Check in LLVM r95781.
diff --git a/lib/CodeGen/VirtRegRewriter.cpp b/lib/CodeGen/VirtRegRewriter.cpp
new file mode 100644
index 0000000..ce62594
--- /dev/null
+++ b/lib/CodeGen/VirtRegRewriter.cpp
@@ -0,0 +1,2453 @@
+//===-- llvm/CodeGen/Rewriter.cpp -  Rewriter -----------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "virtregrewriter"
+#include "VirtRegRewriter.h"
+#include "llvm/Function.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NumDSE     , "Number of dead stores elided");
+STATISTIC(NumDSS     , "Number of dead spill slots removed");
+STATISTIC(NumCommutes, "Number of instructions commuted");
+STATISTIC(NumDRM     , "Number of re-materializable defs elided");
+STATISTIC(NumStores  , "Number of stores added");
+STATISTIC(NumPSpills , "Number of physical register spills");
+STATISTIC(NumOmitted , "Number of reloads omited");
+STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
+STATISTIC(NumCopified, "Number of available reloads turned into copies");
+STATISTIC(NumReMats  , "Number of re-materialization");
+STATISTIC(NumLoads   , "Number of loads added");
+STATISTIC(NumReused  , "Number of values reused");
+STATISTIC(NumDCE     , "Number of copies elided");
+STATISTIC(NumSUnfold , "Number of stores unfolded");
+STATISTIC(NumModRefUnfold, "Number of modref unfolded");
+
+namespace {
+  enum RewriterName { local, trivial };
+}
+
+static cl::opt<RewriterName>
+RewriterOpt("rewriter",
+            cl::desc("Rewriter to use: (default: local)"),
+            cl::Prefix,
+            cl::values(clEnumVal(local,   "local rewriter"),
+                       clEnumVal(trivial, "trivial rewriter"),
+                       clEnumValEnd),
+            cl::init(local));
+
+static cl::opt<bool>
+ScheduleSpills("schedule-spills",
+               cl::desc("Schedule spill code"),
+               cl::init(false));
+
+VirtRegRewriter::~VirtRegRewriter() {}
+
+/// substitutePhysReg - Replace virtual register in MachineOperand with a
+/// physical register. Do the right thing with the sub-register index.
+static void substitutePhysReg(MachineOperand &MO, unsigned Reg,
+                              const TargetRegisterInfo &TRI) {
+  if (unsigned SubIdx = MO.getSubReg()) {
+    // Insert the physical subreg and reset the subreg field.
+    MO.setReg(TRI.getSubReg(Reg, SubIdx));
+    MO.setSubReg(0);
+
+    // Any def, dead, and kill flags apply to the full virtual register, so they
+    // also apply to the full physical register. Add imp-def/dead and imp-kill
+    // as needed.
+    MachineInstr &MI = *MO.getParent();
+    if (MO.isDef())
+      if (MO.isDead())
+        MI.addRegisterDead(Reg, &TRI, /*AddIfNotFound=*/ true);
+      else
+        MI.addRegisterDefined(Reg, &TRI);
+    else if (!MO.isUndef() &&
+             (MO.isKill() ||
+              MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0))))
+      MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true);
+  } else {
+    MO.setReg(Reg);
+  }
+}
+
+namespace {
+
+/// This class is intended for use with the new spilling framework only. It
+/// rewrites vreg def/uses to use the assigned preg, but does not insert any
+/// spill code.
+struct TrivialRewriter : public VirtRegRewriter {
+
+  bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
+                            LiveIntervals* LIs) {
+    DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n");
+    DEBUG(dbgs() << "********** Function: " 
+          << MF.getFunction()->getName() << '\n');
+    DEBUG(dbgs() << "**** Machine Instrs"
+          << "(NOTE! Does not include spills and reloads!) ****\n");
+    DEBUG(MF.dump());
+
+    MachineRegisterInfo *mri = &MF.getRegInfo();
+    const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo();
+
+    bool changed = false;
+
+    for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
+         liItr != liEnd; ++liItr) {
+
+      const LiveInterval *li = liItr->second;
+      unsigned reg = li->reg;
+
+      if (TargetRegisterInfo::isPhysicalRegister(reg)) {
+        if (!li->empty())
+          mri->setPhysRegUsed(reg);
+      }
+      else {
+        if (!VRM.hasPhys(reg))
+          continue;
+        unsigned pReg = VRM.getPhys(reg);
+        mri->setPhysRegUsed(pReg);
+        for (MachineRegisterInfo::reg_iterator regItr = mri->reg_begin(reg),
+             regEnd = mri->reg_end(); regItr != regEnd;) {
+          MachineOperand &mop = regItr.getOperand();
+          assert(mop.isReg() && mop.getReg() == reg && "reg_iterator broken?");
+          ++regItr;
+          substitutePhysReg(mop, pReg, *tri);
+          changed = true;
+        }
+      }
+    }
+    
+    DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
+    DEBUG(MF.dump());
+    
+    return changed;
+  }
+
+};
+
+}
+
+// ************************************************************************ //
+
+namespace {
+
+/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
+/// from top down, keep track of which spill slots or remat are available in
+/// each register.
+///
+/// Note that not all physregs are created equal here.  In particular, some
+/// physregs are reloads that we are allowed to clobber or ignore at any time.
+/// Other physregs are values that the register allocated program is using
+/// that we cannot CHANGE, but we can read if we like.  We keep track of this
+/// on a per-stack-slot / remat id basis as the low bit in the value of the
+/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
+/// this bit and addAvailable sets it if.
+class AvailableSpills {
+  const TargetRegisterInfo *TRI;
+  const TargetInstrInfo *TII;
+
+  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
+  // or remat'ed virtual register values that are still available, due to
+  // being loaded or stored to, but not invalidated yet.
+  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
+
+  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
+  // indicating which stack slot values are currently held by a physreg.  This
+  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
+  // physreg is modified.
+  std::multimap<unsigned, int> PhysRegsAvailable;
+
+  void disallowClobberPhysRegOnly(unsigned PhysReg);
+
+  void ClobberPhysRegOnly(unsigned PhysReg);
+public:
+  AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
+    : TRI(tri), TII(tii) {
+  }
+
+  /// clear - Reset the state.
+  void clear() {
+    SpillSlotsOrReMatsAvailable.clear();
+    PhysRegsAvailable.clear();
+  }
+
+  const TargetRegisterInfo *getRegInfo() const { return TRI; }
+
+  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
+  /// available in a physical register, return that PhysReg, otherwise
+  /// return 0.
+  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
+    std::map<int, unsigned>::const_iterator I =
+      SpillSlotsOrReMatsAvailable.find(Slot);
+    if (I != SpillSlotsOrReMatsAvailable.end()) {
+      return I->second >> 1;  // Remove the CanClobber bit.
+    }
+    return 0;
+  }
+
+  /// addAvailable - Mark that the specified stack slot / remat is available
+  /// in the specified physreg.  If CanClobber is true, the physreg can be
+  /// modified at any time without changing the semantics of the program.
+  void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
+    // If this stack slot is thought to be available in some other physreg, 
+    // remove its record.
+    ModifyStackSlotOrReMat(SlotOrReMat);
+
+    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
+    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
+                                              (unsigned)CanClobber;
+
+    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
+      DEBUG(dbgs() << "Remembering RM#"
+                   << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
+    else
+      DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat);
+    DEBUG(dbgs() << " in physreg " << TRI->getName(Reg) << "\n");
+  }
+
+  /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
+  /// the value of the specified stackslot register if it desires. The
+  /// specified stack slot must be available in a physreg for this query to
+  /// make sense.
+  bool canClobberPhysRegForSS(int SlotOrReMat) const {
+    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
+           "Value not available!");
+    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
+  }
+
+  /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
+  /// physical register where values for some stack slot(s) might be
+  /// available.
+  bool canClobberPhysReg(unsigned PhysReg) const {
+    std::multimap<unsigned, int>::const_iterator I =
+      PhysRegsAvailable.lower_bound(PhysReg);
+    while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
+      int SlotOrReMat = I->second;
+      I++;
+      if (!canClobberPhysRegForSS(SlotOrReMat))
+        return false;
+    }
+    return true;
+  }
+
+  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
+  /// stackslot register. The register is still available but is no longer
+  /// allowed to be modifed.
+  void disallowClobberPhysReg(unsigned PhysReg);
+
+  /// ClobberPhysReg - This is called when the specified physreg changes
+  /// value.  We use this to invalidate any info about stuff that lives in
+  /// it and any of its aliases.
+  void ClobberPhysReg(unsigned PhysReg);
+
+  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
+  /// slot changes.  This removes information about which register the
+  /// previous value for this slot lives in (as the previous value is dead
+  /// now).
+  void ModifyStackSlotOrReMat(int SlotOrReMat);
+
+  /// AddAvailableRegsToLiveIn - Availability information is being kept coming
+  /// into the specified MBB. Add available physical registers as potential
+  /// live-in's. If they are reused in the MBB, they will be added to the
+  /// live-in set to make register scavenger and post-allocation scheduler.
+  void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
+                                std::vector<MachineOperand*> &KillOps);
+};
+
+}
+
+// ************************************************************************ //
+
+// Given a location where a reload of a spilled register or a remat of
+// a constant is to be inserted, attempt to find a safe location to
+// insert the load at an earlier point in the basic-block, to hide
+// latency of the load and to avoid address-generation interlock
+// issues.
+static MachineBasicBlock::iterator
+ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
+                 MachineBasicBlock::iterator const Begin,
+                 unsigned PhysReg,
+                 const TargetRegisterInfo *TRI,
+                 bool DoReMat,
+                 int SSorRMId,
+                 const TargetInstrInfo *TII,
+                 const MachineFunction &MF)
+{
+  if (!ScheduleSpills)
+    return InsertLoc;
+
+  // Spill backscheduling is of primary interest to addresses, so
+  // don't do anything if the register isn't in the register class
+  // used for pointers.
+
+  const TargetLowering *TL = MF.getTarget().getTargetLowering();
+
+  if (!TL->isTypeLegal(TL->getPointerTy()))
+    // Believe it or not, this is true on PIC16.
+    return InsertLoc;
+
+  const TargetRegisterClass *ptrRegClass =
+    TL->getRegClassFor(TL->getPointerTy());
+  if (!ptrRegClass->contains(PhysReg))
+    return InsertLoc;
+
+  // Scan upwards through the preceding instructions. If an instruction doesn't
+  // reference the stack slot or the register we're loading, we can
+  // backschedule the reload up past it.
+  MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
+  while (NewInsertLoc != Begin) {
+    MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
+    for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
+      MachineOperand &Op = Prev->getOperand(i);
+      if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
+        goto stop;
+    }
+    if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
+        Prev->findRegisterDefOperand(PhysReg))
+      goto stop;
+    for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
+      if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
+          Prev->findRegisterDefOperand(*Alias))
+        goto stop;
+    NewInsertLoc = Prev;
+  }
+stop:;
+
+  // If we made it to the beginning of the block, turn around and move back
+  // down just past any existing reloads. They're likely to be reloads/remats
+  // for instructions earlier than what our current reload/remat is for, so
+  // they should be scheduled earlier.
