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
+      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
+      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
+      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
+      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
+      }
+    }
+  }
+  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
+    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
+      // No compile time operations on this type yet.
+      if (N1C->getValueType(0) == MVT::ppcf128)
+        return SDValue();
+
+      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
+      switch (Cond) {
+      default: break;
+      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
+                          return getUNDEF(VT);
+                        // fall through
+      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
+      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
+                          return getUNDEF(VT);
+                        // fall through
+      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
+                                           R==APFloat::cmpLessThan, VT);
+      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
+                          return getUNDEF(VT);
+                        // fall through
+      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
+      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
+                          return getUNDEF(VT);
+                        // fall through
+      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
+      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
+                          return getUNDEF(VT);
+                        // fall through
+      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
+                                           R==APFloat::cmpEqual, VT);
+      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
+                          return getUNDEF(VT);
+                        // fall through
+      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
+                                           R==APFloat::cmpEqual, VT);
+      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
+      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
+      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
+                                           R==APFloat::cmpEqual, VT);
+      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
+      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
+                                           R==APFloat::cmpLessThan, VT);
+      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
+                                           R==APFloat::cmpUnordered, VT);
+      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
+      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
+      }
+    } else {
+      // Ensure that the constant occurs on the RHS.
+      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
+    }
+  }
+
+  // Could not fold it.
+  return SDValue();
+}
+
+/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
+/// use this predicate to simplify operations downstream.
+bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
+  // This predicate is not safe for vector operations.
+  if (Op.getValueType().isVector())
+    return false;
+
+  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
+  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
+}
+
+/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
+/// this predicate to simplify operations downstream.  Mask is known to be zero
+/// for bits that V cannot have.
+bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
+                                     unsigned Depth) const {
+  APInt KnownZero, KnownOne;
+  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
+  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+  return (KnownZero & Mask) == Mask;
+}
+
+/// ComputeMaskedBits - Determine which of the bits specified in Mask are
+/// known to be either zero or one and return them in the KnownZero/KnownOne
+/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
+/// processing.
+void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
+                                     APInt &KnownZero, APInt &KnownOne,
+                                     unsigned Depth) const {
+  unsigned BitWidth = Mask.getBitWidth();
+  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
+         "Mask size mismatches value type size!");
+
+  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
+  if (Depth == 6 || Mask == 0)
+    return;  // Limit search depth.
+
+  APInt KnownZero2, KnownOne2;
+
+  switch (Op.getOpcode()) {
+  case ISD::Constant:
+    // We know all of the bits for a constant!
+    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
+    KnownZero = ~KnownOne & Mask;
+    return;
+  case ISD::AND:
+    // If either the LHS or the RHS are Zero, the result is zero.
+    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
+    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
+                      KnownZero2, KnownOne2, Depth+1);
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+    // Output known-1 bits are only known if set in both the LHS & RHS.
+    KnownOne &= KnownOne2;
+    // Output known-0 are known to be clear if zero in either the LHS | RHS.
+    KnownZero |= KnownZero2;
+    return;
+  case ISD::OR:
+    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
+    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
+                      KnownZero2, KnownOne2, Depth+1);
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+    // Output known-0 bits are only known if clear in both the LHS & RHS.
+    KnownZero &= KnownZero2;
+    // Output known-1 are known to be set if set in either the LHS | RHS.
+    KnownOne |= KnownOne2;
+    return;
+  case ISD::XOR: {
+    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
+    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+    // Output known-0 bits are known if clear or set in both the LHS & RHS.
+    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
+    // Output known-1 are known to be set if set in only one of the LHS, RHS.
+    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
+    KnownZero = KnownZeroOut;
+    return;
+  }
+  case ISD::MUL: {
+    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
+    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
+    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+    // If low bits are zero in either operand, output low known-0 bits.
+    // Also compute a conserative estimate for high known-0 bits.
+    // More trickiness is possible, but this is sufficient for the
+    // interesting case of alignment computation.
+    KnownOne.clear();
+    unsigned TrailZ = KnownZero.countTrailingOnes() +
+                      KnownZero2.countTrailingOnes();
+    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
+                               KnownZero2.countLeadingOnes(),
+                               BitWidth) - BitWidth;
+
+    TrailZ = std::min(TrailZ, BitWidth);
+    LeadZ = std::min(LeadZ, BitWidth);
+    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
+                APInt::getHighBitsSet(BitWidth, LeadZ);
+    KnownZero &= Mask;
+    return;
+  }
+  case ISD::UDIV: {
+    // For the purposes of computing leading zeros we can conservatively
+    // treat a udiv as a logical right shift by the power of 2 known to
+    // be less than the denominator.
+    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
+    ComputeMaskedBits(Op.getOperand(0),
+                      AllOnes, KnownZero2, KnownOne2, Depth+1);
+    unsigned LeadZ = KnownZero2.countLeadingOnes();
+
+    KnownOne2.clear();
+    KnownZero2.clear();
+    ComputeMaskedBits(Op.getOperand(1),
+                      AllOnes, KnownZero2, KnownOne2, Depth+1);
+    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
+    if (RHSUnknownLeadingOnes != BitWidth)
+      LeadZ = std::min(BitWidth,
+                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
+
+    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
+    return;
+  }
+  case ISD::SELECT:
+    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
+    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+    // Only known if known in both the LHS and RHS.
+    KnownOne &= KnownOne2;
+    KnownZero &= KnownZero2;
+    return;
+  case ISD::SELECT_CC:
+    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
+    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+    // Only known if known in both the LHS and RHS.
+    KnownOne &= KnownOne2;
+    KnownZero &= KnownZero2;
+    return;
+  case ISD::SADDO:
+  case ISD::UADDO:
+  case ISD::SSUBO:
+  case ISD::USUBO:
+  case ISD::SMULO:
+  case ISD::UMULO:
+    if (Op.getResNo() != 1)
+      return;
+    // The boolean result conforms to getBooleanContents.  Fall through.
+  case ISD::SETCC:
+    // If we know the result of a setcc has the top bits zero, use this info.
+    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
+        BitWidth > 1)
+      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
+    return;
+  case ISD::SHL:
+    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
+    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+      unsigned ShAmt = SA->getZExtValue();
+
+      // If the shift count is an invalid immediate, don't do anything.
+      if (ShAmt >= BitWidth)
+        return;
+
+      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
+                        KnownZero, KnownOne, Depth+1);
+      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+      KnownZero <<= ShAmt;
+      KnownOne  <<= ShAmt;
+      // low bits known zero.
+      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
+    }
+    return;
+  case ISD::SRL:
+    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
+    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+      unsigned ShAmt = SA->getZExtValue();
+
+      // If the shift count is an invalid immediate, don't do anything.
+      if (ShAmt >= BitWidth)
+        return;
+
+      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
+                        KnownZero, KnownOne, Depth+1);
+      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+      KnownZero = KnownZero.lshr(ShAmt);
+      KnownOne  = KnownOne.lshr(ShAmt);
+
+      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
+      KnownZero |= HighBits;  // High bits known zero.
+    }
+    return;
+  case ISD::SRA:
+    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+      unsigned ShAmt = SA->getZExtValue();
+
+      // If the shift count is an invalid immediate, don't do anything.
+      if (ShAmt >= BitWidth)
+        return;
+
+      APInt InDemandedMask = (Mask << ShAmt);
+      // If any of the demanded bits are produced by the sign extension, we also
+      // demand the input sign bit.
+      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
+      if (HighBits.getBoolValue())
+        InDemandedMask |= APInt::getSignBit(BitWidth);
+
+      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
+                        Depth+1);
+      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+      KnownZero = KnownZero.lshr(ShAmt);
+      KnownOne  = KnownOne.lshr(ShAmt);
+
+      // Handle the sign bits.
+      APInt SignBit = APInt::getSignBit(BitWidth);
+      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
+
+      if (KnownZero.intersects(SignBit)) {
+        KnownZero |= HighBits;  // New bits are known zero.
+      } else if (KnownOne.intersects(SignBit)) {
+        KnownOne  |= HighBits;  // New bits are known one.
+      }
+    }
+    return;
+  case ISD::SIGN_EXTEND_INREG: {
+    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+    unsigned EBits = EVT.getScalarType().getSizeInBits();
+
+    // Sign extension.  Compute the demanded bits in the result that are not
+    // present in the input.
+    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
+
+    APInt InSignBit = APInt::getSignBit(EBits);
+    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
+
+    // If the sign extended bits are demanded, we know that the sign
+    // bit is demanded.
+    InSignBit.zext(BitWidth);
+    if (NewBits.getBoolValue())
+      InputDemandedBits |= InSignBit;
+
+    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
+                      KnownZero, KnownOne, Depth+1);
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+
+    // If the sign bit of the input is known set or clear, then we know the
+    // top bits of the result.
+    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
+      KnownZero |= NewBits;
+      KnownOne  &= ~NewBits;
+    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
+      KnownOne  |= NewBits;
+      KnownZero &= ~NewBits;
+    } else {                              // Input sign bit unknown
+      KnownZero &= ~NewBits;
+      KnownOne  &= ~NewBits;
+    }
+    return;
+  }
+  case ISD::CTTZ:
+  case ISD::CTLZ:
+  case ISD::CTPOP: {
+    unsigned LowBits = Log2_32(BitWidth)+1;
+    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
+    KnownOne.clear();
+    return;
+  }
+  case ISD::LOAD: {
+    if (ISD::isZEXTLoad(Op.getNode())) {
+      LoadSDNode *LD = cast<LoadSDNode>(Op);
+      EVT VT = LD->getMemoryVT();
+      unsigned MemBits = VT.getScalarType().getSizeInBits();
+      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
+    }
+    return;
+  }
+  case ISD::ZERO_EXTEND: {
+    EVT InVT = Op.getOperand(0).getValueType();
+    unsigned InBits = InVT.getScalarType().getSizeInBits();
+    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
+    APInt InMask    = Mask;
+    InMask.trunc(InBits);
+    KnownZero.trunc(InBits);
+    KnownOne.trunc(InBits);
+    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
+    KnownZero.zext(BitWidth);
+    KnownOne.zext(BitWidth);
+    KnownZero |= NewBits;
+    return;
+  }
+  case ISD::SIGN_EXTEND: {
+    EVT InVT = Op.getOperand(0).getValueType();
+    unsigned InBits = InVT.getScalarType().getSizeInBits();
+    APInt InSignBit = APInt::getSignBit(InBits);
+    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
+    APInt InMask = Mask;
+    InMask.trunc(InBits);
+
+    // If any of the sign extended bits are demanded, we know that the sign
+    // bit is demanded. Temporarily set this bit in the mask for our callee.
+    if (NewBits.getBoolValue())
+      InMask |= InSignBit;
+
+    KnownZero.trunc(InBits);
+    KnownOne.trunc(InBits);
+    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
+
+    // Note if the sign bit is known to be zero or one.
+    bool SignBitKnownZero = KnownZero.isNegative();
+    bool SignBitKnownOne  = KnownOne.isNegative();
+    assert(!(SignBitKnownZero && SignBitKnownOne) &&
+           "Sign bit can't be known to be both zero and one!");
+
+    // If the sign bit wasn't actually demanded by our caller, we don't
+    // want it set in the KnownZero and KnownOne result values. Reset the
+    // mask and reapply it to the result values.
+    InMask = Mask;
+    InMask.trunc(InBits);
+    KnownZero &= InMask;
+    KnownOne  &= InMask;
+
+    KnownZero.zext(BitWidth);
+    KnownOne.zext(BitWidth);
+
+    // If the sign bit is known zero or one, the top bits match.
+    if (SignBitKnownZero)
+      KnownZero |= NewBits;
+    else if (SignBitKnownOne)
+      KnownOne  |= NewBits;
+    return;
+  }
+  case ISD::ANY_EXTEND: {
+    EVT InVT = Op.getOperand(0).getValueType();
+    unsigned InBits = InVT.getScalarType().getSizeInBits();
+    APInt InMask = Mask;
+    InMask.trunc(InBits);
+    KnownZero.trunc(InBits);
+    KnownOne.trunc(InBits);
+    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
+    KnownZero.zext(BitWidth);
+    KnownOne.zext(BitWidth);
+    return;
+  }
+  case ISD::TRUNCATE: {
+    EVT InVT = Op.getOperand(0).getValueType();
+    unsigned InBits = InVT.getScalarType().getSizeInBits();
+    APInt InMask = Mask;
+    InMask.zext(InBits);
+    KnownZero.zext(InBits);
+    KnownOne.zext(InBits);
+    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
+    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+    KnownZero.trunc(BitWidth);
+    KnownOne.trunc(BitWidth);
+    break;
+  }
+  case ISD::AssertZext: {
+    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
+    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
+                      KnownOne, Depth+1);
+    KnownZero |= (~InMask) & Mask;
+    return;
+  }
+  case ISD::FGETSIGN:
+    // All bits are zero except the low bit.
+    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
+    return;
+
+  case ISD::SUB: {
+    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
+      // We know that the top bits of C-X are clear if X contains less bits
+      // than C (i.e. no wrap-around can happen).  For example, 20-X is
+      // positive if we can prove that X is >= 0 and < 16.
+      if (CLHS->getAPIntValue().isNonNegative()) {
+        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
+        // NLZ can't be BitWidth with no sign bit
+        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
+        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
+                          Depth+1);
+
+        // If all of the MaskV bits are known to be zero, then we know the
+        // output top bits are zero, because we now know that the output is
+        // from [0-C].
+        if ((KnownZero2 & MaskV) == MaskV) {
+          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
+          // Top bits known zero.
+          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
+        }
+      }
+    }
+  }
+  // fall through
+  case ISD::ADD: {
+    // Output known-0 bits are known if clear or set in both the low clear bits
+    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
+    // low 3 bits clear.
+    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
+    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
+
+    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
+    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+    KnownZeroOut = std::min(KnownZeroOut,
+                            KnownZero2.countTrailingOnes());
+
+    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
+    return;
+  }
+  case ISD::SREM:
+    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+      const APInt &RA = Rem->getAPIntValue().abs();
+      if (RA.isPowerOf2()) {
+        APInt LowBits = RA - 1;
+        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
+        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
+
+        // The low bits of the first operand are unchanged by the srem.
+        KnownZero = KnownZero2 & LowBits;
+        KnownOne = KnownOne2 & LowBits;
+
+        // If the first operand is non-negative or has all low bits zero, then
+        // the upper bits are all zero.
+        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
+          KnownZero |= ~LowBits;
+
+        // If the first operand is negative and not all low bits are zero, then
+        // the upper bits are all one.
+        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
+          KnownOne |= ~LowBits;
+
+        KnownZero &= Mask;
+        KnownOne &= Mask;
+
+        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
+      }
+    }
+    return;
+  case ISD::UREM: {
+    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+      const APInt &RA = Rem->getAPIntValue();
+      if (RA.isPowerOf2()) {
+        APInt LowBits = (RA - 1);
+        APInt Mask2 = LowBits & Mask;
+        KnownZero |= ~LowBits & Mask;
+        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
+        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
+        break;
+      }
+    }
+
+    // Since the result is less than or equal to either operand, any leading
+    // zero bits in either operand must also exist in the result.
+    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
+    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
+                      Depth+1);
+    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
+                      Depth+1);
+
+    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
+                                KnownZero2.countLeadingOnes());
+    KnownOne.clear();
+    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
+    return;
+  }
+  default:
+    // Allow the target to implement this method for its nodes.
+    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
+  case ISD::INTRINSIC_WO_CHAIN:
+  case ISD::INTRINSIC_W_CHAIN:
+  case ISD::INTRINSIC_VOID:
+      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
+                                         Depth);
+    }
+    return;
+  }
+}
+
+/// ComputeNumSignBits - Return the number of times the sign bit of the
+/// register is replicated into the other bits.  We know that at least 1 bit
+/// is always equal to the sign bit (itself), but other cases can give us
+/// information.  For example, immediately after an "SRA X, 2", we know that
+/// the top 3 bits are all equal to each other, so we return 3.
+unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
+  EVT VT = Op.getValueType();
+  assert(VT.isInteger() && "Invalid VT!");
+  unsigned VTBits = VT.getScalarType().getSizeInBits();
+  unsigned Tmp, Tmp2;
+  unsigned FirstAnswer = 1;
+
+  if (Depth == 6)
+    return 1;  // Limit search depth.
+
+  switch (Op.getOpcode()) {
+  default: break;
+  case ISD::AssertSext:
+    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
+    return VTBits-Tmp+1;
+  case ISD::AssertZext:
+    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
+    return VTBits-Tmp;
+
+  case ISD::Constant: {
+    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
+    // If negative, return # leading ones.
+    if (Val.isNegative())
+      return Val.countLeadingOnes();
+
+    // Return # leading zeros.
+    return Val.countLeadingZeros();
+  }
+
+  case ISD::SIGN_EXTEND:
+    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
+    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
+
+  case ISD::SIGN_EXTEND_INREG:
+    // Max of the input and what this extends.
+    Tmp =
+      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
+    Tmp = VTBits-Tmp+1;
+
+    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+    return std::max(Tmp, Tmp2);
+
+  case ISD::SRA:
+    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+    // SRA X, C   -> adds C sign bits.
+    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+      Tmp += C->getZExtValue();
+      if (Tmp > VTBits) Tmp = VTBits;
+    }
+    return Tmp;
+  case ISD::SHL:
+    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+      // shl destroys sign bits.
+      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+      if (C->getZExtValue() >= VTBits ||      // Bad shift.
+          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
+      return Tmp - C->getZExtValue();
+    }
+    break;
+  case ISD::AND:
+  case ISD::OR:
+  case ISD::XOR:    // NOT is handled here.
+    // Logical binary ops preserve the number of sign bits at the worst.
+    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+    if (Tmp != 1) {
+      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
+      FirstAnswer = std::min(Tmp, Tmp2);
+      // We computed what we know about the sign bits as our first
+      // answer. Now proceed to the generic code that uses
+      // ComputeMaskedBits, and pick whichever answer is better.
+    }
+    break;
+
+  case ISD::SELECT:
+    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
+    if (Tmp == 1) return 1;  // Early out.
+    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
+    return std::min(Tmp, Tmp2);
+
+  case ISD::SADDO:
+  case ISD::UADDO:
+  case ISD::SSUBO:
+  case ISD::USUBO:
+  case ISD::SMULO:
+  case ISD::UMULO:
+    if (Op.getResNo() != 1)
+      break;
+    // The boolean result conforms to getBooleanContents.  Fall through.
+  case ISD::SETCC:
+    // If setcc returns 0/-1, all bits are sign bits.