+  if (NewInsertLoc == Begin) {
+    int FrameIdx;
+    while (InsertLoc != NewInsertLoc &&
+           (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
+            TII->isTriviallyReMaterializable(NewInsertLoc)))
+      ++NewInsertLoc;
+  }
+
+  return NewInsertLoc;
+}
+
+namespace {
+
+// ReusedOp - For each reused operand, we keep track of a bit of information,
+// in case we need to rollback upon processing a new operand.  See comments
+// below.
+struct ReusedOp {
+  // The MachineInstr operand that reused an available value.
+  unsigned Operand;
+
+  // StackSlotOrReMat - The spill slot or remat id of the value being reused.
+  unsigned StackSlotOrReMat;
+
+  // PhysRegReused - The physical register the value was available in.
+  unsigned PhysRegReused;
+
+  // AssignedPhysReg - The physreg that was assigned for use by the reload.
+  unsigned AssignedPhysReg;
+  
+  // VirtReg - The virtual register itself.
+  unsigned VirtReg;
+
+  ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
+           unsigned vreg)
+    : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
+      AssignedPhysReg(apr), VirtReg(vreg) {}
+};
+
+/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
+/// is reused instead of reloaded.
+class ReuseInfo {
+  MachineInstr &MI;
+  std::vector<ReusedOp> Reuses;
+  BitVector PhysRegsClobbered;
+public:
+  ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
+    PhysRegsClobbered.resize(tri->getNumRegs());
+  }
+  
+  bool hasReuses() const {
+    return !Reuses.empty();
+  }
+  
+  /// addReuse - If we choose to reuse a virtual register that is already
+  /// available instead of reloading it, remember that we did so.
+  void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
+                unsigned PhysRegReused, unsigned AssignedPhysReg,
+                unsigned VirtReg) {
+    // If the reload is to the assigned register anyway, no undo will be
+    // required.
+    if (PhysRegReused == AssignedPhysReg) return;
+    
+    // Otherwise, remember this.
+    Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused, 
+                              AssignedPhysReg, VirtReg));
+  }
+
+  void markClobbered(unsigned PhysReg) {
+    PhysRegsClobbered.set(PhysReg);
+  }
+
+  bool isClobbered(unsigned PhysReg) const {
+    return PhysRegsClobbered.test(PhysReg);
+  }
+  
+  /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
+  /// is some other operand that is using the specified register, either pick
+  /// a new register to use, or evict the previous reload and use this reg. 
+  unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
+                           MachineFunction &MF, MachineInstr *MI,
+                           AvailableSpills &Spills,
+                           std::vector<MachineInstr*> &MaybeDeadStores,
+                           SmallSet<unsigned, 8> &Rejected,
+                           BitVector &RegKills,
+                           std::vector<MachineOperand*> &KillOps,
+                           VirtRegMap &VRM);
+
+  /// GetRegForReload - Helper for the above GetRegForReload(). Add a
+  /// 'Rejected' set to remember which registers have been considered and
+  /// rejected for the reload. This avoids infinite looping in case like
+  /// this:
+  /// t1 := op t2, t3
+  /// t2 <- assigned r0 for use by the reload but ended up reuse r1
+  /// t3 <- assigned r1 for use by the reload but ended up reuse r0
+  /// t1 <- desires r1
+  ///       sees r1 is taken by t2, tries t2's reload register r0
+  ///       sees r0 is taken by t3, tries t3's reload register r1
+  ///       sees r1 is taken by t2, tries t2's reload register r0 ...
+  unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
+                           AvailableSpills &Spills,
+                           std::vector<MachineInstr*> &MaybeDeadStores,
+                           BitVector &RegKills,
+                           std::vector<MachineOperand*> &KillOps,
+                           VirtRegMap &VRM) {
+    SmallSet<unsigned, 8> Rejected;
+    MachineFunction &MF = *MI->getParent()->getParent();
+    const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
+    return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
+                           Rejected, RegKills, KillOps, VRM);
+  }
+};
+
+}
+
+// ****************** //
+// Utility Functions  //
+// ****************** //
+
+/// findSinglePredSuccessor - Return via reference a vector of machine basic
+/// blocks each of which is a successor of the specified BB and has no other
+/// predecessor.
+static void findSinglePredSuccessor(MachineBasicBlock *MBB,
+                                   SmallVectorImpl<MachineBasicBlock *> &Succs) {
+  for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+         SE = MBB->succ_end(); SI != SE; ++SI) {
+    MachineBasicBlock *SuccMBB = *SI;
+    if (SuccMBB->pred_size() == 1)
+      Succs.push_back(SuccMBB);
+  }
+}
+
+/// InvalidateKill - Invalidate register kill information for a specific
+/// register. This also unsets the kills marker on the last kill operand.
+static void InvalidateKill(unsigned Reg,
+                           const TargetRegisterInfo* TRI,
+                           BitVector &RegKills,
+                           std::vector<MachineOperand*> &KillOps) {
+  if (RegKills[Reg]) {
+    KillOps[Reg]->setIsKill(false);
+    // KillOps[Reg] might be a def of a super-register.
+    unsigned KReg = KillOps[Reg]->getReg();
+    KillOps[KReg] = NULL;
+    RegKills.reset(KReg);
+    for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
+      if (RegKills[*SR]) {
+        KillOps[*SR]->setIsKill(false);
+        KillOps[*SR] = NULL;
+        RegKills.reset(*SR);
+      }
+    }
+  }
+}
+
+/// InvalidateKills - MI is going to be deleted. If any of its operands are
+/// marked kill, then invalidate the information.
+static void InvalidateKills(MachineInstr &MI,
+                            const TargetRegisterInfo* TRI,
+                            BitVector &RegKills,
+                            std::vector<MachineOperand*> &KillOps,
+                            SmallVector<unsigned, 2> *KillRegs = NULL) {
+  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI.getOperand(i);
+    if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
+      continue;
+    unsigned Reg = MO.getReg();
+    if (TargetRegisterInfo::isVirtualRegister(Reg))
+      continue;
+    if (KillRegs)
+      KillRegs->push_back(Reg);
+    assert(Reg < KillOps.size());
+    if (KillOps[Reg] == &MO) {
+      KillOps[Reg] = NULL;
+      RegKills.reset(Reg);
+      for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
+        if (RegKills[*SR]) {
+          KillOps[*SR] = NULL;
+          RegKills.reset(*SR);
+        }
+      }
+    }
+  }
+}
+
+/// InvalidateRegDef - If the def operand of the specified def MI is now dead
+/// (since its spill instruction is removed), mark it isDead. Also checks if
+/// the def MI has other definition operands that are not dead. Returns it by
+/// reference.
+static bool InvalidateRegDef(MachineBasicBlock::iterator I,
+                             MachineInstr &NewDef, unsigned Reg,
+                             bool &HasLiveDef, 
+                             const TargetRegisterInfo *TRI) {
+  // Due to remat, it's possible this reg isn't being reused. That is,
+  // the def of this reg (by prev MI) is now dead.
+  MachineInstr *DefMI = I;
+  MachineOperand *DefOp = NULL;
+  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = DefMI->getOperand(i);
+    if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef())
+      continue;
+    if (MO.getReg() == Reg)
+      DefOp = &MO;
+    else if (!MO.isDead())
+      HasLiveDef = true;
+  }
+  if (!DefOp)
+    return false;
+
+  bool FoundUse = false, Done = false;
+  MachineBasicBlock::iterator E = &NewDef;
+  ++I; ++E;
+  for (; !Done && I != E; ++I) {
+    MachineInstr *NMI = I;
+    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
+      MachineOperand &MO = NMI->getOperand(j);
+      if (!MO.isReg() || MO.getReg() == 0 ||
+          (MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg())))
+        continue;
+      if (MO.isUse())
+        FoundUse = true;
+      Done = true; // Stop after scanning all the operands of this MI.
+    }
+  }
+  if (!FoundUse) {
+    // Def is dead!
+    DefOp->setIsDead();
+    return true;
+  }
+  return false;
+}
+
+/// UpdateKills - Track and update kill info. If a MI reads a register that is
+/// marked kill, then it must be due to register reuse. Transfer the kill info
+/// over.
+static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
+                        BitVector &RegKills,
+                        std::vector<MachineOperand*> &KillOps) {
+  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI.getOperand(i);
+    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
+      continue;
+    unsigned Reg = MO.getReg();
+    if (Reg == 0)
+      continue;
+    
+    if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
+      // That can't be right. Register is killed but not re-defined and it's
+      // being reused. Let's fix that.
+      KillOps[Reg]->setIsKill(false);
+      // KillOps[Reg] might be a def of a super-register.
+      unsigned KReg = KillOps[Reg]->getReg();
+      KillOps[KReg] = NULL;
+      RegKills.reset(KReg);
+
+      // Must be a def of a super-register. Its other sub-regsters are no
+      // longer killed as well.
+      for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
+        KillOps[*SR] = NULL;
+        RegKills.reset(*SR);
+      }
+    } else {
+      // Check for subreg kills as well.
+      // d4 = 
+      // store d4, fi#0
+      // ...
+      //    = s8<kill>
+      // ...
+      //    = d4  <avoiding reload>
+      for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
+        unsigned SReg = *SR;
+        if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI) {
+          KillOps[SReg]->setIsKill(false);
+          unsigned KReg = KillOps[SReg]->getReg();
+          KillOps[KReg] = NULL;
+          RegKills.reset(KReg);
+
+          for (const unsigned *SSR = TRI->getSubRegisters(KReg); *SSR; ++SSR) {
+            KillOps[*SSR] = NULL;
+            RegKills.reset(*SSR);
+          }
+        }
+      }
+    }
+
+    if (MO.isKill()) {
+      RegKills.set(Reg);
+      KillOps[Reg] = &MO;
+      for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
+        RegKills.set(*SR);
+        KillOps[*SR] = &MO;
+      }
+    }
+  }
+
+  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+    const MachineOperand &MO = MI.getOperand(i);
+    if (!MO.isReg() || !MO.getReg() || !MO.isDef())
+      continue;
+    unsigned Reg = MO.getReg();
+    RegKills.reset(Reg);
+    KillOps[Reg] = NULL;
+    // It also defines (or partially define) aliases.
+    for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
+      RegKills.reset(*SR);
+      KillOps[*SR] = NULL;
+    }
+    for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) {
+      RegKills.reset(*SR);
+      KillOps[*SR] = NULL;
+    }
+  }
+}
+
+/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
+///
+static void ReMaterialize(MachineBasicBlock &MBB,
+                          MachineBasicBlock::iterator &MII,
+                          unsigned DestReg, unsigned Reg,
+                          const TargetInstrInfo *TII,
+                          const TargetRegisterInfo *TRI,
+                          VirtRegMap &VRM) {
+  MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
+#ifndef NDEBUG
+  const TargetInstrDesc &TID = ReMatDefMI->getDesc();
+  assert(TID.getNumDefs() == 1 &&
+         "Don't know how to remat instructions that define > 1 values!");
+#endif
+  TII->reMaterialize(MBB, MII, DestReg,
+                     ReMatDefMI->getOperand(0).getSubReg(), ReMatDefMI, TRI);
+  MachineInstr *NewMI = prior(MII);
+  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = NewMI->getOperand(i);
+    if (!MO.isReg() || MO.getReg() == 0)
+      continue;
+    unsigned VirtReg = MO.getReg();
+    if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
+      continue;
+    assert(MO.isUse());
+    unsigned Phys = VRM.getPhys(VirtReg);
+    assert(Phys && "Virtual register is not assigned a register?");
+    substitutePhysReg(MO, Phys, *TRI);
+  }
+  ++NumReMats;
+}
+
+/// findSuperReg - Find the SubReg's super-register of given register class
+/// where its SubIdx sub-register is SubReg.
+static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
+                             unsigned SubIdx, const TargetRegisterInfo *TRI) {
+  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
+       I != E; ++I) {
+    unsigned Reg = *I;
+    if (TRI->getSubReg(Reg, SubIdx) == SubReg)
+      return Reg;
+  }
+  return 0;
+}
+
+// ******************************** //
+// Available Spills Implementation  //
+// ******************************** //
+
+/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
+/// stackslot register. The register is still available but is no longer
+/// allowed to be modifed.
+void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
+  std::multimap<unsigned, int>::iterator I =
+    PhysRegsAvailable.lower_bound(PhysReg);
+  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
+    int SlotOrReMat = I->second;
+    I++;
+    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
+           "Bidirectional map mismatch!");
+    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
+    DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
+         << " copied, it is available for use but can no longer be modified\n");
+  }
+}
+
+/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
+/// stackslot register and its aliases. The register and its aliases may
+/// still available but is no longer allowed to be modifed.
+void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
+  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
+    disallowClobberPhysRegOnly(*AS);
+  disallowClobberPhysRegOnly(PhysReg);
+}
+
+/// ClobberPhysRegOnly - This is called when the specified physreg changes
+/// value.  We use this to invalidate any info about stuff we thing lives in it.
+void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
+  std::multimap<unsigned, int>::iterator I =
+    PhysRegsAvailable.lower_bound(PhysReg);
+  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
+    int SlotOrReMat = I->second;
+    PhysRegsAvailable.erase(I++);
+    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
+           "Bidirectional map mismatch!");
+    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
+    DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
+          << " clobbered, invalidating ");
+    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
+      DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
+    else
+      DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n");
+  }
+}
+
+/// ClobberPhysReg - This is called when the specified physreg changes
+/// value.  We use this to invalidate any info about stuff we thing lives in
+/// it and any of its aliases.
+void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
+  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
+    ClobberPhysRegOnly(*AS);
+  ClobberPhysRegOnly(PhysReg);
+}
+
+/// AddAvailableRegsToLiveIn - Availability information is being kept coming
+/// into the specified MBB. Add available physical registers as potential
+/// live-in's. If they are reused in the MBB, they will be added to the
+/// live-in set to make register scavenger and post-allocation scheduler.
+void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
+                                        BitVector &RegKills,
+                                        std::vector<MachineOperand*> &KillOps) {
+  std::set<unsigned> NotAvailable;
+  for (std::multimap<unsigned, int>::iterator
+         I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
+       I != E; ++I) {
+    unsigned Reg = I->first;
+    const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
+    // FIXME: A temporary workaround. We can't reuse available value if it's
+    // not safe to move the def of the virtual register's class. e.g.
+    // X86::RFP* register classes. Do not add it as a live-in.
+    if (!TII->isSafeToMoveRegClassDefs(RC))
+      // This is no longer available.
+      NotAvailable.insert(Reg);
+    else {
+      MBB.addLiveIn(Reg);
+      InvalidateKill(Reg, TRI, RegKills, KillOps);
+    }
+
+    // Skip over the same register.
+    std::multimap<unsigned, int>::iterator NI = llvm::next(I);
+    while (NI != E && NI->first == Reg) {
+      ++I;
+      ++NI;
+    }
+  }
+
+  for (std::set<unsigned>::iterator I = NotAvailable.begin(),
+         E = NotAvailable.end(); I != E; ++I) {
+    ClobberPhysReg(*I);
+    for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
+       *SubRegs; ++SubRegs)
+      ClobberPhysReg(*SubRegs);
+  }
+}
+
+/// ModifyStackSlotOrReMat - This method is called when the value in a stack
+/// slot changes.  This removes information about which register the previous
+/// value for this slot lives in (as the previous value is dead now).
+void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
+  std::map<int, unsigned>::iterator It =
+    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
+  if (It == SpillSlotsOrReMatsAvailable.end()) return;
+  unsigned Reg = It->second >> 1;
+  SpillSlotsOrReMatsAvailable.erase(It);
+  
+  // This register may hold the value of multiple stack slots, only remove this
+  // stack slot from the set of values the register contains.
+  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
+  for (; ; ++I) {
+    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
+           "Map inverse broken!");
+    if (I->second == SlotOrReMat) break;
+  }
+  PhysRegsAvailable.erase(I);
+}
+
+// ************************** //
+// Reuse Info Implementation  //
+// ************************** //
+
+/// GetRegForReload - We are about to emit a reload into PhysReg.  If there
+/// is some other operand that is using the specified register, either pick
+/// a new register to use, or evict the previous reload and use this reg.
+unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
+                         unsigned PhysReg,
+                         MachineFunction &MF,
+                         MachineInstr *MI, AvailableSpills &Spills,
+                         std::vector<MachineInstr*> &MaybeDeadStores,
+                         SmallSet<unsigned, 8> &Rejected,
+                         BitVector &RegKills,
+                         std::vector<MachineOperand*> &KillOps,
+                         VirtRegMap &VRM) {
+  const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
+  const TargetRegisterInfo *TRI = Spills.getRegInfo();
+  
+  if (Reuses.empty()) return PhysReg;  // This is most often empty.
+
+  for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
+    ReusedOp &Op = Reuses[ro];
+    // If we find some other reuse that was supposed to use this register
+    // exactly for its reload, we can change this reload to use ITS reload
+    // register. That is, unless its reload register has already been
+    // considered and subsequently rejected because it has also been reused
+    // by another operand.
+    if (Op.PhysRegReused == PhysReg &&
+        Rejected.count(Op.AssignedPhysReg) == 0 &&
+        RC->contains(Op.AssignedPhysReg)) {
+      // Yup, use the reload register that we didn't use before.
+      unsigned NewReg = Op.AssignedPhysReg;
+      Rejected.insert(PhysReg);
+      return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, Rejected,
+                             RegKills, KillOps, VRM);
+    } else {
+      // Otherwise, we might also have a problem if a previously reused
+      // value aliases the new register. If so, codegen the previous reload
+      // and use this one.          
+      unsigned PRRU = Op.PhysRegReused;
+      if (TRI->regsOverlap(PRRU, PhysReg)) {
+        // Okay, we found out that an alias of a reused register
+        // was used.  This isn't good because it means we have
+        // to undo a previous reuse.
+        MachineBasicBlock *MBB = MI->getParent();
+        const TargetRegisterClass *AliasRC =
+          MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
+
+        // Copy Op out of the vector and remove it, we're going to insert an
+        // explicit load for it.
+        ReusedOp NewOp = Op;
+        Reuses.erase(Reuses.begin()+ro);
+
+        // MI may be using only a sub-register of PhysRegUsed.
+        unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
+        unsigned SubIdx = 0;
+        assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
+               "A reuse cannot be a virtual register");
+        if (PRRU != RealPhysRegUsed) {
+          // What was the sub-register index?
+          SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed);
+          assert(SubIdx &&
+                 "Operand physreg is not a sub-register of PhysRegUsed");
+        }
+
+        // Ok, we're going to try to reload the assigned physreg into the
+        // slot that we were supposed to in the first place.  However, that
+        // register could hold a reuse.  Check to see if it conflicts or
+        // would prefer us to use a different register.
+        unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
+                                              MF, MI, Spills, MaybeDeadStores,
+                                              Rejected, RegKills, KillOps, VRM);
+
+        bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
+        int SSorRMId = DoReMat
+          ? VRM.getReMatId(NewOp.VirtReg) : NewOp.StackSlotOrReMat;
+
+        // Back-schedule reloads and remats.
+        MachineBasicBlock::iterator InsertLoc =
+          ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
+                           DoReMat, SSorRMId, TII, MF);
+
+        if (DoReMat) {
+          ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
+                        TRI, VRM);
+        } else { 
+          TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
+                                    NewOp.StackSlotOrReMat, AliasRC);
+          MachineInstr *LoadMI = prior(InsertLoc);
+          VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
+          // Any stores to this stack slot are not dead anymore.
+          MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;            
+          ++NumLoads;
+        }
+        Spills.ClobberPhysReg(NewPhysReg);
+        Spills.ClobberPhysReg(NewOp.PhysRegReused);
+
+        unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg;
+        MI->getOperand(NewOp.Operand).setReg(RReg);
+        MI->getOperand(NewOp.Operand).setSubReg(0);
+
+        Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
+        UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
+        DEBUG(dbgs() << '\t' << *prior(InsertLoc));
+        
+        DEBUG(dbgs() << "Reuse undone!\n");
+        --NumReused;
+        
+        // Finally, PhysReg is now available, go ahead and use it.
+        return PhysReg;
+      }
+    }
+  }
+  return PhysReg;
+}
+
+// ************************************************************************ //
+
+/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
+/// stack slot mod/ref. It also checks if it's possible to unfold the
+/// instruction by having it define a specified physical register instead.
+static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
+                                 const TargetInstrInfo *TII,
+                                 const TargetRegisterInfo *TRI,
+                                 VirtRegMap &VRM) {
+  if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
+    return false;
+
+  bool Found = false;
+  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
+  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
+    unsigned VirtReg = I->second.first;
+    VirtRegMap::ModRef MR = I->second.second;
+    if (MR & VirtRegMap::isModRef)
+      if (VRM.getStackSlot(VirtReg) == SS) {
+        Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
+        break;
+      }
+  }
+  if (!Found)
+    return false;
+
+  // Does the instruction uses a register that overlaps the scratch register?
+  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI.getOperand(i);
+    if (!MO.isReg() || MO.getReg() == 0)
+      continue;
+    unsigned Reg = MO.getReg();
+    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+      if (!VRM.hasPhys(Reg))
+        continue;
+      Reg = VRM.getPhys(Reg);
+    }
+    if (TRI->regsOverlap(PhysReg, Reg))
+      return false;
+  }
+  return true;
+}
+
+/// FindFreeRegister - Find a free register of a given register class by looking
+/// at (at most) the last two machine instructions.