+    if (TLI.getBooleanContents() ==
+        TargetLowering::ZeroOrNegativeOneBooleanContent)
+      return VTBits;
+    break;
+  case ISD::ROTL:
+  case ISD::ROTR:
+    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
+
+      // Handle rotate right by N like a rotate left by 32-N.
+      if (Op.getOpcode() == ISD::ROTR)
+        RotAmt = (VTBits-RotAmt) & (VTBits-1);
+
+      // If we aren't rotating out all of the known-in sign bits, return the
+      // number that are left.  This handles rotl(sext(x), 1) for example.
+      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+      if (Tmp > RotAmt+1) return Tmp-RotAmt;
+    }
+    break;
+  case ISD::ADD:
+    // Add can have at most one carry bit.  Thus we know that the output
+    // is, at worst, one more bit than the inputs.
+    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+    if (Tmp == 1) return 1;  // Early out.
+
+    // Special case decrementing a value (ADD X, -1):
+    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
+      if (CRHS->isAllOnesValue()) {
+        APInt KnownZero, KnownOne;
+        APInt Mask = APInt::getAllOnesValue(VTBits);
+        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
+
+        // If the input is known to be 0 or 1, the output is 0/-1, which is all
+        // sign bits set.
+        if ((KnownZero | APInt(VTBits, 1)) == Mask)
+          return VTBits;
+
+        // If we are subtracting one from a positive number, there is no carry
+        // out of the result.
+        if (KnownZero.isNegative())
+          return Tmp;
+      }
+
+    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
+    if (Tmp2 == 1) return 1;
+      return std::min(Tmp, Tmp2)-1;
+    break;
+
+  case ISD::SUB:
+    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
+    if (Tmp2 == 1) return 1;
+
+    // Handle NEG.
+    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
+      if (CLHS->isNullValue()) {
+        APInt KnownZero, KnownOne;
+        APInt Mask = APInt::getAllOnesValue(VTBits);
+        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
+        // If the input is known to be 0 or 1, the output is 0/-1, which is all
+        // sign bits set.
+        if ((KnownZero | APInt(VTBits, 1)) == Mask)
+          return VTBits;
+
+        // If the input is known to be positive (the sign bit is known clear),
+        // the output of the NEG has the same number of sign bits as the input.
+        if (KnownZero.isNegative())
+          return Tmp2;
+
+        // Otherwise, we treat this like a SUB.
+      }
+
+    // Sub can have at most one carry bit.  Thus we know that the output
+    // is, at worst, one more bit than the inputs.
+    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+    if (Tmp == 1) return 1;  // Early out.
+      return std::min(Tmp, Tmp2)-1;
+    break;
+  case ISD::TRUNCATE:
+    // FIXME: it's tricky to do anything useful for this, but it is an important
+    // case for targets like X86.
+    break;
+  }
+
+  // Handle LOADX separately here. EXTLOAD case will fallthrough.
+  if (Op.getOpcode() == ISD::LOAD) {
+    LoadSDNode *LD = cast<LoadSDNode>(Op);
+    unsigned ExtType = LD->getExtensionType();
+    switch (ExtType) {
+    default: break;
+    case ISD::SEXTLOAD:    // '17' bits known
+      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
+      return VTBits-Tmp+1;
+    case ISD::ZEXTLOAD:    // '16' bits known
+      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
+      return VTBits-Tmp;
+    }
+  }
+
+  // Allow the target to implement this method for its nodes.
+  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+      Op.getOpcode() == ISD::INTRINSIC_VOID) {
+    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
+    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
+  }
+
+  // Finally, if we can prove that the top bits of the result are 0's or 1's,
+  // use this information.
+  APInt KnownZero, KnownOne;
+  APInt Mask = APInt::getAllOnesValue(VTBits);
+  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
+
+  if (KnownZero.isNegative()) {        // sign bit is 0
+    Mask = KnownZero;
+  } else if (KnownOne.isNegative()) {  // sign bit is 1;
+    Mask = KnownOne;
+  } else {
+    // Nothing known.
+    return FirstAnswer;
+  }
+
+  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
+  // the number of identical bits in the top of the input value.
+  Mask = ~Mask;
+  Mask <<= Mask.getBitWidth()-VTBits;
+  // Return # leading zeros.  We use 'min' here in case Val was zero before
+  // shifting.  We don't want to return '64' as for an i32 "0".
+  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
+}
+
+bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
+  // If we're told that NaNs won't happen, assume they won't.
+  if (FiniteOnlyFPMath())
+    return true;
+
+  // If the value is a constant, we can obviously see if it is a NaN or not.
+  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
+    return !C->getValueAPF().isNaN();
+
+  // TODO: Recognize more cases here.
+
+  return false;
+}
+
+bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
+  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
+  if (!GA) return false;
+  if (GA->getOffset() != 0) return false;
+  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
+  if (!GV) return false;
+  MachineModuleInfo *MMI = getMachineModuleInfo();
+  return MMI && MMI->hasDebugInfo();
+}
+
+
+/// getShuffleScalarElt - Returns the scalar element that will make up the ith
+/// element of the result of the vector shuffle.
+SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
+                                          unsigned i) {
+  EVT VT = N->getValueType(0);
+  DebugLoc dl = N->getDebugLoc();
+  if (N->getMaskElt(i) < 0)
+    return getUNDEF(VT.getVectorElementType());
+  unsigned Index = N->getMaskElt(i);
+  unsigned NumElems = VT.getVectorNumElements();
+  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
+  Index %= NumElems;
+
+  if (V.getOpcode() == ISD::BIT_CONVERT) {
+    V = V.getOperand(0);
+    EVT VVT = V.getValueType();
+    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
+      return SDValue();
+  }
+  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
+    return (Index == 0) ? V.getOperand(0)
+                      : getUNDEF(VT.getVectorElementType());
+  if (V.getOpcode() == ISD::BUILD_VECTOR)
+    return V.getOperand(Index);
+  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
+    return getShuffleScalarElt(SVN, Index);
+  return SDValue();
+}
+
+
+/// getNode - Gets or creates the specified node.
+///
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
+  void *IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+    return SDValue(E, 0);
+
+  SDNode *N = NodeAllocator.Allocate<SDNode>();
+  new (N) SDNode(Opcode, DL, getVTList(VT));
+  CSEMap.InsertNode(N, IP);
+
+  AllNodes.push_back(N);
+#ifndef NDEBUG
+  VerifyNode(N);
+#endif
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
+                              EVT VT, SDValue Operand) {
+  // Constant fold unary operations with an integer constant operand.
+  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
+    const APInt &Val = C->getAPIntValue();
+    unsigned BitWidth = VT.getSizeInBits();
+    switch (Opcode) {
+    default: break;
+    case ISD::SIGN_EXTEND:
+      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
+    case ISD::ANY_EXTEND:
+    case ISD::ZERO_EXTEND:
+    case ISD::TRUNCATE:
+      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
+    case ISD::UINT_TO_FP:
+    case ISD::SINT_TO_FP: {
+      const uint64_t zero[] = {0, 0};
+      // No compile time operations on this type.
+      if (VT==MVT::ppcf128)
+        break;
+      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
+      (void)apf.convertFromAPInt(Val,
+                                 Opcode==ISD::SINT_TO_FP,
+                                 APFloat::rmNearestTiesToEven);
+      return getConstantFP(apf, VT);
+    }
+    case ISD::BIT_CONVERT:
+      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
+        return getConstantFP(Val.bitsToFloat(), VT);
+      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
+        return getConstantFP(Val.bitsToDouble(), VT);
+      break;
+    case ISD::BSWAP:
+      return getConstant(Val.byteSwap(), VT);
+    case ISD::CTPOP:
+      return getConstant(Val.countPopulation(), VT);
+    case ISD::CTLZ:
+      return getConstant(Val.countLeadingZeros(), VT);
+    case ISD::CTTZ:
+      return getConstant(Val.countTrailingZeros(), VT);
+    }
+  }
+
+  // Constant fold unary operations with a floating point constant operand.
+  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
+    APFloat V = C->getValueAPF();    // make copy
+    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
+      switch (Opcode) {
+      case ISD::FNEG:
+        V.changeSign();
+        return getConstantFP(V, VT);
+      case ISD::FABS:
+        V.clearSign();
+        return getConstantFP(V, VT);
+      case ISD::FP_ROUND:
+      case ISD::FP_EXTEND: {
+        bool ignored;
+        // This can return overflow, underflow, or inexact; we don't care.
+        // FIXME need to be more flexible about rounding mode.
+        (void)V.convert(*EVTToAPFloatSemantics(VT),
+                        APFloat::rmNearestTiesToEven, &ignored);
+        return getConstantFP(V, VT);
+      }
+      case ISD::FP_TO_SINT:
+      case ISD::FP_TO_UINT: {
+        integerPart x[2];
+        bool ignored;
+        assert(integerPartWidth >= 64);
+        // FIXME need to be more flexible about rounding mode.
+        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
+                              Opcode==ISD::FP_TO_SINT,
+                              APFloat::rmTowardZero, &ignored);
+        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
+          break;
+        APInt api(VT.getSizeInBits(), 2, x);
+        return getConstant(api, VT);
+      }
+      case ISD::BIT_CONVERT:
+        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
+          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
+        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
+          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
+        break;
+      }
+    }
+  }
+
+  unsigned OpOpcode = Operand.getNode()->getOpcode();
+  switch (Opcode) {
+  case ISD::TokenFactor:
+  case ISD::MERGE_VALUES:
+  case ISD::CONCAT_VECTORS:
+    return Operand;         // Factor, merge or concat of one node?  No need.
+  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
+  case ISD::FP_EXTEND:
+    assert(VT.isFloatingPoint() &&
+           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
+    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
+    assert((!VT.isVector() ||
+            VT.getVectorNumElements() ==
+            Operand.getValueType().getVectorNumElements()) &&
+           "Vector element count mismatch!");
+    if (Operand.getOpcode() == ISD::UNDEF)
+      return getUNDEF(VT);
+    break;
+  case ISD::SIGN_EXTEND:
+    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
+           "Invalid SIGN_EXTEND!");
+    if (Operand.getValueType() == VT) return Operand;   // noop extension
+    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
+           "Invalid sext node, dst < src!");
+    assert((!VT.isVector() ||
+            VT.getVectorNumElements() ==
+            Operand.getValueType().getVectorNumElements()) &&
+           "Vector element count mismatch!");
+    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
+      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
+    break;
+  case ISD::ZERO_EXTEND:
+    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
+           "Invalid ZERO_EXTEND!");
+    if (Operand.getValueType() == VT) return Operand;   // noop extension
+    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
+           "Invalid zext node, dst < src!");
+    assert((!VT.isVector() ||
+            VT.getVectorNumElements() ==
+            Operand.getValueType().getVectorNumElements()) &&
+           "Vector element count mismatch!");
+    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
+      return getNode(ISD::ZERO_EXTEND, DL, VT,
+                     Operand.getNode()->getOperand(0));
+    break;
+  case ISD::ANY_EXTEND:
+    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
+           "Invalid ANY_EXTEND!");
+    if (Operand.getValueType() == VT) return Operand;   // noop extension
+    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
+           "Invalid anyext node, dst < src!");
+    assert((!VT.isVector() ||
+            VT.getVectorNumElements() ==
+            Operand.getValueType().getVectorNumElements()) &&
+           "Vector element count mismatch!");
+    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
+      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
+      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
+    break;
+  case ISD::TRUNCATE:
+    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
+           "Invalid TRUNCATE!");
+    if (Operand.getValueType() == VT) return Operand;   // noop truncate
+    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
+           "Invalid truncate node, src < dst!");
+    assert((!VT.isVector() ||
+            VT.getVectorNumElements() ==
+            Operand.getValueType().getVectorNumElements()) &&
+           "Vector element count mismatch!");
+    if (OpOpcode == ISD::TRUNCATE)
+      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
+    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
+             OpOpcode == ISD::ANY_EXTEND) {
+      // If the source is smaller than the dest, we still need an extend.
+      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
+            .bitsLT(VT.getScalarType()))
+        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
+      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
+        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
+      else
+        return Operand.getNode()->getOperand(0);
+    }
+    break;
+  case ISD::BIT_CONVERT:
+    // Basic sanity checking.
+    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
+           && "Cannot BIT_CONVERT between types of different sizes!");
+    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
+    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
+      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
+    if (OpOpcode == ISD::UNDEF)
+      return getUNDEF(VT);
+    break;
+  case ISD::SCALAR_TO_VECTOR:
+    assert(VT.isVector() && !Operand.getValueType().isVector() &&
+           (VT.getVectorElementType() == Operand.getValueType() ||
+            (VT.getVectorElementType().isInteger() &&
+             Operand.getValueType().isInteger() &&
+             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
+           "Illegal SCALAR_TO_VECTOR node!");
+    if (OpOpcode == ISD::UNDEF)
+      return getUNDEF(VT);
+    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
+    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
+        isa<ConstantSDNode>(Operand.getOperand(1)) &&
+        Operand.getConstantOperandVal(1) == 0 &&
+        Operand.getOperand(0).getValueType() == VT)
+      return Operand.getOperand(0);
+    break;
+  case ISD::FNEG:
+    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
+    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
+      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
+                     Operand.getNode()->getOperand(0));
+    if (OpOpcode == ISD::FNEG)  // --X -> X
+      return Operand.getNode()->getOperand(0);
+    break;
+  case ISD::FABS:
+    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
+      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
+    break;
+  }
+
+  SDNode *N;
+  SDVTList VTs = getVTList(VT);
+  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
+    FoldingSetNodeID ID;
+    SDValue Ops[1] = { Operand };
+    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
+    void *IP = 0;
+    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+      return SDValue(E, 0);
+
+    N = NodeAllocator.Allocate<UnarySDNode>();
+    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
+    CSEMap.InsertNode(N, IP);
+  } else {
+    N = NodeAllocator.Allocate<UnarySDNode>();
+    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
+  }
+
+  AllNodes.push_back(N);
+#ifndef NDEBUG
+  VerifyNode(N);
+#endif
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
+                                             EVT VT,
+                                             ConstantSDNode *Cst1,
+                                             ConstantSDNode *Cst2) {
+  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
+
+  switch (Opcode) {
+  case ISD::ADD:  return getConstant(C1 + C2, VT);
+  case ISD::SUB:  return getConstant(C1 - C2, VT);
+  case ISD::MUL:  return getConstant(C1 * C2, VT);
+  case ISD::UDIV:
+    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
+    break;
+  case ISD::UREM:
+    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
+    break;
+  case ISD::SDIV:
+    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
+    break;
+  case ISD::SREM:
+    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
+    break;
+  case ISD::AND:  return getConstant(C1 & C2, VT);
+  case ISD::OR:   return getConstant(C1 | C2, VT);
+  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
+  case ISD::SHL:  return getConstant(C1 << C2, VT);
+  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
+  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
+  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
+  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
+  default: break;
+  }
+
+  return SDValue();
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
+                              SDValue N1, SDValue N2) {
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
+  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
+  switch (Opcode) {
+  default: break;
+  case ISD::TokenFactor:
+    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
+           N2.getValueType() == MVT::Other && "Invalid token factor!");
+    // Fold trivial token factors.
+    if (N1.getOpcode() == ISD::EntryToken) return N2;
+    if (N2.getOpcode() == ISD::EntryToken) return N1;
+    if (N1 == N2) return N1;
+    break;
+  case ISD::CONCAT_VECTORS:
+    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
+    // one big BUILD_VECTOR.
+    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
+        N2.getOpcode() == ISD::BUILD_VECTOR) {
+      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
+      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
+      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
+    }
+    break;
+  case ISD::AND:
+    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
+           N1.getValueType() == VT && "Binary operator types must match!");
+    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
+    // worth handling here.
+    if (N2C && N2C->isNullValue())
+      return N2;
+    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
+      return N1;
+    break;
+  case ISD::OR:
+  case ISD::XOR:
+  case ISD::ADD:
+  case ISD::SUB:
+    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
+           N1.getValueType() == VT && "Binary operator types must match!");
+    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
+    // it's worth handling here.
+    if (N2C && N2C->isNullValue())
+      return N1;
+    break;
+  case ISD::UDIV:
+  case ISD::UREM:
+  case ISD::MULHU:
+  case ISD::MULHS:
+  case ISD::MUL:
+  case ISD::SDIV:
+  case ISD::SREM:
+    assert(VT.isInteger() && "This operator does not apply to FP types!");
+    // fall through
+  case ISD::FADD:
+  case ISD::FSUB:
+  case ISD::FMUL:
+  case ISD::FDIV:
+  case ISD::FREM:
+    if (UnsafeFPMath) {
+      if (Opcode == ISD::FADD) {
+        // 0+x --> x
+        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
+          if (CFP->getValueAPF().isZero())
+            return N2;
+        // x+0 --> x
+        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
+          if (CFP->getValueAPF().isZero())
+            return N1;
+      } else if (Opcode == ISD::FSUB) {
+        // x-0 --> x
+        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
+          if (CFP->getValueAPF().isZero())
+            return N1;
+      }
+    }
+    assert(N1.getValueType() == N2.getValueType() &&
+           N1.getValueType() == VT && "Binary operator types must match!");
+    break;
+  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
+    assert(N1.getValueType() == VT &&
+           N1.getValueType().isFloatingPoint() &&
+           N2.getValueType().isFloatingPoint() &&
+           "Invalid FCOPYSIGN!");
+    break;
+  case ISD::SHL:
+  case ISD::SRA:
+  case ISD::SRL:
+  case ISD::ROTL:
+  case ISD::ROTR:
+    assert(VT == N1.getValueType() &&
+           "Shift operators return type must be the same as their first arg");
+    assert(VT.isInteger() && N2.getValueType().isInteger() &&
+           "Shifts only work on integers");
+
+    // Always fold shifts of i1 values so the code generator doesn't need to
+    // handle them.  Since we know the size of the shift has to be less than the
+    // size of the value, the shift/rotate count is guaranteed to be zero.
+    if (VT == MVT::i1)
+      return N1;
+    if (N2C && N2C->isNullValue())
+      return N1;
+    break;
+  case ISD::FP_ROUND_INREG: {
+    EVT EVT = cast<VTSDNode>(N2)->getVT();
+    assert(VT == N1.getValueType() && "Not an inreg round!");
+    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
+           "Cannot FP_ROUND_INREG integer types");
+    assert(EVT.isVector() == VT.isVector() &&
+           "FP_ROUND_INREG type should be vector iff the operand "
+           "type is vector!");
+    assert((!EVT.isVector() ||
+            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
+           "Vector element counts must match in FP_ROUND_INREG");
+    assert(EVT.bitsLE(VT) && "Not rounding down!");
+    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
+    break;
+  }
+  case ISD::FP_ROUND:
+    assert(VT.isFloatingPoint() &&
+           N1.getValueType().isFloatingPoint() &&
+           VT.bitsLE(N1.getValueType()) &&
+           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
+    if (N1.getValueType() == VT) return N1;  // noop conversion.