+static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
+                                 MachineBasicBlock &MBB,
+                                 const TargetRegisterClass *RC,
+                                 const TargetRegisterInfo *TRI,
+                                 BitVector &AllocatableRegs) {
+  BitVector Defs(TRI->getNumRegs());
+  BitVector Uses(TRI->getNumRegs());
+  SmallVector<unsigned, 4> LocalUses;
+  SmallVector<unsigned, 4> Kills;
+
+  // Take a look at 2 instructions at most.
+  for (unsigned Count = 0; Count < 2; ++Count) {
+    if (MII == MBB.begin())
+      break;
+    MachineInstr *PrevMI = prior(MII);
+    for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
+      MachineOperand &MO = PrevMI->getOperand(i);
+      if (!MO.isReg() || MO.getReg() == 0)
+        continue;
+      unsigned Reg = MO.getReg();
+      if (MO.isDef()) {
+        Defs.set(Reg);
+        for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
+          Defs.set(*AS);
+      } else  {
+        LocalUses.push_back(Reg);
+        if (MO.isKill() && AllocatableRegs[Reg])
+          Kills.push_back(Reg);
+      }
+    }
+
+    for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
+      unsigned Kill = Kills[i];
+      if (!Defs[Kill] && !Uses[Kill] &&
+          TRI->getPhysicalRegisterRegClass(Kill) == RC)
+        return Kill;
+    }
+    for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
+      unsigned Reg = LocalUses[i];
+      Uses.set(Reg);
+      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
+        Uses.set(*AS);
+    }
+
+    MII = PrevMI;
+  }
+
+  return 0;
+}
+
+static
+void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg,
+                         const TargetRegisterInfo &TRI) {
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (MO.isReg() && MO.getReg() == VirtReg)
+      substitutePhysReg(MO, PhysReg, TRI);
+  }
+}
+
+namespace {
+  struct RefSorter {
+    bool operator()(const std::pair<MachineInstr*, int> &A,
+                    const std::pair<MachineInstr*, int> &B) {
+      return A.second < B.second;
+    }
+  };
+}
+
+// ***************************** //
+// Local Spiller Implementation  //
+// ***************************** //
+
+namespace {
+
+class LocalRewriter : public VirtRegRewriter {
+  MachineRegisterInfo *RegInfo;
+  const TargetRegisterInfo *TRI;
+  const TargetInstrInfo *TII;
+  BitVector AllocatableRegs;
+  DenseMap<MachineInstr*, unsigned> DistanceMap;
+public:
+
+  bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
+                            LiveIntervals* LIs) {
+    RegInfo = &MF.getRegInfo(); 
+    TRI = MF.getTarget().getRegisterInfo();
+    TII = MF.getTarget().getInstrInfo();
+    AllocatableRegs = TRI->getAllocatableSet(MF);
+    DEBUG(dbgs() << "\n**** Local spiller rewriting function '"
+          << MF.getFunction()->getName() << "':\n");
+    DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and"
+                    " reloads!) ****\n");
+    DEBUG(MF.dump());
+
+    // Spills - Keep track of which spilled values are available in physregs
+    // so that we can choose to reuse the physregs instead of emitting
+    // reloads. This is usually refreshed per basic block.
+    AvailableSpills Spills(TRI, TII);
+
+    // Keep track of kill information.
+    BitVector RegKills(TRI->getNumRegs());
+    std::vector<MachineOperand*> KillOps;
+    KillOps.resize(TRI->getNumRegs(), NULL);
+
+    // SingleEntrySuccs - Successor blocks which have a single predecessor.
+    SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
+    SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
+
+    // Traverse the basic blocks depth first.
+    MachineBasicBlock *Entry = MF.begin();
+    SmallPtrSet<MachineBasicBlock*,16> Visited;
+    for (df_ext_iterator<MachineBasicBlock*,
+           SmallPtrSet<MachineBasicBlock*,16> >
+           DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
+         DFI != E; ++DFI) {
+      MachineBasicBlock *MBB = *DFI;
+      if (!EarlyVisited.count(MBB))
+        RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
+
+      // If this MBB is the only predecessor of a successor. Keep the
+      // availability information and visit it next.
+      do {
+        // Keep visiting single predecessor successor as long as possible.
+        SinglePredSuccs.clear();
+        findSinglePredSuccessor(MBB, SinglePredSuccs);
+        if (SinglePredSuccs.empty())
+          MBB = 0;
+        else {
+          // FIXME: More than one successors, each of which has MBB has
+          // the only predecessor.
+          MBB = SinglePredSuccs[0];
+          if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
+            Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
+            RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
+          }
+        }
+      } while (MBB);
+
+      // Clear the availability info.
+      Spills.clear();
+    }
+
+    DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
+    DEBUG(MF.dump());
+
+    // Mark unused spill slots.
+    MachineFrameInfo *MFI = MF.getFrameInfo();
+    int SS = VRM.getLowSpillSlot();
+    if (SS != VirtRegMap::NO_STACK_SLOT)
+      for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
+        if (!VRM.isSpillSlotUsed(SS)) {
+          MFI->RemoveStackObject(SS);
+          ++NumDSS;
+        }
+
+    return true;
+  }
+
+private:
+
+  /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
+  /// a scratch register is available.
+  ///     xorq  %r12<kill>, %r13
+  ///     addq  %rax, -184(%rbp)
+  ///     addq  %r13, -184(%rbp)
+  /// ==>
+  ///     xorq  %r12<kill>, %r13
+  ///     movq  -184(%rbp), %r12
+  ///     addq  %rax, %r12
+  ///     addq  %r13, %r12
+  ///     movq  %r12, -184(%rbp)
+  bool OptimizeByUnfold2(unsigned VirtReg, int SS,
+                         MachineBasicBlock &MBB,
+                         MachineBasicBlock::iterator &MII,
+                         std::vector<MachineInstr*> &MaybeDeadStores,
+                         AvailableSpills &Spills,
+                         BitVector &RegKills,
+                         std::vector<MachineOperand*> &KillOps,
+                         VirtRegMap &VRM) {
+
+    MachineBasicBlock::iterator NextMII = llvm::next(MII);
+    if (NextMII == MBB.end())
+      return false;
+
+    if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
+      return false;
+
+    // Now let's see if the last couple of instructions happens to have freed up
+    // a register.
+    const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+    unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs);
+    if (!PhysReg)
+      return false;
+
+    MachineFunction &MF = *MBB.getParent();
+    TRI = MF.getTarget().getRegisterInfo();
+    MachineInstr &MI = *MII;
+    if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM))
+      return false;
+
+    // If the next instruction also folds the same SS modref and can be unfoled,
+    // then it's worthwhile to issue a load from SS into the free register and
+    // then unfold these instructions.
+    if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
+      return false;
+
+    // Back-schedule reloads and remats.
+    ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, false, SS, TII, MF);
+
+    // Load from SS to the spare physical register.
+    TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
+    // This invalidates Phys.
+    Spills.ClobberPhysReg(PhysReg);
+    // Remember it's available.
+    Spills.addAvailable(SS, PhysReg);
+    MaybeDeadStores[SS] = NULL;
+
+    // Unfold current MI.
+    SmallVector<MachineInstr*, 4> NewMIs;
+    if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
+      llvm_unreachable("Unable unfold the load / store folding instruction!");
+    assert(NewMIs.size() == 1);
+    AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
+    VRM.transferRestorePts(&MI, NewMIs[0]);
+    MII = MBB.insert(MII, NewMIs[0]);
+    InvalidateKills(MI, TRI, RegKills, KillOps);
+    VRM.RemoveMachineInstrFromMaps(&MI);
+    MBB.erase(&MI);
+    ++NumModRefUnfold;
+
+    // Unfold next instructions that fold the same SS.
+    do {
+      MachineInstr &NextMI = *NextMII;
+      NextMII = llvm::next(NextMII);
+      NewMIs.clear();
+      if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
+        llvm_unreachable("Unable unfold the load / store folding instruction!");
+      assert(NewMIs.size() == 1);
+      AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
+      VRM.transferRestorePts(&NextMI, NewMIs[0]);
+      MBB.insert(NextMII, NewMIs[0]);
+      InvalidateKills(NextMI, TRI, RegKills, KillOps);
+      VRM.RemoveMachineInstrFromMaps(&NextMI);
+      MBB.erase(&NextMI);
+      ++NumModRefUnfold;
+      if (NextMII == MBB.end())
+        break;
+    } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));
+
+    // Store the value back into SS.
+    TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
+    MachineInstr *StoreMI = prior(NextMII);
+    VRM.addSpillSlotUse(SS, StoreMI);
+    VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
+
+    return true;
+  }
+
+  /// OptimizeByUnfold - Turn a store folding instruction into a load folding
+  /// instruction. e.g.
+  ///     xorl  %edi, %eax
+  ///     movl  %eax, -32(%ebp)
+  ///     movl  -36(%ebp), %eax
+  ///     orl   %eax, -32(%ebp)
+  /// ==>
+  ///     xorl  %edi, %eax
+  ///     orl   -36(%ebp), %eax
+  ///     mov   %eax, -32(%ebp)
+  /// This enables unfolding optimization for a subsequent instruction which will
+  /// also eliminate the newly introduced store instruction.
+  bool OptimizeByUnfold(MachineBasicBlock &MBB,
+                        MachineBasicBlock::iterator &MII,
+                        std::vector<MachineInstr*> &MaybeDeadStores,
+                        AvailableSpills &Spills,
+                        BitVector &RegKills,
+                        std::vector<MachineOperand*> &KillOps,
+                        VirtRegMap &VRM) {
+    MachineFunction &MF = *MBB.getParent();
+    MachineInstr &MI = *MII;
+    unsigned UnfoldedOpc = 0;
+    unsigned UnfoldPR = 0;
+    unsigned UnfoldVR = 0;
+    int FoldedSS = VirtRegMap::NO_STACK_SLOT;
+    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
+    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
+      // Only transform a MI that folds a single register.
+      if (UnfoldedOpc)
+        return false;
+      UnfoldVR = I->second.first;
+      VirtRegMap::ModRef MR = I->second.second;
+      // MI2VirtMap be can updated which invalidate the iterator.
+      // Increment the iterator first.
+      ++I; 
+      if (VRM.isAssignedReg(UnfoldVR))
+        continue;
+      // If this reference is not a use, any previous store is now dead.
+      // Otherwise, the store to this stack slot is not dead anymore.
+      FoldedSS = VRM.getStackSlot(UnfoldVR);
+      MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
+      if (DeadStore && (MR & VirtRegMap::isModRef)) {
+        unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
+        if (!PhysReg || !DeadStore->readsRegister(PhysReg))
+          continue;
+        UnfoldPR = PhysReg;
+        UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
+                                                      false, true);
+      }
+    }
+
+    if (!UnfoldedOpc) {
+      if (!UnfoldVR)
+        return false;
+
+      // Look for other unfolding opportunities.