+    break;
+  case ISD::AssertSext:
+  case ISD::AssertZext: {
+    EVT EVT = cast<VTSDNode>(N2)->getVT();
+    assert(VT == N1.getValueType() && "Not an inreg extend!");
+    assert(VT.isInteger() && EVT.isInteger() &&
+           "Cannot *_EXTEND_INREG FP types");
+    assert(!EVT.isVector() &&
+           "AssertSExt/AssertZExt type should be the vector element type "
+           "rather than the vector type!");
+    assert(EVT.bitsLE(VT) && "Not extending!");
+    if (VT == EVT) return N1; // noop assertion.
+    break;
+  }
+  case ISD::SIGN_EXTEND_INREG: {
+    EVT EVT = cast<VTSDNode>(N2)->getVT();
+    assert(VT == N1.getValueType() && "Not an inreg extend!");
+    assert(VT.isInteger() && EVT.isInteger() &&
+           "Cannot *_EXTEND_INREG FP types");
+    assert(EVT.isVector() == VT.isVector() &&
+           "SIGN_EXTEND_INREG type should be vector iff the operand "
+           "type is vector!");
+    assert((!EVT.isVector() ||
+            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
+           "Vector element counts must match in SIGN_EXTEND_INREG");
+    assert(EVT.bitsLE(VT) && "Not extending!");
+    if (EVT == VT) return N1;  // Not actually extending
+
+    if (N1C) {
+      APInt Val = N1C->getAPIntValue();
+      unsigned FromBits = EVT.getScalarType().getSizeInBits();
+      Val <<= Val.getBitWidth()-FromBits;
+      Val = Val.ashr(Val.getBitWidth()-FromBits);
+      return getConstant(Val, VT);
+    }
+    break;
+  }
+  case ISD::EXTRACT_VECTOR_ELT:
+    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
+    if (N1.getOpcode() == ISD::UNDEF)
+      return getUNDEF(VT);
+
+    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
+    // expanding copies of large vectors from registers.
+    if (N2C &&
+        N1.getOpcode() == ISD::CONCAT_VECTORS &&
+        N1.getNumOperands() > 0) {
+      unsigned Factor =
+        N1.getOperand(0).getValueType().getVectorNumElements();
+      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
+                     N1.getOperand(N2C->getZExtValue() / Factor),
+                     getConstant(N2C->getZExtValue() % Factor,
+                                 N2.getValueType()));
+    }
+
+    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
+    // expanding large vector constants.
+    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
+      SDValue Elt = N1.getOperand(N2C->getZExtValue());
+      EVT VEltTy = N1.getValueType().getVectorElementType();
+      if (Elt.getValueType() != VEltTy) {
+        // If the vector element type is not legal, the BUILD_VECTOR operands
+        // are promoted and implicitly truncated.  Make that explicit here.
+        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
+      }
+      if (VT != VEltTy) {
+        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
+        // result is implicitly extended.
+        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
+      }
+      return Elt;
+    }
+
+    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
+    // operations are lowered to scalars.
+    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
+      // If the indices are the same, return the inserted element else
+      // if the indices are known different, extract the element from
+      // the original vector.
+      if (N1.getOperand(2) == N2) {
+        if (VT == N1.getOperand(1).getValueType())
+          return N1.getOperand(1);
+        else
+          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
+      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
+                 isa<ConstantSDNode>(N2))
+        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
+    }
+    break;
+  case ISD::EXTRACT_ELEMENT:
+    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
+    assert(!N1.getValueType().isVector() && !VT.isVector() &&
+           (N1.getValueType().isInteger() == VT.isInteger()) &&
+           "Wrong types for EXTRACT_ELEMENT!");
+
+    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
+    // 64-bit integers into 32-bit parts.  Instead of building the extract of
+    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
+    if (N1.getOpcode() == ISD::BUILD_PAIR)
+      return N1.getOperand(N2C->getZExtValue());
+
+    // EXTRACT_ELEMENT of a constant int is also very common.
+    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
+      unsigned ElementSize = VT.getSizeInBits();
+      unsigned Shift = ElementSize * N2C->getZExtValue();
+      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
+      return getConstant(ShiftedVal.trunc(ElementSize), VT);
+    }
+    break;
+  case ISD::EXTRACT_SUBVECTOR:
+    if (N1.getValueType() == VT) // Trivial extraction.
+      return N1;
+    break;
+  }
+
+  if (N1C) {
+    if (N2C) {
+      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
+      if (SV.getNode()) return SV;
+    } else {      // Cannonicalize constant to RHS if commutative
+      if (isCommutativeBinOp(Opcode)) {
+        std::swap(N1C, N2C);
+        std::swap(N1, N2);
+      }
+    }
+  }
+
+  // Constant fold FP operations.
+  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
+  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
+  if (N1CFP) {
+    if (!N2CFP && isCommutativeBinOp(Opcode)) {
+      // Cannonicalize constant to RHS if commutative
+      std::swap(N1CFP, N2CFP);
+      std::swap(N1, N2);
+    } else if (N2CFP && VT != MVT::ppcf128) {
+      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
+      APFloat::opStatus s;
+      switch (Opcode) {
+      case ISD::FADD:
+        s = V1.add(V2, APFloat::rmNearestTiesToEven);
+        if (s != APFloat::opInvalidOp)
+          return getConstantFP(V1, VT);
+        break;
+      case ISD::FSUB:
+        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
+        if (s!=APFloat::opInvalidOp)
+          return getConstantFP(V1, VT);
+        break;
+      case ISD::FMUL:
+        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
+        if (s!=APFloat::opInvalidOp)
+          return getConstantFP(V1, VT);
+        break;
+      case ISD::FDIV:
+        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
+        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
+          return getConstantFP(V1, VT);
+        break;
+      case ISD::FREM :
+        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
+        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
+          return getConstantFP(V1, VT);
+        break;
+      case ISD::FCOPYSIGN:
+        V1.copySign(V2);
+        return getConstantFP(V1, VT);
+      default: break;
+      }
+    }
+  }
+
+  // Canonicalize an UNDEF to the RHS, even over a constant.
+  if (N1.getOpcode() == ISD::UNDEF) {
+    if (isCommutativeBinOp(Opcode)) {
+      std::swap(N1, N2);
+    } else {
+      switch (Opcode) {
+      case ISD::FP_ROUND_INREG:
+      case ISD::SIGN_EXTEND_INREG:
+      case ISD::SUB:
+      case ISD::FSUB:
+      case ISD::FDIV:
+      case ISD::FREM:
+      case ISD::SRA:
+        return N1;     // fold op(undef, arg2) -> undef
+      case ISD::UDIV:
+      case ISD::SDIV:
+      case ISD::UREM:
+      case ISD::SREM:
+      case ISD::SRL:
+      case ISD::SHL:
+        if (!VT.isVector())
+          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
+        // For vectors, we can't easily build an all zero vector, just return
+        // the LHS.
+        return N2;
+      }
+    }
+  }
+
+  // Fold a bunch of operators when the RHS is undef.
+  if (N2.getOpcode() == ISD::UNDEF) {
+    switch (Opcode) {
+    case ISD::XOR:
+      if (N1.getOpcode() == ISD::UNDEF)
+        // Handle undef ^ undef -> 0 special case. This is a common
+        // idiom (misuse).
+        return getConstant(0, VT);
+      // fallthrough
+    case ISD::ADD:
+    case ISD::ADDC:
+    case ISD::ADDE:
+    case ISD::SUB:
+    case ISD::UDIV:
+    case ISD::SDIV:
+    case ISD::UREM:
+    case ISD::SREM:
+      return N2;       // fold op(arg1, undef) -> undef
+    case ISD::FADD:
+    case ISD::FSUB:
+    case ISD::FMUL:
+    case ISD::FDIV:
+    case ISD::FREM:
+      if (UnsafeFPMath)
+        return N2;
+      break;
+    case ISD::MUL:
+    case ISD::AND:
+    case ISD::SRL:
+    case ISD::SHL:
+      if (!VT.isVector())
+        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
+      // For vectors, we can't easily build an all zero vector, just return
+      // the LHS.
+      return N1;
+    case ISD::OR:
+      if (!VT.isVector())
+        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
+      // For vectors, we can't easily build an all one vector, just return
+      // the LHS.
+      return N1;
+    case ISD::SRA:
+      return N1;
+    }
+  }
+
+  // Memoize this node if possible.
+  SDNode *N;
+  SDVTList VTs = getVTList(VT);
+  if (VT != MVT::Flag) {
+    SDValue Ops[] = { N1, N2 };
+    FoldingSetNodeID ID;
+    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
+    void *IP = 0;
+    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+      return SDValue(E, 0);
+
+    N = NodeAllocator.Allocate<BinarySDNode>();
+    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
+    CSEMap.InsertNode(N, IP);
+  } else {
+    N = NodeAllocator.Allocate<BinarySDNode>();
+    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
+  }
+
+  AllNodes.push_back(N);
+#ifndef NDEBUG
+  VerifyNode(N);
+#endif
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
+                              SDValue N1, SDValue N2, SDValue N3) {
+  // Perform various simplifications.
+  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
+  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
+  switch (Opcode) {
+  case ISD::CONCAT_VECTORS:
+    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
+    // one big BUILD_VECTOR.
+    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
+        N2.getOpcode() == ISD::BUILD_VECTOR &&
+        N3.getOpcode() == ISD::BUILD_VECTOR) {
+      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
+      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
+      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
+      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
+    }
+    break;
+  case ISD::SETCC: {
+    // Use FoldSetCC to simplify SETCC's.
+    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
+    if (Simp.getNode()) return Simp;
+    break;
+  }
+  case ISD::SELECT:
+    if (N1C) {
+     if (N1C->getZExtValue())
+        return N2;             // select true, X, Y -> X
+      else
+        return N3;             // select false, X, Y -> Y
+    }
+
+    if (N2 == N3) return N2;   // select C, X, X -> X
+    break;
+  case ISD::BRCOND:
+    if (N2C) {
+      if (N2C->getZExtValue()) // Unconditional branch
+        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
+      else
+        return N1;         // Never-taken branch
+    }
+    break;
+  case ISD::VECTOR_SHUFFLE:
+    llvm_unreachable("should use getVectorShuffle constructor!");
+    break;
+  case ISD::BIT_CONVERT:
+    // Fold bit_convert nodes from a type to themselves.
+    if (N1.getValueType() == VT)
+      return N1;
+    break;
+  }
+
+  // Memoize node if it doesn't produce a flag.
+  SDNode *N;
+  SDVTList VTs = getVTList(VT);
+  if (VT != MVT::Flag) {
+    SDValue Ops[] = { N1, N2, N3 };
+    FoldingSetNodeID ID;
+    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
+    void *IP = 0;
+    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+      return SDValue(E, 0);
+
+    N = NodeAllocator.Allocate<TernarySDNode>();
+    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
+    CSEMap.InsertNode(N, IP);
+  } else {
+    N = NodeAllocator.Allocate<TernarySDNode>();
+    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
+  }
+
+  AllNodes.push_back(N);
+#ifndef NDEBUG
+  VerifyNode(N);
+#endif
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
+                              SDValue N1, SDValue N2, SDValue N3,
+                              SDValue N4) {
+  SDValue Ops[] = { N1, N2, N3, N4 };
+  return getNode(Opcode, DL, VT, Ops, 4);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
+                              SDValue N1, SDValue N2, SDValue N3,
+                              SDValue N4, SDValue N5) {
+  SDValue Ops[] = { N1, N2, N3, N4, N5 };
+  return getNode(Opcode, DL, VT, Ops, 5);
+}
+
+/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
+/// the incoming stack arguments to be loaded from the stack.
+SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
+  SmallVector<SDValue, 8> ArgChains;
+
+  // Include the original chain at the beginning of the list. When this is
+  // used by target LowerCall hooks, this helps legalize find the
+  // CALLSEQ_BEGIN node.
+  ArgChains.push_back(Chain);
+
+  // Add a chain value for each stack argument.
+  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
+       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
+    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
+      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
+        if (FI->getIndex() < 0)
+          ArgChains.push_back(SDValue(L, 1));
+
+  // Build a tokenfactor for all the chains.
+  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
+                 &ArgChains[0], ArgChains.size());
+}
+
+/// getMemsetValue - Vectorized representation of the memset value
+/// operand.
+static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
+                              DebugLoc dl) {
+  unsigned NumBits = VT.isVector() ?
+    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
+  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
+    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
+    unsigned Shift = 8;
+    for (unsigned i = NumBits; i > 8; i >>= 1) {
+      Val = (Val << Shift) | Val;
+      Shift <<= 1;
+    }
+    if (VT.isInteger())
+      return DAG.getConstant(Val, VT);
+    return DAG.getConstantFP(APFloat(Val), VT);
+  }
+
+  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
+  unsigned Shift = 8;
+  for (unsigned i = NumBits; i > 8; i >>= 1) {
+    Value = DAG.getNode(ISD::OR, dl, VT,
+                        DAG.getNode(ISD::SHL, dl, VT, Value,
+                                    DAG.getConstant(Shift,
+                                                    TLI.getShiftAmountTy())),
+                        Value);
+    Shift <<= 1;
+  }
+
+  return Value;
+}
+
+/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
+/// used when a memcpy is turned into a memset when the source is a constant
+/// string ptr.
+static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
+                                  const TargetLowering &TLI,
+                                  std::string &Str, unsigned Offset) {
+  // Handle vector with all elements zero.
+  if (Str.empty()) {
+    if (VT.isInteger())
+      return DAG.getConstant(0, VT);
+    unsigned NumElts = VT.getVectorNumElements();
+    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
+    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
+                       DAG.getConstant(0,
+                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
+  }
+
+  assert(!VT.isVector() && "Can't handle vector type here!");
+  unsigned NumBits = VT.getSizeInBits();
+  unsigned MSB = NumBits / 8;
+  uint64_t Val = 0;
+  if (TLI.isLittleEndian())
+    Offset = Offset + MSB - 1;
+  for (unsigned i = 0; i != MSB; ++i) {
+    Val = (Val << 8) | (unsigned char)Str[Offset];
+    Offset += TLI.isLittleEndian() ? -1 : 1;
+  }
+  return DAG.getConstant(Val, VT);
+}
+
+/// getMemBasePlusOffset - Returns base and offset node for the
+///
+static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
+                                      SelectionDAG &DAG) {
+  EVT VT = Base.getValueType();
+  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
+                     VT, Base, DAG.getConstant(Offset, VT));
+}
+
+/// isMemSrcFromString - Returns true if memcpy source is a string constant.
+///
+static bool isMemSrcFromString(SDValue Src, std::string &Str) {
+  unsigned SrcDelta = 0;
+  GlobalAddressSDNode *G = NULL;
+  if (Src.getOpcode() == ISD::GlobalAddress)
+    G = cast<GlobalAddressSDNode>(Src);
+  else if (Src.getOpcode() == ISD::ADD &&
+           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
+           Src.getOperand(1).getOpcode() == ISD::Constant) {
+    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
+    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
+  }
+  if (!G)
+    return false;
+
+  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
+  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
+    return true;
+
+  return false;
+}
+
+/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
+/// to replace the memset / memcpy is below the threshold. It also returns the
+/// types of the sequence of memory ops to perform memset / memcpy.
+static
+bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
+                              SDValue Dst, SDValue Src,
+                              unsigned Limit, uint64_t Size, unsigned &Align,
+                              std::string &Str, bool &isSrcStr,
+                              SelectionDAG &DAG,
+                              const TargetLowering &TLI) {
+  isSrcStr = isMemSrcFromString(Src, Str);
+  bool isSrcConst = isa<ConstantSDNode>(Src);
+  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
+  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
+  if (VT != MVT::iAny) {
+    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
+    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
+    // If source is a string constant, this will require an unaligned load.
+    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
+      if (Dst.getOpcode() != ISD::FrameIndex) {
+        // Can't change destination alignment. It requires a unaligned store.
+        if (AllowUnalign)
+          VT = MVT::iAny;
+      } else {
+        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
+        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+        if (MFI->isFixedObjectIndex(FI)) {
+          // Can't change destination alignment. It requires a unaligned store.
+          if (AllowUnalign)
+            VT = MVT::iAny;
+        } else {
+          // Give the stack frame object a larger alignment if needed.
+          if (MFI->getObjectAlignment(FI) < NewAlign)
+            MFI->setObjectAlignment(FI, NewAlign);
+          Align = NewAlign;
+        }
+      }
+    }
+  }
+
+  if (VT == MVT::iAny) {
+    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
+      VT = MVT::i64;
+    } else {
+      switch (Align & 7) {
+      case 0:  VT = MVT::i64; break;
+      case 4:  VT = MVT::i32; break;
+      case 2:  VT = MVT::i16; break;
+      default: VT = MVT::i8;  break;
+      }
+    }
+
+    MVT LVT = MVT::i64;
+    while (!TLI.isTypeLegal(LVT))
+      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
+    assert(LVT.isInteger());
+
+    if (VT.bitsGT(LVT))
+      VT = LVT;
+  }
+
+  unsigned NumMemOps = 0;
+  while (Size != 0) {
+    unsigned VTSize = VT.getSizeInBits() / 8;
+    while (VTSize > Size) {
+      // For now, only use non-vector load / store's for the left-over pieces.
+      if (VT.isVector()) {
+        VT = MVT::i64;
+        while (!TLI.isTypeLegal(VT))
+          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
+        VTSize = VT.getSizeInBits() / 8;
+      } else {
+        // This can result in a type that is not legal on the target, e.g.
+        // 1 or 2 bytes on PPC.
+        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
+        VTSize >>= 1;
+      }
+    }
+
+    if (++NumMemOps > Limit)
+      return false;
+    MemOps.push_back(VT);
+    Size -= VTSize;
+  }
+
+  return true;
+}
+
+static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
+                                         SDValue Chain, SDValue Dst,
+                                         SDValue Src, uint64_t Size,
+                                         unsigned Align, bool AlwaysInline,
+                                         const Value *DstSV, uint64_t DstSVOff,
+                                         const Value *SrcSV, uint64_t SrcSVOff){
+  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+  // Expand memcpy to a series of load and store ops if the size operand falls
+  // below a certain threshold.
+  std::vector<EVT> MemOps;
+  uint64_t Limit = -1ULL;
+  if (!AlwaysInline)
+    Limit = TLI.getMaxStoresPerMemcpy();
+  unsigned DstAlign = Align;  // Destination alignment can change.