+      return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
+                               MaybeDeadStores, Spills, RegKills, KillOps, VRM);
+    }
+
+    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+      MachineOperand &MO = MI.getOperand(i);
+      if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
+        continue;
+      unsigned VirtReg = MO.getReg();
+      if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
+        continue;
+      if (VRM.isAssignedReg(VirtReg)) {
+        unsigned PhysReg = VRM.getPhys(VirtReg);
+        if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
+          return false;
+      } else if (VRM.isReMaterialized(VirtReg))
+        continue;
+      int SS = VRM.getStackSlot(VirtReg);
+      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
+      if (PhysReg) {
+        if (TRI->regsOverlap(PhysReg, UnfoldPR))
+          return false;
+        continue;
+      }
+      if (VRM.hasPhys(VirtReg)) {
+        PhysReg = VRM.getPhys(VirtReg);
+        if (!TRI->regsOverlap(PhysReg, UnfoldPR))
+          continue;
+      }
+
+      // Ok, we'll need to reload the value into a register which makes
+      // it impossible to perform the store unfolding optimization later.
+      // Let's see if it is possible to fold the load if the store is
+      // unfolded. This allows us to perform the store unfolding
+      // optimization.
+      SmallVector<MachineInstr*, 4> NewMIs;
+      if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
+        assert(NewMIs.size() == 1);
+        MachineInstr *NewMI = NewMIs.back();
+        NewMIs.clear();
+        int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
+        assert(Idx != -1);
+        SmallVector<unsigned, 1> Ops;
+        Ops.push_back(Idx);
+        MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
+        if (FoldedMI) {
+          VRM.addSpillSlotUse(SS, FoldedMI);
+          if (!VRM.hasPhys(UnfoldVR))
+            VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
+          VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
+          MII = MBB.insert(MII, FoldedMI);
+          InvalidateKills(MI, TRI, RegKills, KillOps);
+          VRM.RemoveMachineInstrFromMaps(&MI);
+          MBB.erase(&MI);
+          MF.DeleteMachineInstr(NewMI);
+          return true;
+        }
+        MF.DeleteMachineInstr(NewMI);
+      }
+    }
+
+    return false;
+  }
+
+  /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
+  /// where SrcReg is r1 and it is tied to r0. Return true if after
+  /// commuting this instruction it will be r0 = op r2, r1.
+  static bool CommuteChangesDestination(MachineInstr *DefMI,
+                                        const TargetInstrDesc &TID,
+                                        unsigned SrcReg,
+                                        const TargetInstrInfo *TII,
+                                        unsigned &DstIdx) {
+    if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
+      return false;
+    if (!DefMI->getOperand(1).isReg() ||
+        DefMI->getOperand(1).getReg() != SrcReg)
+      return false;
+    unsigned DefIdx;
+    if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
+      return false;
+    unsigned SrcIdx1, SrcIdx2;
+    if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
+      return false;
+    if (SrcIdx1 == 1 && SrcIdx2 == 2) {
+      DstIdx = 2;
+      return true;
+    }
+    return false;
+  }
+
+  /// CommuteToFoldReload -
+  /// Look for
+  /// r1 = load fi#1
+  /// r1 = op r1, r2<kill>
+  /// store r1, fi#1
+  ///
+  /// If op is commutable and r2 is killed, then we can xform these to
+  /// r2 = op r2, fi#1
+  /// store r2, fi#1
+  bool CommuteToFoldReload(MachineBasicBlock &MBB,
+                           MachineBasicBlock::iterator &MII,
+                           unsigned VirtReg, unsigned SrcReg, int SS,
+                           AvailableSpills &Spills,
+                           BitVector &RegKills,
+                           std::vector<MachineOperand*> &KillOps,
+                           const TargetRegisterInfo *TRI,
+                           VirtRegMap &VRM) {
+    if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
+      return false;
+
+    MachineFunction &MF = *MBB.getParent();
+    MachineInstr &MI = *MII;
+    MachineBasicBlock::iterator DefMII = prior(MII);
+    MachineInstr *DefMI = DefMII;
+    const TargetInstrDesc &TID = DefMI->getDesc();
+    unsigned NewDstIdx;
+    if (DefMII != MBB.begin() &&
+        TID.isCommutable() &&
+        CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
+      MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
+      unsigned NewReg = NewDstMO.getReg();
+      if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
+        return false;
+      MachineInstr *ReloadMI = prior(DefMII);
+      int FrameIdx;
+      unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
+      if (DestReg != SrcReg || FrameIdx != SS)
+        return false;
+      int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
+      if (UseIdx == -1)
+        return false;
+      unsigned DefIdx;
+      if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
+        return false;
+      assert(DefMI->getOperand(DefIdx).isReg() &&
+             DefMI->getOperand(DefIdx).getReg() == SrcReg);
+
+      // Now commute def instruction.
+      MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
+      if (!CommutedMI)
+        return false;
+      SmallVector<unsigned, 1> Ops;
+      Ops.push_back(NewDstIdx);
+      MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
+      // Not needed since foldMemoryOperand returns new MI.
+      MF.DeleteMachineInstr(CommutedMI);
+      if (!FoldedMI)
+        return false;
+
+      VRM.addSpillSlotUse(SS, FoldedMI);
+      VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
+      // Insert new def MI and spill MI.
+      const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+      TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
+      MII = prior(MII);
+      MachineInstr *StoreMI = MII;
+      VRM.addSpillSlotUse(SS, StoreMI);
+      VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
+      MII = MBB.insert(MII, FoldedMI);  // Update MII to backtrack.
+
+      // Delete all 3 old instructions.
+      InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
+      VRM.RemoveMachineInstrFromMaps(ReloadMI);
+      MBB.erase(ReloadMI);
+      InvalidateKills(*DefMI, TRI, RegKills, KillOps);
+      VRM.RemoveMachineInstrFromMaps(DefMI);
+      MBB.erase(DefMI);
+      InvalidateKills(MI, TRI, RegKills, KillOps);
+      VRM.RemoveMachineInstrFromMaps(&MI);
+      MBB.erase(&MI);
+
+      // If NewReg was previously holding value of some SS, it's now clobbered.
+      // This has to be done now because it's a physical register. When this
+      // instruction is re-visited, it's ignored.
+      Spills.ClobberPhysReg(NewReg);
+
+      ++NumCommutes;
+      return true;
+    }
+
+    return false;
+  }
+
+  /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
+  /// the last store to the same slot is now dead. If so, remove the last store.
+  void SpillRegToStackSlot(MachineBasicBlock &MBB,
+                           MachineBasicBlock::iterator &MII,
+                           int Idx, unsigned PhysReg, int StackSlot,
+                           const TargetRegisterClass *RC,
+                           bool isAvailable, MachineInstr *&LastStore,
+                           AvailableSpills &Spills,
+                           SmallSet<MachineInstr*, 4> &ReMatDefs,
+                           BitVector &RegKills,
+                           std::vector<MachineOperand*> &KillOps,
+                           VirtRegMap &VRM) {
+
+    MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
+    TII->storeRegToStackSlot(MBB, llvm::next(MII), PhysReg, true, StackSlot, RC);
+    MachineInstr *StoreMI = prior(oldNextMII);
+    VRM.addSpillSlotUse(StackSlot, StoreMI);
+    DEBUG(dbgs() << "Store:\t" << *StoreMI);
+
+    // If there is a dead store to this stack slot, nuke it now.
+    if (LastStore) {
+      DEBUG(dbgs() << "Removed dead store:\t" << *LastStore);
+      ++NumDSE;
+      SmallVector<unsigned, 2> KillRegs;
+      InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
+      MachineBasicBlock::iterator PrevMII = LastStore;
+      bool CheckDef = PrevMII != MBB.begin();
+      if (CheckDef)
+        --PrevMII;
+      VRM.RemoveMachineInstrFromMaps(LastStore);
+      MBB.erase(LastStore);
+      if (CheckDef) {
+        // Look at defs of killed registers on the store. Mark the defs
+        // as dead since the store has been deleted and they aren't
+        // being reused.
+        for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
+          bool HasOtherDef = false;
+          if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) {
+            MachineInstr *DeadDef = PrevMII;
+            if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
+              // FIXME: This assumes a remat def does not have side effects.
+              VRM.RemoveMachineInstrFromMaps(DeadDef);
+              MBB.erase(DeadDef);
+              ++NumDRM;
+            }
+          }
+        }
+      }
+    }
+
+    // Allow for multi-instruction spill sequences, as on PPC Altivec.  Presume
+    // the last of multiple instructions is the actual store.
+    LastStore = prior(oldNextMII);
+
+    // If the stack slot value was previously available in some other
+    // register, change it now.  Otherwise, make the register available,
+    // in PhysReg.
+    Spills.ModifyStackSlotOrReMat(StackSlot);
+    Spills.ClobberPhysReg(PhysReg);
+    Spills.addAvailable(StackSlot, PhysReg, isAvailable);
+    ++NumStores;
+  }
+
+  /// isSafeToDelete - Return true if this instruction doesn't produce any side
+  /// effect and all of its defs are dead.
+  static bool isSafeToDelete(MachineInstr &MI) {
+    const TargetInstrDesc &TID = MI.getDesc();
+    if (TID.mayLoad() || TID.mayStore() || TID.isCall() || TID.isTerminator() ||
+        TID.isCall() || TID.isBarrier() || TID.isReturn() ||
+        TID.hasUnmodeledSideEffects())
+      return false;
+    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+      MachineOperand &MO = MI.getOperand(i);
+      if (!MO.isReg() || !MO.getReg())
+        continue;
+      if (MO.isDef() && !MO.isDead())
+        return false;
+      if (MO.isUse() && MO.isKill())
+        // FIXME: We can't remove kill markers or else the scavenger will assert.
+        // An alternative is to add a ADD pseudo instruction to replace kill
+        // markers.
+        return false;
+    }
+    return true;
+  }
+
+  /// TransferDeadness - A identity copy definition is dead and it's being
+  /// removed. Find the last def or use and mark it as dead / kill.