+  std::string Str;
+  bool CopyFromStr;
+  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
+                                Str, CopyFromStr, DAG, TLI))
+    return SDValue();
+
+
+  bool isZeroStr = CopyFromStr && Str.empty();
+  SmallVector<SDValue, 8> OutChains;
+  unsigned NumMemOps = MemOps.size();
+  uint64_t SrcOff = 0, DstOff = 0;
+  for (unsigned i = 0; i != NumMemOps; ++i) {
+    EVT VT = MemOps[i];
+    unsigned VTSize = VT.getSizeInBits() / 8;
+    SDValue Value, Store;
+
+    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
+      // It's unlikely a store of a vector immediate can be done in a single
+      // instruction. It would require a load from a constantpool first.
+      // We also handle store a vector with all zero's.
+      // FIXME: Handle other cases where store of vector immediate is done in
+      // a single instruction.
+      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
+      Store = DAG.getStore(Chain, dl, Value,
+                           getMemBasePlusOffset(Dst, DstOff, DAG),
+                           DstSV, DstSVOff + DstOff, false, DstAlign);
+    } else {
+      // The type might not be legal for the target.  This should only happen
+      // if the type is smaller than a legal type, as on PPC, so the right
+      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
+      // to Load/Store if NVT==VT.
+      // FIXME does the case above also need this?
+      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
+      assert(NVT.bitsGE(VT));
+      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
+                             getMemBasePlusOffset(Src, SrcOff, DAG),
+                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
+      Store = DAG.getTruncStore(Chain, dl, Value,
+                             getMemBasePlusOffset(Dst, DstOff, DAG),
+                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
+    }
+    OutChains.push_back(Store);
+    SrcOff += VTSize;
+    DstOff += VTSize;
+  }
+
+  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+                     &OutChains[0], OutChains.size());
+}
+
+static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
+                                          SDValue Chain, SDValue Dst,
+                                          SDValue Src, uint64_t Size,
+                                          unsigned Align, bool AlwaysInline,
+                                          const Value *DstSV, uint64_t DstSVOff,
+                                          const Value *SrcSV, uint64_t SrcSVOff){
+  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+  // Expand memmove to a series of load and store ops if the size operand falls
+  // below a certain threshold.
+  std::vector<EVT> MemOps;
+  uint64_t Limit = -1ULL;
+  if (!AlwaysInline)
+    Limit = TLI.getMaxStoresPerMemmove();
+  unsigned DstAlign = Align;  // Destination alignment can change.
+  std::string Str;
+  bool CopyFromStr;
+  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
+                                Str, CopyFromStr, DAG, TLI))
+    return SDValue();
+
+  uint64_t SrcOff = 0, DstOff = 0;
+
+  SmallVector<SDValue, 8> LoadValues;
+  SmallVector<SDValue, 8> LoadChains;
+  SmallVector<SDValue, 8> OutChains;
+  unsigned NumMemOps = MemOps.size();
+  for (unsigned i = 0; i < NumMemOps; i++) {
+    EVT VT = MemOps[i];
+    unsigned VTSize = VT.getSizeInBits() / 8;
+    SDValue Value, Store;
+
+    Value = DAG.getLoad(VT, dl, Chain,
+                        getMemBasePlusOffset(Src, SrcOff, DAG),
+                        SrcSV, SrcSVOff + SrcOff, false, Align);
+    LoadValues.push_back(Value);
+    LoadChains.push_back(Value.getValue(1));
+    SrcOff += VTSize;
+  }
+  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+                      &LoadChains[0], LoadChains.size());
+  OutChains.clear();
+  for (unsigned i = 0; i < NumMemOps; i++) {
+    EVT VT = MemOps[i];
+    unsigned VTSize = VT.getSizeInBits() / 8;
+    SDValue Value, Store;
+
+    Store = DAG.getStore(Chain, dl, LoadValues[i],
+                         getMemBasePlusOffset(Dst, DstOff, DAG),
+                         DstSV, DstSVOff + DstOff, false, DstAlign);
+    OutChains.push_back(Store);
+    DstOff += VTSize;
+  }
+
+  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+                     &OutChains[0], OutChains.size());
+}
+
+static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
+                                 SDValue Chain, SDValue Dst,
+                                 SDValue Src, uint64_t Size,
+                                 unsigned Align,
+                                 const Value *DstSV, uint64_t DstSVOff) {
+  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+  // Expand memset to a series of load/store ops if the size operand
+  // falls below a certain threshold.
+  std::vector<EVT> MemOps;
+  std::string Str;
+  bool CopyFromStr;
+  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
+                                Size, Align, Str, CopyFromStr, DAG, TLI))
+    return SDValue();
+
+  SmallVector<SDValue, 8> OutChains;
+  uint64_t DstOff = 0;
+
+  unsigned NumMemOps = MemOps.size();
+  for (unsigned i = 0; i < NumMemOps; i++) {
+    EVT VT = MemOps[i];
+    unsigned VTSize = VT.getSizeInBits() / 8;
+    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
+    SDValue Store = DAG.getStore(Chain, dl, Value,
+                                 getMemBasePlusOffset(Dst, DstOff, DAG),
+                                 DstSV, DstSVOff + DstOff);
+    OutChains.push_back(Store);
+    DstOff += VTSize;
+  }
+
+  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+                     &OutChains[0], OutChains.size());
+}
+
+SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
+                                SDValue Src, SDValue Size,
+                                unsigned Align, bool AlwaysInline,
+                                const Value *DstSV, uint64_t DstSVOff,
+                                const Value *SrcSV, uint64_t SrcSVOff) {
+
+  // Check to see if we should lower the memcpy to loads and stores first.
+  // For cases within the target-specified limits, this is the best choice.
+  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
+  if (ConstantSize) {
+    // Memcpy with size zero? Just return the original chain.
+    if (ConstantSize->isNullValue())
+      return Chain;
+
+    SDValue Result =
+      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
+                              ConstantSize->getZExtValue(),
+                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
+    if (Result.getNode())
+      return Result;
+  }
+
+  // Then check to see if we should lower the memcpy with target-specific
+  // code. If the target chooses to do this, this is the next best.
+  SDValue Result =
+    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
+                                AlwaysInline,
+                                DstSV, DstSVOff, SrcSV, SrcSVOff);
+  if (Result.getNode())
+    return Result;
+
+  // If we really need inline code and the target declined to provide it,
+  // use a (potentially long) sequence of loads and stores.
+  if (AlwaysInline) {
+    assert(ConstantSize && "AlwaysInline requires a constant size!");
+    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
+                                   ConstantSize->getZExtValue(), Align, true,
+                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
+  }
+
+  // Emit a library call.
+  TargetLowering::ArgListTy Args;
+  TargetLowering::ArgListEntry Entry;
+  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
+  Entry.Node = Dst; Args.push_back(Entry);
+  Entry.Node = Src; Args.push_back(Entry);
+  Entry.Node = Size; Args.push_back(Entry);
+  // FIXME: pass in DebugLoc
+  std::pair<SDValue,SDValue> CallResult =
+    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
+                    false, false, false, false, 0,
+                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
+                    /*isReturnValueUsed=*/false,
+                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
+                                      TLI.getPointerTy()),
+                    Args, *this, dl, GetOrdering(Chain.getNode()));
+  return CallResult.second;
+}
+
+SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
+                                 SDValue Src, SDValue Size,
+                                 unsigned Align,
+                                 const Value *DstSV, uint64_t DstSVOff,
+                                 const Value *SrcSV, uint64_t SrcSVOff) {
+
+  // Check to see if we should lower the memmove to loads and stores first.
+  // For cases within the target-specified limits, this is the best choice.
+  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
+  if (ConstantSize) {
+    // Memmove with size zero? Just return the original chain.
+    if (ConstantSize->isNullValue())
+      return Chain;
+
+    SDValue Result =
+      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
+                               ConstantSize->getZExtValue(),
+                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
+    if (Result.getNode())
+      return Result;
+  }
+
+  // Then check to see if we should lower the memmove with target-specific
+  // code. If the target chooses to do this, this is the next best.
+  SDValue Result =
+    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
+                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
+  if (Result.getNode())
+    return Result;
+
+  // Emit a library call.
+  TargetLowering::ArgListTy Args;
+  TargetLowering::ArgListEntry Entry;
+  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
+  Entry.Node = Dst; Args.push_back(Entry);
+  Entry.Node = Src; Args.push_back(Entry);
+  Entry.Node = Size; Args.push_back(Entry);
+  // FIXME:  pass in DebugLoc
+  std::pair<SDValue,SDValue> CallResult =
+    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
+                    false, false, false, false, 0,
+                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
+                    /*isReturnValueUsed=*/false,
+                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
+                                      TLI.getPointerTy()),
+                    Args, *this, dl, GetOrdering(Chain.getNode()));
+  return CallResult.second;
+}
+
+SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
+                                SDValue Src, SDValue Size,
+                                unsigned Align,
+                                const Value *DstSV, uint64_t DstSVOff) {
+
+  // Check to see if we should lower the memset to stores first.
+  // For cases within the target-specified limits, this is the best choice.
+  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
+  if (ConstantSize) {
+    // Memset with size zero? Just return the original chain.
+    if (ConstantSize->isNullValue())
+      return Chain;
+
+    SDValue Result =
+      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
+                      Align, DstSV, DstSVOff);
+    if (Result.getNode())
+      return Result;
+  }
+
+  // Then check to see if we should lower the memset with target-specific
+  // code. If the target chooses to do this, this is the next best.
+  SDValue Result =
+    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
+                                DstSV, DstSVOff);
+  if (Result.getNode())
+    return Result;
+
+  // Emit a library call.
+  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
+  TargetLowering::ArgListTy Args;
+  TargetLowering::ArgListEntry Entry;
+  Entry.Node = Dst; Entry.Ty = IntPtrTy;
+  Args.push_back(Entry);
+  // Extend or truncate the argument to be an i32 value for the call.
+  if (Src.getValueType().bitsGT(MVT::i32))
+    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
+  else
+    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
+  Entry.Node = Src;
+  Entry.Ty = Type::getInt32Ty(*getContext());
+  Entry.isSExt = true;
+  Args.push_back(Entry);
+  Entry.Node = Size;
+  Entry.Ty = IntPtrTy;
+  Entry.isSExt = false;
+  Args.push_back(Entry);
+  // FIXME: pass in DebugLoc
+  std::pair<SDValue,SDValue> CallResult =
+    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
+                    false, false, false, false, 0,
+                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
+                    /*isReturnValueUsed=*/false,
+                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
+                                      TLI.getPointerTy()),
+                    Args, *this, dl, GetOrdering(Chain.getNode()));
+  return CallResult.second;
+}
+
+SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
+                                SDValue Chain,
+                                SDValue Ptr, SDValue Cmp,
+                                SDValue Swp, const Value* PtrVal,
+                                unsigned Alignment) {
+  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
+    Alignment = getEVTAlignment(MemVT);
+
+  // Check if the memory reference references a frame index
+  if (!PtrVal)
+    if (const FrameIndexSDNode *FI =
+          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
+      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
+
+  MachineFunction &MF = getMachineFunction();
+  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
+
+  // For now, atomics are considered to be volatile always.
+  Flags |= MachineMemOperand::MOVolatile;
+
+  MachineMemOperand *MMO =
+    MF.getMachineMemOperand(PtrVal, Flags, 0,
+                            MemVT.getStoreSize(), Alignment);
+
+  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
+}
+
+SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
+                                SDValue Chain,
+                                SDValue Ptr, SDValue Cmp,
+                                SDValue Swp, MachineMemOperand *MMO) {
+  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
+  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
+
+  EVT VT = Cmp.getValueType();
+
+  SDVTList VTs = getVTList(VT, MVT::Other);
+  FoldingSetNodeID ID;
+  ID.AddInteger(MemVT.getRawBits());
+  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
+  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
+  void* IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+    cast<AtomicSDNode>(E)->refineAlignment(MMO);
+    return SDValue(E, 0);
+  }
+  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
+  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
+                                SDValue Chain,
+                                SDValue Ptr, SDValue Val,
+                                const Value* PtrVal,
+                                unsigned Alignment) {
+  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
+    Alignment = getEVTAlignment(MemVT);
+
+  // Check if the memory reference references a frame index
+  if (!PtrVal)
+    if (const FrameIndexSDNode *FI =
+          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
+      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
+
+  MachineFunction &MF = getMachineFunction();
+  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
+
+  // For now, atomics are considered to be volatile always.
+  Flags |= MachineMemOperand::MOVolatile;
+
+  MachineMemOperand *MMO =
+    MF.getMachineMemOperand(PtrVal, Flags, 0,
+                            MemVT.getStoreSize(), Alignment);
+
+  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
+}
+
+SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
+                                SDValue Chain,
+                                SDValue Ptr, SDValue Val,
+                                MachineMemOperand *MMO) {
+  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
+          Opcode == ISD::ATOMIC_LOAD_SUB ||
+          Opcode == ISD::ATOMIC_LOAD_AND ||
+          Opcode == ISD::ATOMIC_LOAD_OR ||
+          Opcode == ISD::ATOMIC_LOAD_XOR ||
+          Opcode == ISD::ATOMIC_LOAD_NAND ||
+          Opcode == ISD::ATOMIC_LOAD_MIN ||
+          Opcode == ISD::ATOMIC_LOAD_MAX ||
+          Opcode == ISD::ATOMIC_LOAD_UMIN ||
+          Opcode == ISD::ATOMIC_LOAD_UMAX ||
+          Opcode == ISD::ATOMIC_SWAP) &&
+         "Invalid Atomic Op");
+
+  EVT VT = Val.getValueType();
+
+  SDVTList VTs = getVTList(VT, MVT::Other);
+  FoldingSetNodeID ID;
+  ID.AddInteger(MemVT.getRawBits());
+  SDValue Ops[] = {Chain, Ptr, Val};
+  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
+  void* IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+    cast<AtomicSDNode>(E)->refineAlignment(MMO);
+    return SDValue(E, 0);
+  }
+  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
+  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+/// getMergeValues - Create a MERGE_VALUES node from the given operands.
+/// Allowed to return something different (and simpler) if Simplify is true.
+SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
+                                     DebugLoc dl) {
+  if (NumOps == 1)
+    return Ops[0];
+
+  SmallVector<EVT, 4> VTs;
+  VTs.reserve(NumOps);
+  for (unsigned i = 0; i < NumOps; ++i)
+    VTs.push_back(Ops[i].getValueType());
+  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
+                 Ops, NumOps);
+}
+
+SDValue
+SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
+                                  const EVT *VTs, unsigned NumVTs,
+                                  const SDValue *Ops, unsigned NumOps,
+                                  EVT MemVT, const Value *srcValue, int SVOff,
+                                  unsigned Align, bool Vol,
+                                  bool ReadMem, bool WriteMem) {
+  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
+                             MemVT, srcValue, SVOff, Align, Vol,
+                             ReadMem, WriteMem);
+}
+
+SDValue
+SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
+                                  const SDValue *Ops, unsigned NumOps,
+                                  EVT MemVT, const Value *srcValue, int SVOff,
+                                  unsigned Align, bool Vol,
+                                  bool ReadMem, bool WriteMem) {
+  if (Align == 0)  // Ensure that codegen never sees alignment 0
+    Align = getEVTAlignment(MemVT);
+
+  MachineFunction &MF = getMachineFunction();
+  unsigned Flags = 0;
+  if (WriteMem)
+    Flags |= MachineMemOperand::MOStore;
+  if (ReadMem)
+    Flags |= MachineMemOperand::MOLoad;
+  if (Vol)
+    Flags |= MachineMemOperand::MOVolatile;
+  MachineMemOperand *MMO =
+    MF.getMachineMemOperand(srcValue, Flags, SVOff,
+                            MemVT.getStoreSize(), Align);
+
+  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
+}
+
+SDValue
+SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
+                                  const SDValue *Ops, unsigned NumOps,
+                                  EVT MemVT, MachineMemOperand *MMO) {
+  assert((Opcode == ISD::INTRINSIC_VOID ||
+          Opcode == ISD::INTRINSIC_W_CHAIN ||
+          (Opcode <= INT_MAX &&
+           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
+         "Opcode is not a memory-accessing opcode!");
+
+  // Memoize the node unless it returns a flag.
+  MemIntrinsicSDNode *N;
+  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
+    FoldingSetNodeID ID;
+    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
+    void *IP = 0;
+    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
+      return SDValue(E, 0);
+    }
+
+    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
+    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
+    CSEMap.InsertNode(N, IP);
+  } else {
+    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
+    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
+  }
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue
+SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
+                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
+                      SDValue Ptr, SDValue Offset,
+                      const Value *SV, int SVOffset, EVT MemVT,
+                      bool isVolatile, unsigned Alignment) {
+  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
+    Alignment = getEVTAlignment(VT);
+
+  // Check if the memory reference references a frame index
+  if (!SV)
+    if (const FrameIndexSDNode *FI =
+          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
+      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
+
+  MachineFunction &MF = getMachineFunction();
+  unsigned Flags = MachineMemOperand::MOLoad;
+  if (isVolatile)
+    Flags |= MachineMemOperand::MOVolatile;
+  MachineMemOperand *MMO =
+    MF.getMachineMemOperand(SV, Flags, SVOffset,
+                            MemVT.getStoreSize(), Alignment);
+  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
+}
+
+SDValue
+SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
+                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
+                      SDValue Ptr, SDValue Offset, EVT MemVT,
+                      MachineMemOperand *MMO) {
+  if (VT == MemVT) {
+    ExtType = ISD::NON_EXTLOAD;
+  } else if (ExtType == ISD::NON_EXTLOAD) {
+    assert(VT == MemVT && "Non-extending load from different memory type!");
+  } else {
+    // Extending load.
+    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
+           "Should only be an extending load, not truncating!");
+    assert(VT.isInteger() == MemVT.isInteger() &&
+           "Cannot convert from FP to Int or Int -> FP!");
+    assert(VT.isVector() == MemVT.isVector() &&
+           "Cannot use trunc store to convert to or from a vector!");
+    assert((!VT.isVector() ||
+            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
+           "Cannot use trunc store to change the number of vector elements!");
+  }
+
+  bool Indexed = AM != ISD::UNINDEXED;
+  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
+         "Unindexed load with an offset!");
+
+  SDVTList VTs = Indexed ?
+    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
+  SDValue Ops[] = { Chain, Ptr, Offset };
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
+  ID.AddInteger(MemVT.getRawBits());
+  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile()));
+  void *IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+    cast<LoadSDNode>(E)->refineAlignment(MMO);
+    return SDValue(E, 0);
+  }
+  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
+  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
+                              SDValue Chain, SDValue Ptr,
+                              const Value *SV, int SVOffset,
+                              bool isVolatile, unsigned Alignment) {
+  SDValue Undef = getUNDEF(Ptr.getValueType());
+  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
+                 SV, SVOffset, VT, isVolatile, Alignment);
+}
+
+SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
+                                 SDValue Chain, SDValue Ptr,
+                                 const Value *SV,
+                                 int SVOffset, EVT MemVT,
+                                 bool isVolatile, unsigned Alignment) {
+  SDValue Undef = getUNDEF(Ptr.getValueType());
+  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
+                 SV, SVOffset, MemVT, isVolatile, Alignment);
+}
+
+SDValue
+SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
+                             SDValue Offset, ISD::MemIndexedMode AM) {
+  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
+  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
+         "Load is already a indexed load!");
+  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
+                 LD->getChain(), Base, Offset, LD->getSrcValue(),
+                 LD->getSrcValueOffset(), LD->getMemoryVT(),
+                 LD->isVolatile(), LD->getAlignment());
+}
+
+SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
+                               SDValue Ptr, const Value *SV, int SVOffset,
+                               bool isVolatile, unsigned Alignment) {
+  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
+    Alignment = getEVTAlignment(Val.getValueType());
+
+  // Check if the memory reference references a frame index
+  if (!SV)
+    if (const FrameIndexSDNode *FI =
+          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
+      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
+
+  MachineFunction &MF = getMachineFunction();
+  unsigned Flags = MachineMemOperand::MOStore;
+  if (isVolatile)
+    Flags |= MachineMemOperand::MOVolatile;
+  MachineMemOperand *MMO =
+    MF.getMachineMemOperand(SV, Flags, SVOffset,
+                            Val.getValueType().getStoreSize(), Alignment);
+
+  return getStore(Chain, dl, Val, Ptr, MMO);
+}
+
+SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
+                               SDValue Ptr, MachineMemOperand *MMO) {
+  EVT VT = Val.getValueType();
+  SDVTList VTs = getVTList(MVT::Other);
+  SDValue Undef = getUNDEF(Ptr.getValueType());
+  SDValue Ops[] = { Chain, Val, Ptr, Undef };
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
+  ID.AddInteger(VT.getRawBits());
+  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile()));
+  void *IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+    cast<StoreSDNode>(E)->refineAlignment(MMO);
+    return SDValue(E, 0);
+  }
+  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
+  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
+                                    SDValue Ptr, const Value *SV,
+                                    int SVOffset, EVT SVT,
+                                    bool isVolatile, unsigned Alignment) {
+  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
+    Alignment = getEVTAlignment(SVT);
+
+  // Check if the memory reference references a frame index
+  if (!SV)
+    if (const FrameIndexSDNode *FI =
+          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
+      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
+
+  MachineFunction &MF = getMachineFunction();
+  unsigned Flags = MachineMemOperand::MOStore;
+  if (isVolatile)
+    Flags |= MachineMemOperand::MOVolatile;
+  MachineMemOperand *MMO =
+    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
+
+  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
+}
+
+SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
+                                    SDValue Ptr, EVT SVT,
+                                    MachineMemOperand *MMO) {
+  EVT VT = Val.getValueType();
+
+  if (VT == SVT)
+    return getStore(Chain, dl, Val, Ptr, MMO);
+
+  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
+         "Should only be a truncating store, not extending!");
+  assert(VT.isInteger() == SVT.isInteger() &&
+         "Can't do FP-INT conversion!");
+  assert(VT.isVector() == SVT.isVector() &&
+         "Cannot use trunc store to convert to or from a vector!");
+  assert((!VT.isVector() ||
+          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
+         "Cannot use trunc store to change the number of vector elements!");
+
+  SDVTList VTs = getVTList(MVT::Other);
+  SDValue Undef = getUNDEF(Ptr.getValueType());
+  SDValue Ops[] = { Chain, Val, Ptr, Undef };
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
+  ID.AddInteger(SVT.getRawBits());
+  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile()));
+  void *IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+    cast<StoreSDNode>(E)->refineAlignment(MMO);
+    return SDValue(E, 0);
+  }
+  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
+  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue
+SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
+                              SDValue Offset, ISD::MemIndexedMode AM) {
+  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
+  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
+         "Store is already a indexed store!");
+  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
+  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
+  FoldingSetNodeID ID;
+  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
+  ID.AddInteger(ST->getMemoryVT().getRawBits());
+  ID.AddInteger(ST->getRawSubclassData());
+  void *IP = 0;
+  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+    return SDValue(E, 0);
+
+  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
+  new (N) StoreSDNode(Ops, dl, VTs, AM,
+                      ST->isTruncatingStore(), ST->getMemoryVT(),
+                      ST->getMemOperand());
+  CSEMap.InsertNode(N, IP);
+  AllNodes.push_back(N);
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
+                               SDValue Chain, SDValue Ptr,
+                               SDValue SV) {
+  SDValue Ops[] = { Chain, Ptr, SV };
+  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
+                              const SDUse *Ops, unsigned NumOps) {
+  switch (NumOps) {
+  case 0: return getNode(Opcode, DL, VT);
+  case 1: return getNode(Opcode, DL, VT, Ops[0]);
+  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
+  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
+  default: break;
+  }
+
+  // Copy from an SDUse array into an SDValue array for use with
+  // the regular getNode logic.
+  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
+  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
+                              const SDValue *Ops, unsigned NumOps) {
+  switch (NumOps) {
+  case 0: return getNode(Opcode, DL, VT);
+  case 1: return getNode(Opcode, DL, VT, Ops[0]);
+  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
+  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
+  default: break;
+  }
+
+  switch (Opcode) {
+  default: break;
+  case ISD::SELECT_CC: {
+    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
+    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
+           "LHS and RHS of condition must have same type!");
+    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
+           "True and False arms of SelectCC must have same type!");
+    assert(Ops[2].getValueType() == VT &&
+           "select_cc node must be of same type as true and false value!");
+    break;
+  }
+  case ISD::BR_CC: {
+    assert(NumOps == 5 && "BR_CC takes 5 operands!");
+    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
+           "LHS/RHS of comparison should match types!");
+    break;
+  }
+  }
+
+  // Memoize nodes.
+  SDNode *N;
+  SDVTList VTs = getVTList(VT);
+
+  if (VT != MVT::Flag) {
+    FoldingSetNodeID ID;
+    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
+    void *IP = 0;
+
+    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+      return SDValue(E, 0);
+
+    N = NodeAllocator.Allocate<SDNode>();
+    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
+    CSEMap.InsertNode(N, IP);
+  } else {
+    N = NodeAllocator.Allocate<SDNode>();
+    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
+  }
+
+  AllNodes.push_back(N);
+#ifndef NDEBUG
+  VerifyNode(N);
+#endif
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
+                              const std::vector<EVT> &ResultTys,
+                              const SDValue *Ops, unsigned NumOps) {
+  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
+                 Ops, NumOps);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
+                              const EVT *VTs, unsigned NumVTs,
+                              const SDValue *Ops, unsigned NumOps) {
+  if (NumVTs == 1)
+    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
+  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
+                              const SDValue *Ops, unsigned NumOps) {
+  if (VTList.NumVTs == 1)
+    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
+
+#if 0
+  switch (Opcode) {
+  // FIXME: figure out how to safely handle things like
+  // int foo(int x) { return 1 << (x & 255); }
+  // int bar() { return foo(256); }
+  case ISD::SRA_PARTS:
+  case ISD::SRL_PARTS:
+  case ISD::SHL_PARTS:
+    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
+        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
+      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
+    else if (N3.getOpcode() == ISD::AND)
+      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
+        // If the and is only masking out bits that cannot effect the shift,
+        // eliminate the and.
+        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
+        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
+          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
+      }
+    break;
+  }
+#endif
+
+  // Memoize the node unless it returns a flag.
+  SDNode *N;
+  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
+    FoldingSetNodeID ID;
+    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
+    void *IP = 0;
+    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+      return SDValue(E, 0);
+
+    if (NumOps == 1) {
+      N = NodeAllocator.Allocate<UnarySDNode>();
+      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
+    } else if (NumOps == 2) {
+      N = NodeAllocator.Allocate<BinarySDNode>();
+      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
+    } else if (NumOps == 3) {
+      N = NodeAllocator.Allocate<TernarySDNode>();
+      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
+    } else {
+      N = NodeAllocator.Allocate<SDNode>();
+      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
+    }
+    CSEMap.InsertNode(N, IP);
+  } else {
+    if (NumOps == 1) {
+      N = NodeAllocator.Allocate<UnarySDNode>();
+      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
+    } else if (NumOps == 2) {
+      N = NodeAllocator.Allocate<BinarySDNode>();
+      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
+    } else if (NumOps == 3) {
+      N = NodeAllocator.Allocate<TernarySDNode>();
+      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
+    } else {
+      N = NodeAllocator.Allocate<SDNode>();
+      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
+    }
+  }
+  AllNodes.push_back(N);
+#ifndef NDEBUG
+  VerifyNode(N);
+#endif
+  return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
+  return getNode(Opcode, DL, VTList, 0, 0);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
+                              SDValue N1) {
+  SDValue Ops[] = { N1 };
+  return getNode(Opcode, DL, VTList, Ops, 1);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
+                              SDValue N1, SDValue N2) {
+  SDValue Ops[] = { N1, N2 };
+  return getNode(Opcode, DL, VTList, Ops, 2);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
+                              SDValue N1, SDValue N2, SDValue N3) {
+  SDValue Ops[] = { N1, N2, N3 };
+  return getNode(Opcode, DL, VTList, Ops, 3);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
+                              SDValue N1, SDValue N2, SDValue N3,
+                              SDValue N4) {
+  SDValue Ops[] = { N1, N2, N3, N4 };
+  return getNode(Opcode, DL, VTList, Ops, 4);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
+                              SDValue N1, SDValue N2, SDValue N3,
+                              SDValue N4, SDValue N5) {
+  SDValue Ops[] = { N1, N2, N3, N4, N5 };
+  return getNode(Opcode, DL, VTList, Ops, 5);
+}
+
+SDVTList SelectionDAG::getVTList(EVT VT) {
+  return makeVTList(SDNode::getValueTypeList(VT), 1);
+}
+
+SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
+  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
+       E = VTList.rend(); I != E; ++I)
+    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
+      return *I;
+
+  EVT *Array = Allocator.Allocate<EVT>(2);
+  Array[0] = VT1;
+  Array[1] = VT2;
+  SDVTList Result = makeVTList(Array, 2);
+  VTList.push_back(Result);
+  return Result;
+}
+
+SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
+  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
+       E = VTList.rend(); I != E; ++I)
+    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
+                          I->VTs[2] == VT3)
+      return *I;
+
+  EVT *Array = Allocator.Allocate<EVT>(3);
+  Array[0] = VT1;
+  Array[1] = VT2;
+  Array[2] = VT3;
+  SDVTList Result = makeVTList(Array, 3);
+  VTList.push_back(Result);
+  return Result;
+}
+
+SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
+  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
+       E = VTList.rend(); I != E; ++I)
+    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
+                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
+      return *I;
+
+  EVT *Array = Allocator.Allocate<EVT>(4);
+  Array[0] = VT1;
+  Array[1] = VT2;
+  Array[2] = VT3;
+  Array[3] = VT4;
+  SDVTList Result = makeVTList(Array, 4);
+  VTList.push_back(Result);
+  return Result;
+}
+
+SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
+  switch (NumVTs) {
+    case 0: llvm_unreachable("Cannot have nodes without results!");
+    case 1: return getVTList(VTs[0]);
+    case 2: return getVTList(VTs[0], VTs[1]);
+    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
+    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
+    default: break;
+  }
+
+  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
+       E = VTList.rend(); I != E; ++I) {
+    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
+      continue;
+
+    bool NoMatch = false;
+    for (unsigned i = 2; i != NumVTs; ++i)
+      if (VTs[i] != I->VTs[i]) {
+        NoMatch = true;
+        break;
+      }
+    if (!NoMatch)
+      return *I;
+  }
+
+  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
+  std::copy(VTs, VTs+NumVTs, Array);
+  SDVTList Result = makeVTList(Array, NumVTs);
+  VTList.push_back(Result);
+  return Result;
+}
+
+
+/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
+/// specified operands.  If the resultant node already exists in the DAG,
+/// this does not modify the specified node, instead it returns the node that
+/// already exists.  If the resultant node does not exist in the DAG, the
+/// input node is returned.  As a degenerate case, if you specify the same
+/// input operands as the node already has, the input node is returned.
+SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
+  SDNode *N = InN.getNode();
+  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
+
+  // Check to see if there is no change.
+  if (Op == N->getOperand(0)) return InN;
+
+  // See if the modified node already exists.
+  void *InsertPos = 0;
+  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
+    return SDValue(Existing, InN.getResNo());
+
+  // Nope it doesn't.  Remove the node from its current place in the maps.
+  if (InsertPos)
+    if (!RemoveNodeFromCSEMaps(N))
+      InsertPos = 0;
+
+  // Now we update the operands.
+  N->OperandList[0].set(Op);
+
+  // If this gets put into a CSE map, add it.
+  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
+  return InN;
+}
+
+SDValue SelectionDAG::
+UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
+  SDNode *N = InN.getNode();
+  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
+
+  // Check to see if there is no change.
+  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
+    return InN;   // No operands changed, just return the input node.
+
+  // See if the modified node already exists.
+  void *InsertPos = 0;
+  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
+    return SDValue(Existing, InN.getResNo());
+
+  // Nope it doesn't.  Remove the node from its current place in the maps.
+  if (InsertPos)
+    if (!RemoveNodeFromCSEMaps(N))
+      InsertPos = 0;
+
+  // Now we update the operands.
+  if (N->OperandList[0] != Op1)
+    N->OperandList[0].set(Op1);
+  if (N->OperandList[1] != Op2)
+    N->OperandList[1].set(Op2);
+
+  // If this gets put into a CSE map, add it.
+  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
+  return InN;
+}
+
+SDValue SelectionDAG::
+UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
+  SDValue Ops[] = { Op1, Op2, Op3 };
+  return UpdateNodeOperands(N, Ops, 3);
+}
+
+SDValue SelectionDAG::
+UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
+                   SDValue Op3, SDValue Op4) {
+  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
+  return UpdateNodeOperands(N, Ops, 4);
+}
+
+SDValue SelectionDAG::
+UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
+                   SDValue Op3, SDValue Op4, SDValue Op5) {
+  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
+  return UpdateNodeOperands(N, Ops, 5);
+}
+
+SDValue SelectionDAG::
+UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
+  SDNode *N = InN.getNode();
+  assert(N->getNumOperands() == NumOps &&
+         "Update with wrong number of operands");
+
+  // Check to see if there is no change.
+  bool AnyChange = false;
+  for (unsigned i = 0; i != NumOps; ++i) {
+    if (Ops[i] != N->getOperand(i)) {
+      AnyChange = true;
+      break;
+    }
+  }
+
+  // No operands changed, just return the input node.
+  if (!AnyChange) return InN;
+
+  // See if the modified node already exists.
+  void *InsertPos = 0;
+  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
+    return SDValue(Existing, InN.getResNo());
+
+  // Nope it doesn't.  Remove the node from its current place in the maps.
+  if (InsertPos)
+    if (!RemoveNodeFromCSEMaps(N))
+      InsertPos = 0;
+
+  // Now we update the operands.
+  for (unsigned i = 0; i != NumOps; ++i)
+    if (N->OperandList[i] != Ops[i])
+      N->OperandList[i].set(Ops[i]);
+
+  // If this gets put into a CSE map, add it.
+  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
+  return InN;
+}
+
+/// DropOperands - Release the operands and set this node to have
+/// zero operands.
+void SDNode::DropOperands() {
+  // Unlike the code in MorphNodeTo that does this, we don't need to
+  // watch for dead nodes here.
+  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
+    SDUse &Use = *I++;
+    Use.set(SDValue());
+  }
+}
+
+/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
+/// machine opcode.
+///
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+                                   EVT VT) {
+  SDVTList VTs = getVTList(VT);
+  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+                                   EVT VT, SDValue Op1) {
+  SDVTList VTs = getVTList(VT);
+  SDValue Ops[] = { Op1 };
+  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+                                   EVT VT, SDValue Op1,
+                                   SDValue Op2) {
+  SDVTList VTs = getVTList(VT);
+  SDValue Ops[] = { Op1, Op2 };
+  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+                                   EVT VT, SDValue Op1,
+                                   SDValue Op2, SDValue Op3) {
+  SDVTList VTs = getVTList(VT);
+  SDValue Ops[] = { Op1, Op2, Op3 };
+  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+                                   EVT VT, const SDValue *Ops,
+                                   unsigned NumOps) {
+  SDVTList VTs = getVTList(VT);
+  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+                                   EVT VT1, EVT VT2, const SDValue *Ops,
+                                   unsigned NumOps) {
+  SDVTList VTs = getVTList(VT1, VT2);
+  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+                                   EVT VT1, EVT VT2) {
+  SDVTList VTs = getVTList(VT1, VT2);
+  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+                                   EVT VT1, EVT VT2, EVT VT3,
+                                   const SDValue *Ops, unsigned NumOps) {
+  SDVTList VTs = getVTList(VT1, VT2, VT3);
+  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
+                                   const SDValue *Ops, unsigned NumOps) {
+  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
+  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+                                   EVT VT1, EVT VT2,
+                                   SDValue Op1) {
+  SDVTList VTs = getVTList(VT1, VT2);
+  SDValue Ops[] = { Op1 };
+  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+                                   EVT VT1, EVT VT2,
+                                   SDValue Op1, SDValue Op2) {
+  SDVTList VTs = getVTList(VT1, VT2);
+  SDValue Ops[] = { Op1, Op2 };
+  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+                                   EVT VT1, EVT VT2,
+                                   SDValue Op1, SDValue Op2,
+                                   SDValue Op3) {
+  SDVTList VTs = getVTList(VT1, VT2);
+  SDValue Ops[] = { Op1, Op2, Op3 };
+  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+                                   EVT VT1, EVT VT2, EVT VT3,
+                                   SDValue Op1, SDValue Op2,
+                                   SDValue Op3) {
+  SDVTList VTs = getVTList(VT1, VT2, VT3);
+  SDValue Ops[] = { Op1, Op2, Op3 };
+  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+                                   SDVTList VTs, const SDValue *Ops,
+                                   unsigned NumOps) {
+  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
+}
+
+SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
+                                  EVT VT) {
+  SDVTList VTs = getVTList(VT);
+  return MorphNodeTo(N, Opc, VTs, 0, 0);
+}
+
+SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
+                                  EVT VT, SDValue Op1) {
+  SDVTList VTs = getVTList(VT);
+  SDValue Ops[] = { Op1 };
+  return MorphNodeTo(N, Opc, VTs, Ops, 1);
+}
+
+SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
+                                  EVT VT, SDValue Op1,
+                                  SDValue Op2) {
+  SDVTList VTs = getVTList(VT);
+  SDValue Ops[] = { Op1, Op2 };
+  return MorphNodeTo(N, Opc, VTs, Ops, 2);
+}
+
+SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
+                                  EVT VT, SDValue Op1,
+                                  SDValue Op2, SDValue Op3) {
+  SDVTList VTs = getVTList(VT);
+  SDValue Ops[] = { Op1, Op2, Op3 };
+  return MorphNodeTo(N, Opc, VTs, Ops, 3);
+}
+
+SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
+                                  EVT VT, const SDValue *Ops,
+                                  unsigned NumOps) {
+  SDVTList VTs = getVTList(VT);
+  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
+}
+
+SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
+                                  EVT VT1, EVT VT2, const SDValue *Ops,
+                                  unsigned NumOps) {
+  SDVTList VTs = getVTList(VT1, VT2);
+  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
+}
+
+SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
+                                  EVT VT1, EVT VT2) {
+  SDVTList VTs = getVTList(VT1, VT2);
+  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
+}
+
+SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
+                                  EVT VT1, EVT VT2, EVT VT3,
+                                  const SDValue *Ops, unsigned NumOps) {
+  SDVTList VTs = getVTList(VT1, VT2, VT3);
+  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
+}
+
+SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
+                                  EVT VT1, EVT VT2,
+                                  SDValue Op1) {
+  SDVTList VTs = getVTList(VT1, VT2);
+  SDValue Ops[] = { Op1 };
+  return MorphNodeTo(N, Opc, VTs, Ops, 1);
+}
+
+SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
+                                  EVT VT1, EVT VT2,
+                                  SDValue Op1, SDValue Op2) {
+  SDVTList VTs = getVTList(VT1, VT2);
+  SDValue Ops[] = { Op1, Op2 };
+  return MorphNodeTo(N, Opc, VTs, Ops, 2);
+}
+
+SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
+                                  EVT VT1, EVT VT2,
+                                  SDValue Op1, SDValue Op2,
+                                  SDValue Op3) {
+  SDVTList VTs = getVTList(VT1, VT2);
+  SDValue Ops[] = { Op1, Op2, Op3 };
+  return MorphNodeTo(N, Opc, VTs, Ops, 3);
+}
+
+/// MorphNodeTo - These *mutate* the specified node to have the specified
+/// return type, opcode, and operands.