+  void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
+                        unsigned Reg, BitVector &RegKills,
+                        std::vector<MachineOperand*> &KillOps,
+                        VirtRegMap &VRM) {
+    SmallPtrSet<MachineInstr*, 4> Seens;
+    SmallVector<std::pair<MachineInstr*, int>,8> Refs;
+    for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
+           RE = RegInfo->reg_end(); RI != RE; ++RI) {
+      MachineInstr *UDMI = &*RI;
+      if (UDMI->getParent() != MBB)
+        continue;
+      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
+      if (DI == DistanceMap.end() || DI->second > CurDist)
+        continue;
+      if (Seens.insert(UDMI))
+        Refs.push_back(std::make_pair(UDMI, DI->second));
+    }
+
+    if (Refs.empty())
+      return;
+    std::sort(Refs.begin(), Refs.end(), RefSorter());
+
+    while (!Refs.empty()) {
+      MachineInstr *LastUDMI = Refs.back().first;
+      Refs.pop_back();
+
+      MachineOperand *LastUD = NULL;
+      for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
+        MachineOperand &MO = LastUDMI->getOperand(i);
+        if (!MO.isReg() || MO.getReg() != Reg)
+          continue;
+        if (!LastUD || (LastUD->isUse() && MO.isDef()))
+          LastUD = &MO;
+        if (LastUDMI->isRegTiedToDefOperand(i))
+          break;
+      }
+      if (LastUD->isDef()) {
+        // If the instruction has no side effect, delete it and propagate
+        // backward further. Otherwise, mark is dead and we are done.
+        if (!isSafeToDelete(*LastUDMI)) {
+          LastUD->setIsDead();
+          break;
+        }
+        VRM.RemoveMachineInstrFromMaps(LastUDMI);
+        MBB->erase(LastUDMI);
+      } else {
+        LastUD->setIsKill();
+        RegKills.set(Reg);
+        KillOps[Reg] = LastUD;
+        break;
+      }
+    }
+  }
+
+  /// rewriteMBB - Keep track of which spills are available even after the
+  /// register allocator is done with them.  If possible, avid reloading vregs.
+  void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
+                  LiveIntervals *LIs,
+                  AvailableSpills &Spills, BitVector &RegKills,
+                  std::vector<MachineOperand*> &KillOps) {
+
+    DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '"
+          << MBB.getName() << "':\n");
+
+    MachineFunction &MF = *MBB.getParent();
+    
+    // MaybeDeadStores - When we need to write a value back into a stack slot,
+    // keep track of the inserted store.  If the stack slot value is never read
+    // (because the value was used from some available register, for example), and
+    // subsequently stored to, the original store is dead.  This map keeps track
+    // of inserted stores that are not used.  If we see a subsequent store to the
+    // same stack slot, the original store is deleted.
+    std::vector<MachineInstr*> MaybeDeadStores;
+    MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
+
+    // ReMatDefs - These are rematerializable def MIs which are not deleted.
+    SmallSet<MachineInstr*, 4> ReMatDefs;
+
+    // Clear kill info.
+    SmallSet<unsigned, 2> KilledMIRegs;
+    RegKills.reset();
+    KillOps.clear();
+    KillOps.resize(TRI->getNumRegs(), NULL);
+
+    unsigned Dist = 0;
+    DistanceMap.clear();
+    for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
+         MII != E; ) {
+      MachineBasicBlock::iterator NextMII = llvm::next(MII);
+
+      VirtRegMap::MI2VirtMapTy::const_iterator I, End;
+      bool Erased = false;
+      bool BackTracked = false;
+      if (OptimizeByUnfold(MBB, MII,
+                           MaybeDeadStores, Spills, RegKills, KillOps, VRM))
+        NextMII = llvm::next(MII);
+
+      MachineInstr &MI = *MII;
+
+      if (VRM.hasEmergencySpills(&MI)) {
+        // Spill physical register(s) in the rare case the allocator has run out
+        // of registers to allocate.
+        SmallSet<int, 4> UsedSS;
+        std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
+        for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
+          unsigned PhysReg = EmSpills[i];
+          const TargetRegisterClass *RC =
+            TRI->getPhysicalRegisterRegClass(PhysReg);
+          assert(RC && "Unable to determine register class!");
+          int SS = VRM.getEmergencySpillSlot(RC);
+          if (UsedSS.count(SS))
+            llvm_unreachable("Need to spill more than one physical registers!");
+          UsedSS.insert(SS);
+          TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
+          MachineInstr *StoreMI = prior(MII);
+          VRM.addSpillSlotUse(SS, StoreMI);
+
+          // Back-schedule reloads and remats.
+          MachineBasicBlock::iterator InsertLoc =
+            ComputeReloadLoc(llvm::next(MII), MBB.begin(), PhysReg, TRI, false,
+                             SS, TII, MF);
+
+          TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SS, RC);
+
+          MachineInstr *LoadMI = prior(InsertLoc);
+          VRM.addSpillSlotUse(SS, LoadMI);
+          ++NumPSpills;
+          DistanceMap.insert(std::make_pair(LoadMI, Dist++));
+        }
+        NextMII = llvm::next(MII);
+      }
+
+      // Insert restores here if asked to.
+      if (VRM.isRestorePt(&MI)) {
+        std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
+        for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
+          unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
+          if (!VRM.getPreSplitReg(VirtReg))
+            continue; // Split interval spilled again.
+          unsigned Phys = VRM.getPhys(VirtReg);
+          RegInfo->setPhysRegUsed(Phys);
+
+          // Check if the value being restored if available. If so, it must be
+          // from a predecessor BB that fallthrough into this BB. We do not
+          // expect:
+          // BB1:
+          // r1 = load fi#1
+          // ...
+          //    = r1<kill>
+          // ... # r1 not clobbered
+          // ...
+          //    = load fi#1
+          bool DoReMat = VRM.isReMaterialized(VirtReg);
+          int SSorRMId = DoReMat
+            ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
+          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+          unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
+          if (InReg == Phys) {
+            // If the value is already available in the expected register, save
+            // a reload / remat.
+            if (SSorRMId)
+              DEBUG(dbgs() << "Reusing RM#"
+                           << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
+            else
+              DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
+            DEBUG(dbgs() << " from physreg "
+                         << TRI->getName(InReg) << " for vreg"
+                         << VirtReg <<" instead of reloading into physreg "
+                         << TRI->getName(Phys) << '\n');
+            ++NumOmitted;
+            continue;
+          } else if (InReg && InReg != Phys) {
+            if (SSorRMId)
+              DEBUG(dbgs() << "Reusing RM#"
+                           << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
+            else
+              DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
+            DEBUG(dbgs() << " from physreg "
+                         << TRI->getName(InReg) << " for vreg"
+                         << VirtReg <<" by copying it into physreg "
+                         << TRI->getName(Phys) << '\n');
+
+            // If the reloaded / remat value is available in another register,
+            // copy it to the desired register.
+
+            // Back-schedule reloads and remats.
+            MachineBasicBlock::iterator InsertLoc =
+              ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
+                               SSorRMId, TII, MF);
+
+            TII->copyRegToReg(MBB, InsertLoc, Phys, InReg, RC, RC);
+
+            // This invalidates Phys.
+            Spills.ClobberPhysReg(Phys);
+            // Remember it's available.
+            Spills.addAvailable(SSorRMId, Phys);
+
+            // Mark is killed.
+            MachineInstr *CopyMI = prior(InsertLoc);
+            CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
+            MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
+            KillOpnd->setIsKill();
+            UpdateKills(*CopyMI, TRI, RegKills, KillOps);
+
+            DEBUG(dbgs() << '\t' << *CopyMI);
+            ++NumCopified;
+            continue;
+          }
+
+          // Back-schedule reloads and remats.
+          MachineBasicBlock::iterator InsertLoc =
+            ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
+                             SSorRMId, TII, MF);
+
+          if (VRM.isReMaterialized(VirtReg)) {
+            ReMaterialize(MBB, InsertLoc, Phys, VirtReg, TII, TRI, VRM);
+          } else {
+            const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+            TII->loadRegFromStackSlot(MBB, InsertLoc, Phys, SSorRMId, RC);
+            MachineInstr *LoadMI = prior(InsertLoc);
+            VRM.addSpillSlotUse(SSorRMId, LoadMI);
+            ++NumLoads;
+            DistanceMap.insert(std::make_pair(LoadMI, Dist++));
+          }
+
+          // This invalidates Phys.
+          Spills.ClobberPhysReg(Phys);
+          // Remember it's available.
+          Spills.addAvailable(SSorRMId, Phys);
+
+          UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
+          DEBUG(dbgs() << '\t' << *prior(MII));
+        }
+      }
+
+      // Insert spills here if asked to.
+      if (VRM.isSpillPt(&MI)) {
+        std::vector<std::pair<unsigned,bool> > &SpillRegs =
+          VRM.getSpillPtSpills(&MI);
+        for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
+          unsigned VirtReg = SpillRegs[i].first;
+          bool isKill = SpillRegs[i].second;
+          if (!VRM.getPreSplitReg(VirtReg))
+            continue; // Split interval spilled again.
+          const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
+          unsigned Phys = VRM.getPhys(VirtReg);
+          int StackSlot = VRM.getStackSlot(VirtReg);
+          MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
+          TII->storeRegToStackSlot(MBB, llvm::next(MII), Phys, isKill, StackSlot, RC);
+          MachineInstr *StoreMI = prior(oldNextMII);
+          VRM.addSpillSlotUse(StackSlot, StoreMI);
+          DEBUG(dbgs() << "Store:\t" << *StoreMI);
+          VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
+        }
+        NextMII = llvm::next(MII);
+      }
+
+      /// ReusedOperands - Keep track of operand reuse in case we need to undo
+      /// reuse.
+      ReuseInfo ReusedOperands(MI, TRI);
+      SmallVector<unsigned, 4> VirtUseOps;
+      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+        MachineOperand &MO = MI.getOperand(i);
+        if (!MO.isReg() || MO.getReg() == 0)
+          continue;   // Ignore non-register operands.
+        
+        unsigned VirtReg = MO.getReg();
+        if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
+          // Ignore physregs for spilling, but remember that it is used by this
+          // function.
+          RegInfo->setPhysRegUsed(VirtReg);
+          continue;
+        }
+
+        // We want to process implicit virtual register uses first.
+        if (MO.isImplicit())
+          // If the virtual register is implicitly defined, emit a implicit_def
+          // before so scavenger knows it's "defined".
+          // FIXME: This is a horrible hack done the by register allocator to
+          // remat a definition with virtual register operand.
+          VirtUseOps.insert(VirtUseOps.begin(), i);
+        else
+          VirtUseOps.push_back(i);
+      }
+
+      // Process all of the spilled uses and all non spilled reg references.
+      SmallVector<int, 2> PotentialDeadStoreSlots;
+      KilledMIRegs.clear();
+      for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
+        unsigned i = VirtUseOps[j];
+        MachineOperand &MO = MI.getOperand(i);
+        unsigned VirtReg = MO.getReg();
+        assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
+               "Not a virtual register?");
+
+        unsigned SubIdx = MO.getSubReg();
+        if (VRM.isAssignedReg(VirtReg)) {
+          // This virtual register was assigned a physreg!
+          unsigned Phys = VRM.getPhys(VirtReg);
+          RegInfo->setPhysRegUsed(Phys);
+          if (MO.isDef())
+            ReusedOperands.markClobbered(Phys);
+          substitutePhysReg(MO, Phys, *TRI);
+          if (VRM.isImplicitlyDefined(VirtReg))
+            // FIXME: Is this needed?