+///
+/// Note that MorphNodeTo returns the resultant node.  If there is already a
+/// node of the specified opcode and operands, it returns that node instead of
+/// the current one.  Note that the DebugLoc need not be the same.
+///
+/// Using MorphNodeTo is faster than creating a new node and swapping it in
+/// with ReplaceAllUsesWith both because it often avoids allocating a new
+/// node, and because it doesn't require CSE recalculation for any of
+/// the node's users.
+///
+SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
+                                  SDVTList VTs, const SDValue *Ops,
+                                  unsigned NumOps) {
+  // If an identical node already exists, use it.
+  void *IP = 0;
+  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
+    FoldingSetNodeID ID;
+    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
+    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
+      return ON;
+  }
+
+  if (!RemoveNodeFromCSEMaps(N))
+    IP = 0;
+
+  // Start the morphing.
+  N->NodeType = Opc;
+  N->ValueList = VTs.VTs;
+  N->NumValues = VTs.NumVTs;
+
+  // Clear the operands list, updating used nodes to remove this from their
+  // use list.  Keep track of any operands that become dead as a result.
+  SmallPtrSet<SDNode*, 16> DeadNodeSet;
+  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
+    SDUse &Use = *I++;
+    SDNode *Used = Use.getNode();
+    Use.set(SDValue());
+    if (Used->use_empty())
+      DeadNodeSet.insert(Used);
+  }
+
+  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
+    // Initialize the memory references information.
+    MN->setMemRefs(0, 0);
+    // If NumOps is larger than the # of operands we can have in a
+    // MachineSDNode, reallocate the operand list.
+    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
+      if (MN->OperandsNeedDelete)
+        delete[] MN->OperandList;
+      if (NumOps > array_lengthof(MN->LocalOperands))
+        // We're creating a final node that will live unmorphed for the
+        // remainder of the current SelectionDAG iteration, so we can allocate
+        // the operands directly out of a pool with no recycling metadata.
+        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
+                        Ops, NumOps);
+      else
+        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
+      MN->OperandsNeedDelete = false;
+    } else
+      MN->InitOperands(MN->OperandList, Ops, NumOps);
+  } else {
+    // If NumOps is larger than the # of operands we currently have, reallocate
+    // the operand list.
+    if (NumOps > N->NumOperands) {
+      if (N->OperandsNeedDelete)
+        delete[] N->OperandList;
+      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
+      N->OperandsNeedDelete = true;
+    } else
+      N->InitOperands(N->OperandList, Ops, NumOps);
+  }
+
+  // Delete any nodes that are still dead after adding the uses for the
+  // new operands.
+  SmallVector<SDNode *, 16> DeadNodes;
+  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
+       E = DeadNodeSet.end(); I != E; ++I)
+    if ((*I)->use_empty())
+      DeadNodes.push_back(*I);
+  RemoveDeadNodes(DeadNodes);
+
+  if (IP)
+    CSEMap.InsertNode(N, IP);   // Memoize the new node.
+  return N;
+}
+
+
+/// getMachineNode - These are used for target selectors to create a new node
+/// with specified return type(s), MachineInstr opcode, and operands.
+///
+/// Note that getMachineNode returns the resultant node.  If there is already a
+/// node of the specified opcode and operands, it returns that node instead of
+/// the current one.
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
+  SDVTList VTs = getVTList(VT);
+  return getMachineNode(Opcode, dl, VTs, 0, 0);
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
+  SDVTList VTs = getVTList(VT);
+  SDValue Ops[] = { Op1 };
+  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
+                             SDValue Op1, SDValue Op2) {
+  SDVTList VTs = getVTList(VT);
+  SDValue Ops[] = { Op1, Op2 };
+  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
+                             SDValue Op1, SDValue Op2, SDValue Op3) {
+  SDVTList VTs = getVTList(VT);
+  SDValue Ops[] = { Op1, Op2, Op3 };
+  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
+                             const SDValue *Ops, unsigned NumOps) {
+  SDVTList VTs = getVTList(VT);
+  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
+  SDVTList VTs = getVTList(VT1, VT2);
+  return getMachineNode(Opcode, dl, VTs, 0, 0);
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+                             EVT VT1, EVT VT2, SDValue Op1) {
+  SDVTList VTs = getVTList(VT1, VT2);
+  SDValue Ops[] = { Op1 };
+  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
+  SDVTList VTs = getVTList(VT1, VT2);
+  SDValue Ops[] = { Op1, Op2 };
+  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+                             EVT VT1, EVT VT2, SDValue Op1,
+                             SDValue Op2, SDValue Op3) {
+  SDVTList VTs = getVTList(VT1, VT2);
+  SDValue Ops[] = { Op1, Op2, Op3 };
+  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+                             EVT VT1, EVT VT2,
+                             const SDValue *Ops, unsigned NumOps) {
+  SDVTList VTs = getVTList(VT1, VT2);
+  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+                             EVT VT1, EVT VT2, EVT VT3,
+                             SDValue Op1, SDValue Op2) {
+  SDVTList VTs = getVTList(VT1, VT2, VT3);
+  SDValue Ops[] = { Op1, Op2 };
+  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+                             EVT VT1, EVT VT2, EVT VT3,
+                             SDValue Op1, SDValue Op2, SDValue Op3) {
+  SDVTList VTs = getVTList(VT1, VT2, VT3);
+  SDValue Ops[] = { Op1, Op2, Op3 };
+  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+                             EVT VT1, EVT VT2, EVT VT3,
+                             const SDValue *Ops, unsigned NumOps) {
+  SDVTList VTs = getVTList(VT1, VT2, VT3);
+  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
+                             EVT VT2, EVT VT3, EVT VT4,
+                             const SDValue *Ops, unsigned NumOps) {
+  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
+  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+                             const std::vector<EVT> &ResultTys,
+                             const SDValue *Ops, unsigned NumOps) {
+  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
+  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
+                             const SDValue *Ops, unsigned NumOps) {
+  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
+  MachineSDNode *N;
+  void *IP;
+
+  if (DoCSE) {
+    FoldingSetNodeID ID;
+    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
+    IP = 0;
+    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+      return cast<MachineSDNode>(E);
+  }
+
+  // Allocate a new MachineSDNode.
+  N = NodeAllocator.Allocate<MachineSDNode>();
+  new (N) MachineSDNode(~Opcode, DL, VTs);
+
+  // Initialize the operands list.
+  if (NumOps > array_lengthof(N->LocalOperands))
+    // We're creating a final node that will live unmorphed for the
+    // remainder of the current SelectionDAG iteration, so we can allocate
+    // the operands directly out of a pool with no recycling metadata.
+    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
+                    Ops, NumOps);
+  else
+    N->InitOperands(N->LocalOperands, Ops, NumOps);
+  N->OperandsNeedDelete = false;
+
+  if (DoCSE)
+    CSEMap.InsertNode(N, IP);
+
+  AllNodes.push_back(N);
+#ifndef NDEBUG
+  VerifyNode(N);
+#endif
+  return N;
+}
+
+/// getTargetExtractSubreg - A convenience function for creating
+/// TargetOpcode::EXTRACT_SUBREG nodes.
+SDValue
+SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
+                                     SDValue Operand) {
+  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
+  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
+                                  VT, Operand, SRIdxVal);
+  return SDValue(Subreg, 0);
+}
+
+/// getTargetInsertSubreg - A convenience function for creating
+/// TargetOpcode::INSERT_SUBREG nodes.
+SDValue
+SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
+                                    SDValue Operand, SDValue Subreg) {
+  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
+  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
+                                  VT, Operand, Subreg, SRIdxVal);
+  return SDValue(Result, 0);
+}
+
+/// getNodeIfExists - Get the specified node if it's already available, or
+/// else return NULL.
+SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
+                                      const SDValue *Ops, unsigned NumOps) {
+  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
+    FoldingSetNodeID ID;
+    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
+    void *IP = 0;
+    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+      return E;
+  }
+  return NULL;
+}
+
+/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
+/// This can cause recursive merging of nodes in the DAG.
+///
+/// This version assumes From has a single result value.
+///
+void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
+                                      DAGUpdateListener *UpdateListener) {
+  SDNode *From = FromN.getNode();
+  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
+         "Cannot replace with this method!");
+  assert(From != To.getNode() && "Cannot replace uses of with self");
+
+  // Iterate over all the existing uses of From. New uses will be added
+  // to the beginning of the use list, which we avoid visiting.
+  // This specifically avoids visiting uses of From that arise while the
+  // replacement is happening, because any such uses would be the result
+  // of CSE: If an existing node looks like From after one of its operands
+  // is replaced by To, we don't want to replace of all its users with To
+  // too. See PR3018 for more info.
+  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
+  while (UI != UE) {
+    SDNode *User = *UI;
+
+    // This node is about to morph, remove its old self from the CSE maps.
+    RemoveNodeFromCSEMaps(User);
+
+    // A user can appear in a use list multiple times, and when this
+    // happens the uses are usually next to each other in the list.
+    // To help reduce the number of CSE recomputations, process all
+    // the uses of this user that we can find this way.
+    do {
+      SDUse &Use = UI.getUse();
+      ++UI;
+      Use.set(To);
+    } while (UI != UE && *UI == User);
+
+    // Now that we have modified User, add it back to the CSE maps.  If it
+    // already exists there, recursively merge the results together.
+    AddModifiedNodeToCSEMaps(User, UpdateListener);
+  }
+}
+
+/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
+/// This can cause recursive merging of nodes in the DAG.
+///
+/// This version assumes that for each value of From, there is a
+/// corresponding value in To in the same position with the same type.
+///
+void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
+                                      DAGUpdateListener *UpdateListener) {
+#ifndef NDEBUG
+  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
+    assert((!From->hasAnyUseOfValue(i) ||
+            From->getValueType(i) == To->getValueType(i)) &&
+           "Cannot use this version of ReplaceAllUsesWith!");
+#endif
+
+  // Handle the trivial case.
+  if (From == To)
+    return;
+
+  // Iterate over just the existing users of From. See the comments in
+  // the ReplaceAllUsesWith above.
+  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
+  while (UI != UE) {
+    SDNode *User = *UI;
+
+    // This node is about to morph, remove its old self from the CSE maps.
+    RemoveNodeFromCSEMaps(User);
+
+    // A user can appear in a use list multiple times, and when this
+    // happens the uses are usually next to each other in the list.
+    // To help reduce the number of CSE recomputations, process all
+    // the uses of this user that we can find this way.
+    do {
+      SDUse &Use = UI.getUse();
+      ++UI;
+      Use.setNode(To);
+    } while (UI != UE && *UI == User);
+
+    // Now that we have modified User, add it back to the CSE maps.  If it
+    // already exists there, recursively merge the results together.
+    AddModifiedNodeToCSEMaps(User, UpdateListener);
+  }
+}
+
+/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
+/// This can cause recursive merging of nodes in the DAG.
+///
+/// This version can replace From with any result values.  To must match the
+/// number and types of values returned by From.
+void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
+                                      const SDValue *To,
+                                      DAGUpdateListener *UpdateListener) {
+  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
+    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
+
+  // Iterate over just the existing users of From. See the comments in
+  // the ReplaceAllUsesWith above.
+  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
+  while (UI != UE) {
+    SDNode *User = *UI;
+
+    // This node is about to morph, remove its old self from the CSE maps.
+    RemoveNodeFromCSEMaps(User);
+
+    // A user can appear in a use list multiple times, and when this
+    // happens the uses are usually next to each other in the list.
+    // To help reduce the number of CSE recomputations, process all
+    // the uses of this user that we can find this way.
+    do {
+      SDUse &Use = UI.getUse();
+      const SDValue &ToOp = To[Use.getResNo()];
+      ++UI;
+      Use.set(ToOp);
+    } while (UI != UE && *UI == User);
+
+    // Now that we have modified User, add it back to the CSE maps.  If it
+    // already exists there, recursively merge the results together.
+    AddModifiedNodeToCSEMaps(User, UpdateListener);
+  }
+}
+
+/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
+/// uses of other values produced by From.getNode() alone.  The Deleted
+/// vector is handled the same way as for ReplaceAllUsesWith.
+void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
+                                             DAGUpdateListener *UpdateListener){
+  // Handle the really simple, really trivial case efficiently.
+  if (From == To) return;
+
+  // Handle the simple, trivial, case efficiently.
+  if (From.getNode()->getNumValues() == 1) {
+    ReplaceAllUsesWith(From, To, UpdateListener);
+    return;
+  }
+
+  // Iterate over just the existing users of From. See the comments in
+  // the ReplaceAllUsesWith above.
+  SDNode::use_iterator UI = From.getNode()->use_begin(),
+                       UE = From.getNode()->use_end();
+  while (UI != UE) {
+    SDNode *User = *UI;
+    bool UserRemovedFromCSEMaps = false;
+
+    // A user can appear in a use list multiple times, and when this
+    // happens the uses are usually next to each other in the list.
+    // To help reduce the number of CSE recomputations, process all
+    // the uses of this user that we can find this way.
+    do {
+      SDUse &Use = UI.getUse();
+
+      // Skip uses of different values from the same node.
+      if (Use.getResNo() != From.getResNo()) {
+        ++UI;
+        continue;
+      }
+
+      // If this node hasn't been modified yet, it's still in the CSE maps,
+      // so remove its old self from the CSE maps.
+      if (!UserRemovedFromCSEMaps) {
+        RemoveNodeFromCSEMaps(User);
+        UserRemovedFromCSEMaps = true;
+      }
+
+      ++UI;
+      Use.set(To);
+    } while (UI != UE && *UI == User);
+
+    // We are iterating over all uses of the From node, so if a use
+    // doesn't use the specific value, no changes are made.
+    if (!UserRemovedFromCSEMaps)
+      continue;
+
+    // Now that we have modified User, add it back to the CSE maps.  If it
+    // already exists there, recursively merge the results together.
+    AddModifiedNodeToCSEMaps(User, UpdateListener);
+  }
+}
+
+namespace {
+  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
+  /// to record information about a use.
+  struct UseMemo {
+    SDNode *User;
+    unsigned Index;
+    SDUse *Use;
+  };
+
+  /// operator< - Sort Memos by User.
+  bool operator<(const UseMemo &L, const UseMemo &R) {
+    return (intptr_t)L.User < (intptr_t)R.User;
+  }
+}
+
+/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
+/// uses of other values produced by From.getNode() alone.  The same value
+/// may appear in both the From and To list.  The Deleted vector is
+/// handled the same way as for ReplaceAllUsesWith.
+void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
+                                              const SDValue *To,
+                                              unsigned Num,
+                                              DAGUpdateListener *UpdateListener){
+  // Handle the simple, trivial case efficiently.
+  if (Num == 1)
+    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
+
+  // Read up all the uses and make records of them. This helps
+  // processing new uses that are introduced during the
+  // replacement process.
+  SmallVector<UseMemo, 4> Uses;
+  for (unsigned i = 0; i != Num; ++i) {
+    unsigned FromResNo = From[i].getResNo();
+    SDNode *FromNode = From[i].getNode();
+    for (SDNode::use_iterator UI = FromNode->use_begin(),
+         E = FromNode->use_end(); UI != E; ++UI) {
+      SDUse &Use = UI.getUse();
+      if (Use.getResNo() == FromResNo) {
+        UseMemo Memo = { *UI, i, &Use };
+        Uses.push_back(Memo);
+      }
+    }
+  }
+
+  // Sort the uses, so that all the uses from a given User are together.
+  std::sort(Uses.begin(), Uses.end());
+
+  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
+       UseIndex != UseIndexEnd; ) {
+    // We know that this user uses some value of From.  If it is the right
+    // value, update it.
+    SDNode *User = Uses[UseIndex].User;
+
+    // This node is about to morph, remove its old self from the CSE maps.
+    RemoveNodeFromCSEMaps(User);
+
+    // The Uses array is sorted, so all the uses for a given User
+    // are next to each other in the list.
+    // To help reduce the number of CSE recomputations, process all
+    // the uses of this user that we can find this way.