+            BuildMI(MBB, &MI, MI.getDebugLoc(),
+                    TII->get(TargetOpcode::IMPLICIT_DEF), Phys);
+          continue;
+        }
+
+        // This virtual register is now known to be a spilled value.
+        if (!MO.isUse())
+          continue;  // Handle defs in the loop below (handle use&def here though)
+
+        bool AvoidReload = MO.isUndef();
+        // Check if it is defined by an implicit def. It should not be spilled.
+        // Note, this is for correctness reason. e.g.
+        // 8   %reg1024<def> = IMPLICIT_DEF
+        // 12  %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
+        // The live range [12, 14) are not part of the r1024 live interval since
+        // it's defined by an implicit def. It will not conflicts with live
+        // interval of r1025. Now suppose both registers are spilled, you can
+        // easily see a situation where both registers are reloaded before
+        // the INSERT_SUBREG and both target registers that would overlap.
+        bool DoReMat = VRM.isReMaterialized(VirtReg);
+        int SSorRMId = DoReMat
+          ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
+        int ReuseSlot = SSorRMId;
+
+        // Check to see if this stack slot is available.
+        unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
+
+        // If this is a sub-register use, make sure the reuse register is in the
+        // right register class. For example, for x86 not all of the 32-bit
+        // registers have accessible sub-registers.
+        // Similarly so for EXTRACT_SUBREG. Consider this:
+        // EDI = op
+        // MOV32_mr fi#1, EDI
+        // ...
+        //       = EXTRACT_SUBREG fi#1
+        // fi#1 is available in EDI, but it cannot be reused because it's not in
+        // the right register file.
+        if (PhysReg && !AvoidReload && (SubIdx || MI.isExtractSubreg())) {
+          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+          if (!RC->contains(PhysReg))
+            PhysReg = 0;
+        }
+
+        if (PhysReg && !AvoidReload) {
+          // This spilled operand might be part of a two-address operand.  If this
+          // is the case, then changing it will necessarily require changing the 
+          // def part of the instruction as well.  However, in some cases, we
+          // aren't allowed to modify the reused register.  If none of these cases
+          // apply, reuse it.
+          bool CanReuse = true;
+          bool isTied = MI.isRegTiedToDefOperand(i);
+          if (isTied) {
+            // Okay, we have a two address operand.  We can reuse this physreg as
+            // long as we are allowed to clobber the value and there isn't an
+            // earlier def that has already clobbered the physreg.
+            CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
+              Spills.canClobberPhysReg(PhysReg);
+          }
+          
+          if (CanReuse) {
+            // If this stack slot value is already available, reuse it!
+            if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
+              DEBUG(dbgs() << "Reusing RM#"
+                           << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
+            else
+              DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
+            DEBUG(dbgs() << " from physreg "
+                         << TRI->getName(PhysReg) << " for vreg"
+                         << VirtReg <<" instead of reloading into physreg "
+                         << TRI->getName(VRM.getPhys(VirtReg)) << '\n');
+            unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+            MI.getOperand(i).setReg(RReg);
+            MI.getOperand(i).setSubReg(0);
+
+            // The only technical detail we have is that we don't know that
+            // PhysReg won't be clobbered by a reloaded stack slot that occurs
+            // later in the instruction.  In particular, consider 'op V1, V2'.
+            // If V1 is available in physreg R0, we would choose to reuse it
+            // here, instead of reloading it into the register the allocator
+            // indicated (say R1).  However, V2 might have to be reloaded
+            // later, and it might indicate that it needs to live in R0.  When
+            // this occurs, we need to have information available that
+            // indicates it is safe to use R1 for the reload instead of R0.
+            //
+            // To further complicate matters, we might conflict with an alias,
+            // or R0 and R1 might not be compatible with each other.  In this
+            // case, we actually insert a reload for V1 in R1, ensuring that
+            // we can get at R0 or its alias.
+            ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
+                                    VRM.getPhys(VirtReg), VirtReg);
+            if (isTied)
+              // Only mark it clobbered if this is a use&def operand.
+              ReusedOperands.markClobbered(PhysReg);
+            ++NumReused;
+
+            if (MI.getOperand(i).isKill() &&
+                ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
+
+              // The store of this spilled value is potentially dead, but we
+              // won't know for certain until we've confirmed that the re-use
+              // above is valid, which means waiting until the other operands
+              // are processed. For now we just track the spill slot, we'll
+              // remove it after the other operands are processed if valid.
+
+              PotentialDeadStoreSlots.push_back(ReuseSlot);
+            }
+
+            // Mark is isKill if it's there no other uses of the same virtual
+            // register and it's not a two-address operand. IsKill will be
+            // unset if reg is reused.
+            if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
+              MI.getOperand(i).setIsKill();
+              KilledMIRegs.insert(VirtReg);
+            }
+
+            continue;
+          }  // CanReuse
+          
+          // Otherwise we have a situation where we have a two-address instruction
+          // whose mod/ref operand needs to be reloaded.  This reload is already
+          // available in some register "PhysReg", but if we used PhysReg as the
+          // operand to our 2-addr instruction, the instruction would modify
+          // PhysReg.  This isn't cool if something later uses PhysReg and expects
+          // to get its initial value.
+          //
+          // To avoid this problem, and to avoid doing a load right after a store,
+          // we emit a copy from PhysReg into the designated register for this
+          // operand.
+          unsigned DesignatedReg = VRM.getPhys(VirtReg);
+          assert(DesignatedReg && "Must map virtreg to physreg!");
+
+          // Note that, if we reused a register for a previous operand, the
+          // register we want to reload into might not actually be
+          // available.  If this occurs, use the register indicated by the
+          // reuser.
+          if (ReusedOperands.hasReuses())
+            DesignatedReg = ReusedOperands.GetRegForReload(VirtReg,
+                                                           DesignatedReg, &MI, 
+                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
+          
+          // If the mapped designated register is actually the physreg we have
+          // incoming, we don't need to inserted a dead copy.
+          if (DesignatedReg == PhysReg) {
+            // If this stack slot value is already available, reuse it!
+            if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
+              DEBUG(dbgs() << "Reusing RM#"
+                    << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
+            else
+              DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
+            DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg)
+                         << " for vreg" << VirtReg
+                         << " instead of reloading into same physreg.\n");
+            unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+            MI.getOperand(i).setReg(RReg);
+            MI.getOperand(i).setSubReg(0);
+            ReusedOperands.markClobbered(RReg);
+            ++NumReused;
+            continue;
+          }
+          
+          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+          RegInfo->setPhysRegUsed(DesignatedReg);
+          ReusedOperands.markClobbered(DesignatedReg);
+
+          // Back-schedule reloads and remats.
+          MachineBasicBlock::iterator InsertLoc =
+            ComputeReloadLoc(&MI, MBB.begin(), PhysReg, TRI, DoReMat,
+                             SSorRMId, TII, MF);
+
+          TII->copyRegToReg(MBB, InsertLoc, DesignatedReg, PhysReg, RC, RC);
+
+          MachineInstr *CopyMI = prior(InsertLoc);
+          CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
+          UpdateKills(*CopyMI, TRI, RegKills, KillOps);
+
+          // This invalidates DesignatedReg.
+          Spills.ClobberPhysReg(DesignatedReg);
+          
+          Spills.addAvailable(ReuseSlot, DesignatedReg);
+          unsigned RReg =
+            SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
+          MI.getOperand(i).setReg(RReg);
+          MI.getOperand(i).setSubReg(0);
+          DEBUG(dbgs() << '\t' << *prior(MII));
+          ++NumReused;
+          continue;
+        } // if (PhysReg)
+        
+        // Otherwise, reload it and remember that we have it.
+        PhysReg = VRM.getPhys(VirtReg);
+        assert(PhysReg && "Must map virtreg to physreg!");
+
+        // Note that, if we reused a register for a previous operand, the
+        // register we want to reload into might not actually be
+        // available.  If this occurs, use the register indicated by the
+        // reuser.
+        if (ReusedOperands.hasReuses())
+          PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI, 
+                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
+        
+        RegInfo->setPhysRegUsed(PhysReg);
+        ReusedOperands.markClobbered(PhysReg);
+        if (AvoidReload)
+          ++NumAvoided;
+        else {
+          // Back-schedule reloads and remats.
+          MachineBasicBlock::iterator InsertLoc =
+            ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, DoReMat,
+                             SSorRMId, TII, MF);
+
+          if (DoReMat) {
+            ReMaterialize(MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, VRM);
+          } else {
+            const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+            TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SSorRMId, RC);
+            MachineInstr *LoadMI = prior(InsertLoc);
+            VRM.addSpillSlotUse(SSorRMId, LoadMI);
+            ++NumLoads;
+            DistanceMap.insert(std::make_pair(LoadMI, Dist++));
+          }
+          // This invalidates PhysReg.
+          Spills.ClobberPhysReg(PhysReg);
+
+          // Any stores to this stack slot are not dead anymore.
+          if (!DoReMat)
+            MaybeDeadStores[SSorRMId] = NULL;
+          Spills.addAvailable(SSorRMId, PhysReg);
+          // Assumes this is the last use. IsKill will be unset if reg is reused
+          // unless it's a two-address operand.
+          if (!MI.isRegTiedToDefOperand(i) &&
+              KilledMIRegs.count(VirtReg) == 0) {
+            MI.getOperand(i).setIsKill();
+            KilledMIRegs.insert(VirtReg);
+          }
+
+          UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
+          DEBUG(dbgs() << '\t' << *prior(InsertLoc));
+        }
+        unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+        MI.getOperand(i).setReg(RReg);
+        MI.getOperand(i).setSubReg(0);
+      }
+
+      // Ok - now we can remove stores that have been confirmed dead.
+      for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
+        // This was the last use and the spilled value is still available
+        // for reuse. That means the spill was unnecessary!
+        int PDSSlot = PotentialDeadStoreSlots[j];
+        MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
+        if (DeadStore) {
+          DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
+          InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
+          VRM.RemoveMachineInstrFromMaps(DeadStore);
+          MBB.erase(DeadStore);
+          MaybeDeadStores[PDSSlot] = NULL;
+          ++NumDSE;
+        }
+      }
+
+
+      DEBUG(dbgs() << '\t' << MI);
+
+
+      // If we have folded references to memory operands, make sure we clear all
+      // physical registers that may contain the value of the spilled virtual
+      // register
+      SmallSet<int, 2> FoldedSS;
+      for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
+        unsigned VirtReg = I->second.first;
+        VirtRegMap::ModRef MR = I->second.second;
+        DEBUG(dbgs() << "Folded vreg: " << VirtReg << "  MR: " << MR);
+
+        // MI2VirtMap be can updated which invalidate the iterator.
+        // Increment the iterator first.
+        ++I;
+        int SS = VRM.getStackSlot(VirtReg);
+        if (SS == VirtRegMap::NO_STACK_SLOT)
+          continue;
+        FoldedSS.insert(SS);
+        DEBUG(dbgs() << " - StackSlot: " << SS << "\n");
+        
+        // If this folded instruction is just a use, check to see if it's a
+        // straight load from the virt reg slot.