+    do {
+      unsigned i = Uses[UseIndex].Index;
+      SDUse &Use = *Uses[UseIndex].Use;
+      ++UseIndex;
+
+      Use.set(To[i]);
+    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
+
+    // Now that we have modified User, add it back to the CSE maps.  If it
+    // already exists there, recursively merge the results together.
+    AddModifiedNodeToCSEMaps(User, UpdateListener);
+  }
+}
+
+/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
+/// based on their topological order. It returns the maximum id and a vector
+/// of the SDNodes* in assigned order by reference.
+unsigned SelectionDAG::AssignTopologicalOrder() {
+
+  unsigned DAGSize = 0;
+
+  // SortedPos tracks the progress of the algorithm. Nodes before it are
+  // sorted, nodes after it are unsorted. When the algorithm completes
+  // it is at the end of the list.
+  allnodes_iterator SortedPos = allnodes_begin();
+
+  // Visit all the nodes. Move nodes with no operands to the front of
+  // the list immediately. Annotate nodes that do have operands with their
+  // operand count. Before we do this, the Node Id fields of the nodes
+  // may contain arbitrary values. After, the Node Id fields for nodes
+  // before SortedPos will contain the topological sort index, and the
+  // Node Id fields for nodes At SortedPos and after will contain the
+  // count of outstanding operands.
+  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
+    SDNode *N = I++;
+    checkForCycles(N);
+    unsigned Degree = N->getNumOperands();
+    if (Degree == 0) {
+      // A node with no uses, add it to the result array immediately.
+      N->setNodeId(DAGSize++);
+      allnodes_iterator Q = N;
+      if (Q != SortedPos)
+        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
+      assert(SortedPos != AllNodes.end() && "Overran node list");
+      ++SortedPos;
+    } else {
+      // Temporarily use the Node Id as scratch space for the degree count.
+      N->setNodeId(Degree);
+    }
+  }
+
+  // Visit all the nodes. As we iterate, moves nodes into sorted order,
+  // such that by the time the end is reached all nodes will be sorted.
+  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
+    SDNode *N = I;
+    checkForCycles(N);
+    // N is in sorted position, so all its uses have one less operand
+    // that needs to be sorted.
+    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
+         UI != UE; ++UI) {
+      SDNode *P = *UI;
+      unsigned Degree = P->getNodeId();
+      assert(Degree != 0 && "Invalid node degree");
+      --Degree;
+      if (Degree == 0) {
+        // All of P's operands are sorted, so P may sorted now.
+        P->setNodeId(DAGSize++);
+        if (P != SortedPos)
+          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
+        assert(SortedPos != AllNodes.end() && "Overran node list");
+        ++SortedPos;
+      } else {
+        // Update P's outstanding operand count.
+        P->setNodeId(Degree);
+      }
+    }
+    if (I == SortedPos) {
+#ifndef NDEBUG
+      SDNode *S = ++I;
+      dbgs() << "Overran sorted position:\n";
+      S->dumprFull();
+#endif
+      llvm_unreachable(0);
+    }
+  }
+
+  assert(SortedPos == AllNodes.end() &&
+         "Topological sort incomplete!");
+  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
+         "First node in topological sort is not the entry token!");
+  assert(AllNodes.front().getNodeId() == 0 &&
+         "First node in topological sort has non-zero id!");
+  assert(AllNodes.front().getNumOperands() == 0 &&
+         "First node in topological sort has operands!");
+  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
+         "Last node in topologic sort has unexpected id!");
+  assert(AllNodes.back().use_empty() &&
+         "Last node in topologic sort has users!");
+  assert(DAGSize == allnodes_size() && "Node count mismatch!");
+  return DAGSize;
+}
+
+/// AssignOrdering - Assign an order to the SDNode.
+void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
+  assert(SD && "Trying to assign an order to a null node!");
+  Ordering->add(SD, Order);
+}
+
+/// GetOrdering - Get the order for the SDNode.
+unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
+  assert(SD && "Trying to get the order of a null node!");
+  return Ordering->getOrder(SD);
+}
+
+
+//===----------------------------------------------------------------------===//
+//                              SDNode Class
+//===----------------------------------------------------------------------===//
+
+HandleSDNode::~HandleSDNode() {
+  DropOperands();
+}
+
+GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
+                                         EVT VT, int64_t o, unsigned char TF)
+  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
+    Offset(o), TargetFlags(TF) {
+  TheGlobal = const_cast<GlobalValue*>(GA);
+}
+
+MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
+                     MachineMemOperand *mmo)
+ : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
+  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
+  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
+  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
+}
+
+MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
+                     const SDValue *Ops, unsigned NumOps, EVT memvt, 
+                     MachineMemOperand *mmo)
+   : SDNode(Opc, dl, VTs, Ops, NumOps),
+     MemoryVT(memvt), MMO(mmo) {
+  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
+  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
+  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
+}
+
+/// Profile - Gather unique data for the node.
+///
+void SDNode::Profile(FoldingSetNodeID &ID) const {
+  AddNodeIDNode(ID, this);
+}
+
+namespace {
+  struct EVTArray {
+    std::vector<EVT> VTs;
+    
+    EVTArray() {
+      VTs.reserve(MVT::LAST_VALUETYPE);
+      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
+        VTs.push_back(MVT((MVT::SimpleValueType)i));
+    }
+  };
+}
+
+static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
+static ManagedStatic<EVTArray> SimpleVTArray;
+static ManagedStatic<sys::SmartMutex<true> > VTMutex;
+
+/// getValueTypeList - Return a pointer to the specified value type.
+///
+const EVT *SDNode::getValueTypeList(EVT VT) {
+  if (VT.isExtended()) {
+    sys::SmartScopedLock<true> Lock(*VTMutex);
+    return &(*EVTs->insert(VT).first);
+  } else {
+    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
+  }
+}
+
+/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
+/// indicated value.  This method ignores uses of other values defined by this
+/// operation.
+bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
+  assert(Value < getNumValues() && "Bad value!");
+
+  // TODO: Only iterate over uses of a given value of the node
+  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
+    if (UI.getUse().getResNo() == Value) {
+      if (NUses == 0)
+        return false;
+      --NUses;
+    }
+  }
+
+  // Found exactly the right number of uses?
+  return NUses == 0;
+}
+
+
+/// hasAnyUseOfValue - Return true if there are any use of the indicated
+/// value. This method ignores uses of other values defined by this operation.
+bool SDNode::hasAnyUseOfValue(unsigned Value) const {
+  assert(Value < getNumValues() && "Bad value!");
+
+  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
+    if (UI.getUse().getResNo() == Value)
+      return true;
+
+  return false;
+}
+
+
+/// isOnlyUserOf - Return true if this node is the only use of N.
+///
+bool SDNode::isOnlyUserOf(SDNode *N) const {
+  bool Seen = false;
+  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
+    SDNode *User = *I;
+    if (User == this)
+      Seen = true;
+    else
+      return false;
+  }
+
+  return Seen;
+}
+
+/// isOperand - Return true if this node is an operand of N.
+///
+bool SDValue::isOperandOf(SDNode *N) const {
+  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+    if (*this == N->getOperand(i))
+      return true;
+  return false;
+}
+
+bool SDNode::isOperandOf(SDNode *N) const {
+  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
+    if (this == N->OperandList[i].getNode())
+      return true;
+  return false;
+}
+
+/// reachesChainWithoutSideEffects - Return true if this operand (which must
+/// be a chain) reaches the specified operand without crossing any
+/// side-effecting instructions.  In practice, this looks through token
+/// factors and non-volatile loads.  In order to remain efficient, this only
+/// looks a couple of nodes in, it does not do an exhaustive search.
+bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
+                                               unsigned Depth) const {
+  if (*this == Dest) return true;
+
+  // Don't search too deeply, we just want to be able to see through
+  // TokenFactor's etc.
+  if (Depth == 0) return false;
+
+  // If this is a token factor, all inputs to the TF happen in parallel.  If any
+  // of the operands of the TF reach dest, then we can do the xform.
+  if (getOpcode() == ISD::TokenFactor) {
+    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
+        return true;
+    return false;
+  }
+
+  // Loads don't have side effects, look through them.
+  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
+    if (!Ld->isVolatile())
+      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
+  }
+  return false;
+}
+
+/// isPredecessorOf - Return true if this node is a predecessor of N. This node
+/// is either an operand of N or it can be reached by traversing up the operands.
+/// NOTE: this is an expensive method. Use it carefully.
+bool SDNode::isPredecessorOf(SDNode *N) const {
+  SmallPtrSet<SDNode *, 32> Visited;
+  SmallVector<SDNode *, 16> Worklist;
+  Worklist.push_back(N);
+
+  do {
+    N = Worklist.pop_back_val();
+    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+      SDNode *Op = N->getOperand(i).getNode();
+      if (Op == this)
+        return true;
+      if (Visited.insert(Op))
+        Worklist.push_back(Op);
+    }
+  } while (!Worklist.empty());
+
+  return false;
+}
+
+uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
+  assert(Num < NumOperands && "Invalid child # of SDNode!");
+  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
+}
+
+std::string SDNode::getOperationName(const SelectionDAG *G) const {
+  switch (getOpcode()) {
+  default:
+    if (getOpcode() < ISD::BUILTIN_OP_END)
+      return "<<Unknown DAG Node>>";
+    if (isMachineOpcode()) {
+      if (G)
+        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
+          if (getMachineOpcode() < TII->getNumOpcodes())
+            return TII->get(getMachineOpcode()).getName();
+      return "<<Unknown Machine Node>>";
+    }
+    if (G) {
+      const TargetLowering &TLI = G->getTargetLoweringInfo();
+      const char *Name = TLI.getTargetNodeName(getOpcode());
+      if (Name) return Name;
+      return "<<Unknown Target Node>>";
+    }
+    return "<<Unknown Node>>";
+
+#ifndef NDEBUG
+  case ISD::DELETED_NODE:
+    return "<<Deleted Node!>>";
+#endif
+  case ISD::PREFETCH:      return "Prefetch";
+  case ISD::MEMBARRIER:    return "MemBarrier";
+  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
+  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
+  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
+  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
+  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
+  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
+  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
+  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
+  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
+  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
+  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
+  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
+  case ISD::PCMARKER:      return "PCMarker";
+  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
+  case ISD::SRCVALUE:      return "SrcValue";
+  case ISD::EntryToken:    return "EntryToken";
+  case ISD::TokenFactor:   return "TokenFactor";
+  case ISD::AssertSext:    return "AssertSext";
+  case ISD::AssertZext:    return "AssertZext";
+
+  case ISD::BasicBlock:    return "BasicBlock";
+  case ISD::VALUETYPE:     return "ValueType";
+  case ISD::Register:      return "Register";
+
+  case ISD::Constant:      return "Constant";
+  case ISD::ConstantFP:    return "ConstantFP";
+  case ISD::GlobalAddress: return "GlobalAddress";
+  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
+  case ISD::FrameIndex:    return "FrameIndex";
+  case ISD::JumpTable:     return "JumpTable";
+  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
+  case ISD::RETURNADDR: return "RETURNADDR";
+  case ISD::FRAMEADDR: return "FRAMEADDR";
+  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
+  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
+  case ISD::LSDAADDR: return "LSDAADDR";
+  case ISD::EHSELECTION: return "EHSELECTION";
+  case ISD::EH_RETURN: return "EH_RETURN";
+  case ISD::ConstantPool:  return "ConstantPool";
+  case ISD::ExternalSymbol: return "ExternalSymbol";
+  case ISD::BlockAddress:  return "BlockAddress";
+  case ISD::INTRINSIC_WO_CHAIN:
+  case ISD::INTRINSIC_VOID:
+  case ISD::INTRINSIC_W_CHAIN: {
+    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
+    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
+    if (IID < Intrinsic::num_intrinsics)
+      return Intrinsic::getName((Intrinsic::ID)IID);
+    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
+      return TII->getName(IID);
+    llvm_unreachable("Invalid intrinsic ID");
+  }
+
+  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
+  case ISD::TargetConstant: return "TargetConstant";
+  case ISD::TargetConstantFP:return "TargetConstantFP";
+  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
+  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
+  case ISD::TargetFrameIndex: return "TargetFrameIndex";
+  case ISD::TargetJumpTable:  return "TargetJumpTable";
+  case ISD::TargetConstantPool:  return "TargetConstantPool";
+  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
+  case ISD::TargetBlockAddress: return "TargetBlockAddress";
+
+  case ISD::CopyToReg:     return "CopyToReg";
+  case ISD::CopyFromReg:   return "CopyFromReg";
+  case ISD::UNDEF:         return "undef";
+  case ISD::MERGE_VALUES:  return "merge_values";
+  case ISD::INLINEASM:     return "inlineasm";
+  case ISD::EH_LABEL:      return "eh_label";
+  case ISD::HANDLENODE:    return "handlenode";
+
+  // Unary operators
+  case ISD::FABS:   return "fabs";
+  case ISD::FNEG:   return "fneg";
+  case ISD::FSQRT:  return "fsqrt";
+  case ISD::FSIN:   return "fsin";
+  case ISD::FCOS:   return "fcos";
+  case ISD::FPOWI:  return "fpowi";
+  case ISD::FPOW:   return "fpow";
+  case ISD::FTRUNC: return "ftrunc";
+  case ISD::FFLOOR: return "ffloor";
+  case ISD::FCEIL:  return "fceil";
+  case ISD::FRINT:  return "frint";
+  case ISD::FNEARBYINT: return "fnearbyint";
+
+  // Binary operators
+  case ISD::ADD:    return "add";
+  case ISD::SUB:    return "sub";
+  case ISD::MUL:    return "mul";
+  case ISD::MULHU:  return "mulhu";
+  case ISD::MULHS:  return "mulhs";
+  case ISD::SDIV:   return "sdiv";
+  case ISD::UDIV:   return "udiv";
+  case ISD::SREM:   return "srem";
+  case ISD::UREM:   return "urem";
+  case ISD::SMUL_LOHI:  return "smul_lohi";
+  case ISD::UMUL_LOHI:  return "umul_lohi";
+  case ISD::SDIVREM:    return "sdivrem";
+  case ISD::UDIVREM:    return "udivrem";
+  case ISD::AND:    return "and";
+  case ISD::OR:     return "or";
+  case ISD::XOR:    return "xor";
+  case ISD::SHL:    return "shl";
+  case ISD::SRA:    return "sra";
+  case ISD::SRL:    return "srl";
+  case ISD::ROTL:   return "rotl";
+  case ISD::ROTR:   return "rotr";
+  case ISD::FADD:   return "fadd";
+  case ISD::FSUB:   return "fsub";
+  case ISD::FMUL:   return "fmul";
+  case ISD::FDIV:   return "fdiv";
+  case ISD::FREM:   return "frem";
+  case ISD::FCOPYSIGN: return "fcopysign";
+  case ISD::FGETSIGN:  return "fgetsign";
+
+  case ISD::SETCC:       return "setcc";
+  case ISD::VSETCC:      return "vsetcc";
+  case ISD::SELECT:      return "select";
+  case ISD::SELECT_CC:   return "select_cc";
+  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
+  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
+  case ISD::CONCAT_VECTORS:      return "concat_vectors";
+  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
+  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
+  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
+  case ISD::CARRY_FALSE:         return "carry_false";
+  case ISD::ADDC:        return "addc";
+  case ISD::ADDE:        return "adde";
+  case ISD::SADDO:       return "saddo";
+  case ISD::UADDO:       return "uaddo";
+  case ISD::SSUBO:       return "ssubo";
+  case ISD::USUBO:       return "usubo";
+  case ISD::SMULO:       return "smulo";
+  case ISD::UMULO:       return "umulo";
+  case ISD::SUBC:        return "subc";
+  case ISD::SUBE:        return "sube";
+  case ISD::SHL_PARTS:   return "shl_parts";
+  case ISD::SRA_PARTS:   return "sra_parts";
+  case ISD::SRL_PARTS:   return "srl_parts";
+
+  // Conversion operators.
+  case ISD::SIGN_EXTEND: return "sign_extend";
+  case ISD::ZERO_EXTEND: return "zero_extend";
+  case ISD::ANY_EXTEND:  return "any_extend";
+  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
+  case ISD::TRUNCATE:    return "truncate";
+  case ISD::FP_ROUND:    return "fp_round";
+  case ISD::FLT_ROUNDS_: return "flt_rounds";
+  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
+  case ISD::FP_EXTEND:   return "fp_extend";
+
+  case ISD::SINT_TO_FP:  return "sint_to_fp";
+  case ISD::UINT_TO_FP:  return "uint_to_fp";
+  case ISD::FP_TO_SINT:  return "fp_to_sint";
+  case ISD::FP_TO_UINT:  return "fp_to_uint";
+  case ISD::BIT_CONVERT: return "bit_convert";
+
+  case ISD::CONVERT_RNDSAT: {
+    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
+    default: llvm_unreachable("Unknown cvt code!");
+    case ISD::CVT_FF:  return "cvt_ff";
+    case ISD::CVT_FS:  return "cvt_fs";
+    case ISD::CVT_FU:  return "cvt_fu";
+    case ISD::CVT_SF:  return "cvt_sf";
+    case ISD::CVT_UF:  return "cvt_uf";
+    case ISD::CVT_SS:  return "cvt_ss";
+    case ISD::CVT_SU:  return "cvt_su";
+    case ISD::CVT_US:  return "cvt_us";
+    case ISD::CVT_UU:  return "cvt_uu";
+    }
+  }
+
+    // Control flow instructions
+  case ISD::BR:      return "br";
+  case ISD::BRIND:   return "brind";
+  case ISD::BR_JT:   return "br_jt";
+  case ISD::BRCOND:  return "brcond";
+  case ISD::BR_CC:   return "br_cc";
+  case ISD::CALLSEQ_START:  return "callseq_start";
+  case ISD::CALLSEQ_END:    return "callseq_end";
+
+    // Other operators
+  case ISD::LOAD:               return "load";
+  case ISD::STORE:              return "store";
+  case ISD::VAARG:              return "vaarg";
+  case ISD::VACOPY:             return "vacopy";
+  case ISD::VAEND:              return "vaend";
+  case ISD::VASTART:            return "vastart";
+  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
+  case ISD::EXTRACT_ELEMENT:    return "extract_element";
+  case ISD::BUILD_PAIR:         return "build_pair";
+  case ISD::STACKSAVE:          return "stacksave";
+  case ISD::STACKRESTORE:       return "stackrestore";
+  case ISD::TRAP:               return "trap";
+
+  // Bit manipulation
+  case ISD::BSWAP:   return "bswap";
+  case ISD::CTPOP:   return "ctpop";
+  case ISD::CTTZ:    return "cttz";
+  case ISD::CTLZ:    return "ctlz";
+
+  // Trampolines
+  case ISD::TRAMPOLINE: return "trampoline";
+
+  case ISD::CONDCODE:
+    switch (cast<CondCodeSDNode>(this)->get()) {
+    default: llvm_unreachable("Unknown setcc condition!");
+    case ISD::SETOEQ:  return "setoeq";
+    case ISD::SETOGT:  return "setogt";
+    case ISD::SETOGE:  return "setoge";
+    case ISD::SETOLT:  return "setolt";
+    case ISD::SETOLE:  return "setole";
+    case ISD::SETONE:  return "setone";
+
+    case ISD::SETO:    return "seto";
+    case ISD::SETUO:   return "setuo";
+    case ISD::SETUEQ:  return "setue";
+    case ISD::SETUGT:  return "setugt";
+    case ISD::SETUGE:  return "setuge";
+    case ISD::SETULT:  return "setult";
+    case ISD::SETULE:  return "setule";
+    case ISD::SETUNE:  return "setune";
+
+    case ISD::SETEQ:   return "seteq";
+    case ISD::SETGT:   return "setgt";
+    case ISD::SETGE:   return "setge";
+    case ISD::SETLT:   return "setlt";
+    case ISD::SETLE:   return "setle";
+    case ISD::SETNE:   return "setne";
+    }
+  }
+}
+
+const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
+  switch (AM) {
+  default:
+    return "";
+  case ISD::PRE_INC:
+    return "<pre-inc>";
+  case ISD::PRE_DEC:
+    return "<pre-dec>";
+  case ISD::POST_INC:
+    return "<post-inc>";
+  case ISD::POST_DEC:
+    return "<post-dec>";
+  }
+}
+
+std::string ISD::ArgFlagsTy::getArgFlagsString() {
+  std::string S = "< ";
+
+  if (isZExt())
+    S += "zext ";
+  if (isSExt())
+    S += "sext ";
+  if (isInReg())
+    S += "inreg ";
+  if (isSRet())
+    S += "sret ";
+  if (isByVal())
+    S += "byval ";
+  if (isNest())
+    S += "nest ";
+  if (getByValAlign())
+    S += "byval-align:" + utostr(getByValAlign()) + " ";
+  if (getOrigAlign())
+    S += "orig-align:" + utostr(getOrigAlign()) + " ";
+  if (getByValSize())
+    S += "byval-size:" + utostr(getByValSize()) + " ";
+  return S + ">";
+}
+
+void SDNode::dump() const { dump(0); }
+void SDNode::dump(const SelectionDAG *G) const {
+  print(dbgs(), G);
+}
+
+void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
+  OS << (void*)this << ": ";
+
+  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
+    if (i) OS << ",";
+    if (getValueType(i) == MVT::Other)
+      OS << "ch";
+    else
+      OS << getValueType(i).getEVTString();
+  }
+  OS << " = " << getOperationName(G);
+}
+
+void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
+  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
+    if (!MN->memoperands_empty()) {
+      OS << "<";
+      OS << "Mem:";
+      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
+           e = MN->memoperands_end(); i != e; ++i) {
+        OS << **i;
+        if (next(i) != e)
+          OS << " ";
+      }
+      OS << ">";
+    }
+  } else if (const ShuffleVectorSDNode *SVN =
+               dyn_cast<ShuffleVectorSDNode>(this)) {
+    OS << "<";
+    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
+      int Idx = SVN->getMaskElt(i);
+      if (i) OS << ",";
+      if (Idx < 0)
+        OS << "u";
+      else
+        OS << Idx;
+    }
+    OS << ">";
+  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
+    OS << '<' << CSDN->getAPIntValue() << '>';
+  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
+    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
+      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
+    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
+      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
+    else {
+      OS << "<APFloat(";
+      CSDN->getValueAPF().bitcastToAPInt().dump();
+      OS << ")>";
+    }
+  } else if (const GlobalAddressSDNode *GADN =
+             dyn_cast<GlobalAddressSDNode>(this)) {
+    int64_t offset = GADN->getOffset();
+    OS << '<';
+    WriteAsOperand(OS, GADN->getGlobal());
+    OS << '>';
+    if (offset > 0)
+      OS << " + " << offset;
+    else
+      OS << " " << offset;
+    if (unsigned int TF = GADN->getTargetFlags())
+      OS << " [TF=" << TF << ']';
+  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
+    OS << "<" << FIDN->getIndex() << ">";
+  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
+    OS << "<" << JTDN->getIndex() << ">";
+    if (unsigned int TF = JTDN->getTargetFlags())
+      OS << " [TF=" << TF << ']';
+  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
+    int offset = CP->getOffset();
+    if (CP->isMachineConstantPoolEntry())
+      OS << "<" << *CP->getMachineCPVal() << ">";
+    else
+      OS << "<" << *CP->getConstVal() << ">";
+    if (offset > 0)
+      OS << " + " << offset;
+    else
+      OS << " " << offset;
+    if (unsigned int TF = CP->getTargetFlags())
+      OS << " [TF=" << TF << ']';
+  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
+    OS << "<";
+    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
+    if (LBB)
+      OS << LBB->getName() << " ";
+    OS << (const void*)BBDN->getBasicBlock() << ">";
+  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
+    if (G && R->getReg() &&
+        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
+      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
+    } else {
+      OS << " %reg" << R->getReg();
+    }
+  } else if (const ExternalSymbolSDNode *ES =
+             dyn_cast<ExternalSymbolSDNode>(this)) {
+    OS << "'" << ES->getSymbol() << "'";
+    if (unsigned int TF = ES->getTargetFlags())
+      OS << " [TF=" << TF << ']';
+  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
+    if (M->getValue())
+      OS << "<" << M->getValue() << ">";
+    else
+      OS << "<null>";
+  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
+    OS << ":" << N->getVT().getEVTString();
+  }
+  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
+    OS << "<" << *LD->getMemOperand();
+
+    bool doExt = true;
+    switch (LD->getExtensionType()) {
+    default: doExt = false; break;
+    case ISD::EXTLOAD: OS << ", anyext"; break;
+    case ISD::SEXTLOAD: OS << ", sext"; break;
+    case ISD::ZEXTLOAD: OS << ", zext"; break;
+    }
+    if (doExt)
+      OS << " from " << LD->getMemoryVT().getEVTString();
+
+    const char *AM = getIndexedModeName(LD->getAddressingMode());
+    if (*AM)
+      OS << ", " << AM;
+
+    OS << ">";
+  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
+    OS << "<" << *ST->getMemOperand();
+
+    if (ST->isTruncatingStore())
+      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
+
+    const char *AM = getIndexedModeName(ST->getAddressingMode());
+    if (*AM)
+      OS << ", " << AM;
+    
+    OS << ">";
+  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
+    OS << "<" << *M->getMemOperand() << ">";
+  } else if (const BlockAddressSDNode *BA =
+               dyn_cast<BlockAddressSDNode>(this)) {
+    OS << "<";
+    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
+    OS << ", ";
+    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
+    OS << ">";
+    if (unsigned int TF = BA->getTargetFlags())
+      OS << " [TF=" << TF << ']';
+  }
+
+  if (G)
+    if (unsigned Order = G->GetOrdering(this))
+      OS << " [ORD=" << Order << ']';
+}
+
+void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
+  print_types(OS, G);
+  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+    if (i) OS << ", "; else OS << " ";
+    OS << (void*)getOperand(i).getNode();
+    if (unsigned RN = getOperand(i).getResNo())
+      OS << ":" << RN;
+  }
+  print_details(OS, G);
+}
+
+static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
+                                  const SelectionDAG *G, unsigned depth,
+                                  unsigned indent) 
+{
+  if (depth == 0)
+    return;
+
+  OS.indent(indent);
+
+  N->print(OS, G);
+
+  if (depth < 1)
+    return;
+
+  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+    OS << '\n';
+    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
+  }
+}
+
+void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
+                            unsigned depth) const {
+  printrWithDepthHelper(OS, this, G, depth, 0);
+} 
+
+void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
+  // Don't print impossibly deep things.
+  printrWithDepth(OS, G, 100);
+}
+
+void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
+  printrWithDepth(dbgs(), G, depth);
+}
+
+void SDNode::dumprFull(const SelectionDAG *G) const {
+  // Don't print impossibly deep things.
+  dumprWithDepth(G, 100);
+} 
+
+static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
+  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+    if (N->getOperand(i).getNode()->hasOneUse())
+      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
+    else
+      dbgs() << "\n" << std::string(indent+2, ' ')
+           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
+
+
+  dbgs() << "\n";
+  dbgs().indent(indent);
+  N->dump(G);
+}
+
+SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
+  assert(N->getNumValues() == 1 &&
+         "Can't unroll a vector with multiple results!");
+
+  EVT VT = N->getValueType(0);
+  unsigned NE = VT.getVectorNumElements();
+  EVT EltVT = VT.getVectorElementType();
+  DebugLoc dl = N->getDebugLoc();
+
+  SmallVector<SDValue, 8> Scalars;
+  SmallVector<SDValue, 4> Operands(N->getNumOperands());
+
+  // If ResNE is 0, fully unroll the vector op.
+  if (ResNE == 0)
+    ResNE = NE;
+  else if (NE > ResNE)
+    NE = ResNE;
+
+  unsigned i;
+  for (i= 0; i != NE; ++i) {
+    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
+      SDValue Operand = N->getOperand(j);
+      EVT OperandVT = Operand.getValueType();
+      if (OperandVT.isVector()) {
+        // A vector operand; extract a single element.
+        EVT OperandEltVT = OperandVT.getVectorElementType();
+        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
+                              OperandEltVT,
+                              Operand,
+                              getConstant(i, MVT::i32));
+      } else {
+        // A scalar operand; just use it as is.
+        Operands[j] = Operand;
+      }
+    }
+
+    switch (N->getOpcode()) {
+    default:
+      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
+                                &Operands[0], Operands.size()));
+      break;
+    case ISD::SHL:
+    case ISD::SRA:
+    case ISD::SRL:
+    case ISD::ROTL:
+    case ISD::ROTR:
+      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
+                                getShiftAmountOperand(Operands[1])));
+      break;
+    case ISD::SIGN_EXTEND_INREG:
+    case ISD::FP_ROUND_INREG: {
+      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
+      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
+                                Operands[0],
+                                getValueType(ExtVT)));
+    }
+    }
+  }
+
+  for (; i < ResNE; ++i)
+    Scalars.push_back(getUNDEF(EltVT));
+
+  return getNode(ISD::BUILD_VECTOR, dl,
+                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
+                 &Scalars[0], Scalars.size());
+}
+
+
+/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a 
+/// location that is 'Dist' units away from the location that the 'Base' load 
+/// is loading from.
+bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base, 
+                                     unsigned Bytes, int Dist) const {
+  if (LD->getChain() != Base->getChain())
+    return false;
+  EVT VT = LD->getValueType(0);
+  if (VT.getSizeInBits() / 8 != Bytes)
+    return false;
+
+  SDValue Loc = LD->getOperand(1);
+  SDValue BaseLoc = Base->getOperand(1);
+  if (Loc.getOpcode() == ISD::FrameIndex) {
+    if (BaseLoc.getOpcode() != ISD::FrameIndex)
+      return false;
+    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
+    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
+    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
+    int FS  = MFI->getObjectSize(FI);
+    int BFS = MFI->getObjectSize(BFI);
+    if (FS != BFS || FS != (int)Bytes) return false;
+    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
+  }
+  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
+    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
+    if (V && (V->getSExtValue() == Dist*Bytes))
+      return true;
+  }
+
+  GlobalValue *GV1 = NULL;
+  GlobalValue *GV2 = NULL;
+  int64_t Offset1 = 0;
+  int64_t Offset2 = 0;
+  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
+  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
+  if (isGA1 && isGA2 && GV1 == GV2)
+    return Offset1 == (Offset2 + Dist*Bytes);
+  return false;
+}
+
+
+/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
+/// it cannot be inferred.
+unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
+  // If this is a GlobalAddress + cst, return the alignment.
+  GlobalValue *GV;
+  int64_t GVOffset = 0;
+  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
+    return MinAlign(GV->getAlignment(), GVOffset);
+
+  // If this is a direct reference to a stack slot, use information about the
+  // stack slot's alignment.
+  int FrameIdx = 1 << 31;
+  int64_t FrameOffset = 0;
+  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
+    FrameIdx = FI->getIndex();
+  } else if (Ptr.getOpcode() == ISD::ADD &&
+             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
+             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
+    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
+    FrameOffset = Ptr.getConstantOperandVal(1);
+  }
+
+  if (FrameIdx != (1 << 31)) {
+    // FIXME: Handle FI+CST.
+    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
+    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
+                                    FrameOffset);
+    if (MFI.isFixedObjectIndex(FrameIdx)) {
+      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
+
+      // The alignment of the frame index can be determined from its offset from
+      // the incoming frame position.  If the frame object is at offset 32 and
+      // the stack is guaranteed to be 16-byte aligned, then we know that the
+      // object is 16-byte aligned.
+      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
+      unsigned Align = MinAlign(ObjectOffset, StackAlign);
+
+      // Finally, the frame object itself may have a known alignment.  Factor
+      // the alignment + offset into a new alignment.  For example, if we know
+      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
+      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
+      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
+      return std::max(Align, FIInfoAlign);
+    }
+    return FIInfoAlign;
+  }
+
+  return 0;
+}
+
+void SelectionDAG::dump() const {
+  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
+
+  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
+       I != E; ++I) {
+    const SDNode *N = I;
+    if (!N->hasOneUse() && N != getRoot().getNode())
+      DumpNodes(N, 2, this);
+  }
+
+  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
+
+  dbgs() << "\n\n";
+}
+
+void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
+  print_types(OS, G);
+  print_details(OS, G);
+}
+
+typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
+static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
+                       const SelectionDAG *G, VisitedSDNodeSet &once) {
+  if (!once.insert(N))          // If we've been here before, return now.
+    return;
+
+  // Dump the current SDNode, but don't end the line yet.
+  OS << std::string(indent, ' ');
+  N->printr(OS, G);
+
+  // Having printed this SDNode, walk the children:
+  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+    const SDNode *child = N->getOperand(i).getNode();
+
+    if (i) OS << ",";
+    OS << " ";
+
+    if (child->getNumOperands() == 0) {
+      // This child has no grandchildren; print it inline right here.
+      child->printr(OS, G);
+      once.insert(child);
+    } else {         // Just the address. FIXME: also print the child's opcode.
+      OS << (void*)child;
+      if (unsigned RN = N->getOperand(i).getResNo())
+        OS << ":" << RN;
+    }
+  }
+
+  OS << "\n";
+
+  // Dump children that have grandchildren on their own line(s).
+  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+    const SDNode *child = N->getOperand(i).getNode();
+    DumpNodesr(OS, child, indent+2, G, once);
+  }
+}
+
+void SDNode::dumpr() const {
+  VisitedSDNodeSet once;
+  DumpNodesr(dbgs(), this, 0, 0, once);
+}
+
+void SDNode::dumpr(const SelectionDAG *G) const {
+  VisitedSDNodeSet once;
+  DumpNodesr(dbgs(), this, 0, G, once);
+}
+
+
+// getAddressSpace - Return the address space this GlobalAddress belongs to.
+unsigned GlobalAddressSDNode::getAddressSpace() const {
+  return getGlobal()->getType()->getAddressSpace();
+}
+
+
+const Type *ConstantPoolSDNode::getType() const {
+  if (isMachineConstantPoolEntry())
+    return Val.MachineCPVal->getType();
+  return Val.ConstVal->getType();
+}
+
+bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
+                                        APInt &SplatUndef,
+                                        unsigned &SplatBitSize,
+                                        bool &HasAnyUndefs,
+                                        unsigned MinSplatBits,
+                                        bool isBigEndian) {
+  EVT VT = getValueType(0);
+  assert(VT.isVector() && "Expected a vector type");
+  unsigned sz = VT.getSizeInBits();
+  if (MinSplatBits > sz)
+    return false;
+
+  SplatValue = APInt(sz, 0);
+  SplatUndef = APInt(sz, 0);
+
+  // Get the bits.  Bits with undefined values (when the corresponding element
+  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
+  // in SplatValue.  If any of the values are not constant, give up and return
+  // false.
+  unsigned int nOps = getNumOperands();
+  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
+  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
+
+  for (unsigned j = 0; j < nOps; ++j) {
+    unsigned i = isBigEndian ? nOps-1-j : j;
+    SDValue OpVal = getOperand(i);
+    unsigned BitPos = j * EltBitSize;
+
+    if (OpVal.getOpcode() == ISD::UNDEF)
+      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
+    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
+      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
+                     zextOrTrunc(sz) << BitPos);
+    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
+      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
+     else
+      return false;
+  }
+
+  // The build_vector is all constants or undefs.  Find the smallest element
+  // size that splats the vector.
+
+  HasAnyUndefs = (SplatUndef != 0);
+  while (sz > 8) {
+
+    unsigned HalfSize = sz / 2;
+    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
+    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
+    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
+    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
+
+    // If the two halves do not match (ignoring undef bits), stop here.
+    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
+        MinSplatBits > HalfSize)
+      break;
+
+    SplatValue = HighValue | LowValue;
+    SplatUndef = HighUndef & LowUndef;
+
+    sz = HalfSize;
+  }
+
+  SplatBitSize = sz;
+  return true;
+}
+
+bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
+  // Find the first non-undef value in the shuffle mask.
+  unsigned i, e;
+  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
+    /* search */;
+
+  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
+
+  // Make sure all remaining elements are either undef or the same as the first
+  // non-undef value.
+  for (int Idx = Mask[i]; i != e; ++i)
+    if (Mask[i] >= 0 && Mask[i] != Idx)
+      return false;
+  return true;
+}
+
+static void checkForCyclesHelper(const SDNode *N,
+                                 std::set<const SDNode *> &visited) {
+  if (visited.find(N) != visited.end()) {
+    dbgs() << "Offending node:\n";
+    N->dumprFull();
+    assert(0 && "Detected cycle in SelectionDAG");
+  }
+
+  std::set<const SDNode*>::iterator i;
+  bool inserted;
+
+  tie(i, inserted) = visited.insert(N);
+  assert(inserted && "Missed cycle");
+
+  for(unsigned i = 0; i < N->getNumOperands(); ++i) {
+    checkForCyclesHelper(N->getOperand(i).getNode(), visited);
+  }
+  visited.erase(i);
+}
+
+void llvm::checkForCycles(const llvm::SDNode *N) {
+#ifdef XDEBUG
+  assert(N && "Checking nonexistant SDNode");
+  std::set<const SDNode *> visited;
+  checkForCyclesHelper(N, visited);
+#endif
+}
+
+void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
+  checkForCycles(DAG->getRoot().getNode());
+}