+        if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
+          int FrameIdx;
+          unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
+          if (DestReg && FrameIdx == SS) {
+            // If this spill slot is available, turn it into a copy (or nothing)
+            // instead of leaving it as a load!
+            if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
+              DEBUG(dbgs() << "Promoted Load To Copy: " << MI);
+              if (DestReg != InReg) {
+                const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
+                TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
+                MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
+                unsigned SubIdx = DefMO->getSubReg();
+                // Revisit the copy so we make sure to notice the effects of the
+                // operation on the destreg (either needing to RA it if it's 
+                // virtual or needing to clobber any values if it's physical).
+                NextMII = &MI;
+                --NextMII;  // backtrack to the copy.
+                NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse);
+                // Propagate the sub-register index over.
+                if (SubIdx) {
+                  DefMO = NextMII->findRegisterDefOperand(DestReg);
+                  DefMO->setSubReg(SubIdx);
+                }
+
+                // Mark is killed.
+                MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
+                KillOpnd->setIsKill();
+
+                BackTracked = true;
+              } else {
+                DEBUG(dbgs() << "Removing now-noop copy: " << MI);
+                // Unset last kill since it's being reused.
+                InvalidateKill(InReg, TRI, RegKills, KillOps);
+                Spills.disallowClobberPhysReg(InReg);
+              }
+
+              InvalidateKills(MI, TRI, RegKills, KillOps);
+              VRM.RemoveMachineInstrFromMaps(&MI);
+              MBB.erase(&MI);
+              Erased = true;
+              goto ProcessNextInst;
+            }
+          } else {
+            unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
+            SmallVector<MachineInstr*, 4> NewMIs;
+            if (PhysReg &&
+                TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
+              MBB.insert(MII, NewMIs[0]);
+              InvalidateKills(MI, TRI, RegKills, KillOps);
+              VRM.RemoveMachineInstrFromMaps(&MI);
+              MBB.erase(&MI);
+              Erased = true;
+              --NextMII;  // backtrack to the unfolded instruction.
+              BackTracked = true;
+              goto ProcessNextInst;
+            }
+          }
+        }
+
+        // If this reference is not a use, any previous store is now dead.
+        // Otherwise, the store to this stack slot is not dead anymore.
+        MachineInstr* DeadStore = MaybeDeadStores[SS];
+        if (DeadStore) {
+          bool isDead = !(MR & VirtRegMap::isRef);
+          MachineInstr *NewStore = NULL;
+          if (MR & VirtRegMap::isModRef) {
+            unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
+            SmallVector<MachineInstr*, 4> NewMIs;
+            // We can reuse this physreg as long as we are allowed to clobber
+            // the value and there isn't an earlier def that has already clobbered
+            // the physreg.
+            if (PhysReg &&
+                !ReusedOperands.isClobbered(PhysReg) &&
+                Spills.canClobberPhysReg(PhysReg) &&
+                !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
+              MachineOperand *KillOpnd =
+                DeadStore->findRegisterUseOperand(PhysReg, true);
+              // Note, if the store is storing a sub-register, it's possible the
+              // super-register is needed below.
+              if (KillOpnd && !KillOpnd->getSubReg() &&
+                  TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
+                MBB.insert(MII, NewMIs[0]);
+                NewStore = NewMIs[1];
+                MBB.insert(MII, NewStore);
+                VRM.addSpillSlotUse(SS, NewStore);
+                InvalidateKills(MI, TRI, RegKills, KillOps);
+                VRM.RemoveMachineInstrFromMaps(&MI);
+                MBB.erase(&MI);
+                Erased = true;
+                --NextMII;
+                --NextMII;  // backtrack to the unfolded instruction.
+                BackTracked = true;
+                isDead = true;
+                ++NumSUnfold;
+              }
+            }
+          }
+
+          if (isDead) {  // Previous store is dead.
+            // If we get here, the store is dead, nuke it now.
+            DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
+            InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
+            VRM.RemoveMachineInstrFromMaps(DeadStore);
+            MBB.erase(DeadStore);
+            if (!NewStore)
+              ++NumDSE;
+          }
+
+          MaybeDeadStores[SS] = NULL;
+          if (NewStore) {
+            // Treat this store as a spill merged into a copy. That makes the
+            // stack slot value available.
+            VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
+            goto ProcessNextInst;
+          }
+        }
+
+        // If the spill slot value is available, and this is a new definition of
+        // the value, the value is not available anymore.
+        if (MR & VirtRegMap::isMod) {
+          // Notice that the value in this stack slot has been modified.
+          Spills.ModifyStackSlotOrReMat(SS);
+          
+          // If this is *just* a mod of the value, check to see if this is just a
+          // store to the spill slot (i.e. the spill got merged into the copy). If
+          // so, realize that the vreg is available now, and add the store to the
+          // MaybeDeadStore info.
+          int StackSlot;
+          if (!(MR & VirtRegMap::isRef)) {
+            if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
+              assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
+                     "Src hasn't been allocated yet?");
+
+              if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
+                                      Spills, RegKills, KillOps, TRI, VRM)) {
+                NextMII = llvm::next(MII);
+                BackTracked = true;
+                goto ProcessNextInst;
+              }
+
+              // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
+              // this as a potentially dead store in case there is a subsequent
+              // store into the stack slot without a read from it.
+              MaybeDeadStores[StackSlot] = &MI;
+
+              // If the stack slot value was previously available in some other
+              // register, change it now.  Otherwise, make the register
+              // available in PhysReg.
+              Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
+            }
+          }
+        }
+      }
+
+      // Process all of the spilled defs.
+      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+        MachineOperand &MO = MI.getOperand(i);
+        if (!(MO.isReg() && MO.getReg() && MO.isDef()))
+          continue;
+
+        unsigned VirtReg = MO.getReg();
+        if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
+          // Check to see if this is a noop copy.  If so, eliminate the
+          // instruction before considering the dest reg to be changed.
+          // Also check if it's copying from an "undef", if so, we can't
+          // eliminate this or else the undef marker is lost and it will
+          // confuses the scavenger. This is extremely rare.
+          unsigned Src, Dst, SrcSR, DstSR;
+          if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst &&
+              !MI.findRegisterUseOperand(Src)->isUndef()) {
+            ++NumDCE;
+            DEBUG(dbgs() << "Removing now-noop copy: " << MI);
+            SmallVector<unsigned, 2> KillRegs;
+            InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
+            if (MO.isDead() && !KillRegs.empty()) {
+              // Source register or an implicit super/sub-register use is killed.
+              assert(KillRegs[0] == Dst ||
+                     TRI->isSubRegister(KillRegs[0], Dst) ||
+                     TRI->isSuperRegister(KillRegs[0], Dst));
+              // Last def is now dead.
+              TransferDeadness(&MBB, Dist, Src, RegKills, KillOps, VRM);
+            }
+            VRM.RemoveMachineInstrFromMaps(&MI);
+            MBB.erase(&MI);
+            Erased = true;
+            Spills.disallowClobberPhysReg(VirtReg);
+            goto ProcessNextInst;
+          }
+
+          // If it's not a no-op copy, it clobbers the value in the destreg.
+          Spills.ClobberPhysReg(VirtReg);
+          ReusedOperands.markClobbered(VirtReg);
+   
+          // Check to see if this instruction is a load from a stack slot into
+          // a register.  If so, this provides the stack slot value in the reg.
+          int FrameIdx;
+          if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
+            assert(DestReg == VirtReg && "Unknown load situation!");
+
+            // If it is a folded reference, then it's not safe to clobber.
+            bool Folded = FoldedSS.count(FrameIdx);
+            // Otherwise, if it wasn't available, remember that it is now!
+            Spills.addAvailable(FrameIdx, DestReg, !Folded);
+            goto ProcessNextInst;
+          }
+              
+          continue;
+        }
+
+        unsigned SubIdx = MO.getSubReg();
+        bool DoReMat = VRM.isReMaterialized(VirtReg);
+        if (DoReMat)
+          ReMatDefs.insert(&MI);
+
+        // The only vregs left are stack slot definitions.
+        int StackSlot = VRM.getStackSlot(VirtReg);
+        const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
+
+        // If this def is part of a two-address operand, make sure to execute
+        // the store from the correct physical register.
+        unsigned PhysReg;
+        unsigned TiedOp;
+        if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
+          PhysReg = MI.getOperand(TiedOp).getReg();
+          if (SubIdx) {
+            unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
+            assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
+                   "Can't find corresponding super-register!");
+            PhysReg = SuperReg;
+          }
+        } else {
+          PhysReg = VRM.getPhys(VirtReg);
+          if (ReusedOperands.isClobbered(PhysReg)) {
+            // Another def has taken the assigned physreg. It must have been a
+            // use&def which got it due to reuse. Undo the reuse!
+            PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI, 
+                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
+          }
+        }
+
+        assert(PhysReg && "VR not assigned a physical register?");
+        RegInfo->setPhysRegUsed(PhysReg);
+        unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+        ReusedOperands.markClobbered(RReg);
+        MI.getOperand(i).setReg(RReg);
+        MI.getOperand(i).setSubReg(0);
+
+        if (!MO.isDead()) {
+          MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
+          SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
+                            LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
+          NextMII = llvm::next(MII);
+
+          // Check to see if this is a noop copy.  If so, eliminate the
+          // instruction before considering the dest reg to be changed.
+          {
+            unsigned Src, Dst, SrcSR, DstSR;
+            if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
+              ++NumDCE;
+              DEBUG(dbgs() << "Removing now-noop copy: " << MI);
+              InvalidateKills(MI, TRI, RegKills, KillOps);
+              VRM.RemoveMachineInstrFromMaps(&MI);
+              MBB.erase(&MI);
+              Erased = true;
+              UpdateKills(*LastStore, TRI, RegKills, KillOps);
+              goto ProcessNextInst;
+            }
+          }
+        }    
+      }
+    ProcessNextInst:
+      // Delete dead instructions without side effects.
+      if (!Erased && !BackTracked && isSafeToDelete(MI)) {
+        InvalidateKills(MI, TRI, RegKills, KillOps);
+        VRM.RemoveMachineInstrFromMaps(&MI);
+        MBB.erase(&MI);
+        Erased = true;
+      }
+      if (!Erased)
+        DistanceMap.insert(std::make_pair(&MI, Dist++));
+      if (!Erased && !BackTracked) {
+        for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
+          UpdateKills(*II, TRI, RegKills, KillOps);
+      }
+      MII = NextMII;
+    }
+
+  }
+
+};
+
+}
+
+llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
+  switch (RewriterOpt) {
+  default: llvm_unreachable("Unreachable!");
+  case local:
+    return new LocalRewriter();
+  case trivial:
+    return new TrivialRewriter();
+  }
+}