Check in LLVM r95781.
diff --git a/lib/ExecutionEngine/ExecutionEngine.cpp b/lib/ExecutionEngine/ExecutionEngine.cpp
new file mode 100644
index 0000000..3e684e1
--- /dev/null
+++ b/lib/ExecutionEngine/ExecutionEngine.cpp
@@ -0,0 +1,1079 @@
+//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the common interface used by the various execution engine
+// subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "jit"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MutexGuard.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/System/DynamicLibrary.h"
+#include "llvm/System/Host.h"
+#include "llvm/Target/TargetData.h"
+#include <cmath>
+#include <cstring>
+using namespace llvm;
+
+STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
+STATISTIC(NumGlobals  , "Number of global vars initialized");
+
+ExecutionEngine *(*ExecutionEngine::JITCtor)(
+  Module *M,
+  std::string *ErrorStr,
+  JITMemoryManager *JMM,
+  CodeGenOpt::Level OptLevel,
+  bool GVsWithCode,
+  CodeModel::Model CMM,
+  StringRef MArch,
+  StringRef MCPU,
+  const SmallVectorImpl<std::string>& MAttrs) = 0;
+ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
+                                                std::string *ErrorStr) = 0;
+ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
+
+
+ExecutionEngine::ExecutionEngine(Module *M)
+  : EEState(*this),
+    LazyFunctionCreator(0) {
+  CompilingLazily         = false;
+  GVCompilationDisabled   = false;
+  SymbolSearchingDisabled = false;
+  Modules.push_back(M);
+  assert(M && "Module is null?");
+}
+
+ExecutionEngine::~ExecutionEngine() {
+  clearAllGlobalMappings();
+  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
+    delete Modules[i];
+}
+
+char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
+  const Type *ElTy = GV->getType()->getElementType();
+  size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
+  return new char[GVSize];
+}
+
+/// removeModule - Remove a Module from the list of modules.
+bool ExecutionEngine::removeModule(Module *M) {
+  for(SmallVector<Module *, 1>::iterator I = Modules.begin(), 
+        E = Modules.end(); I != E; ++I) {
+    Module *Found = *I;
+    if (Found == M) {
+      Modules.erase(I);
+      clearGlobalMappingsFromModule(M);
+      return true;
+    }
+  }
+  return false;
+}
+
+/// FindFunctionNamed - Search all of the active modules to find the one that
+/// defines FnName.  This is very slow operation and shouldn't be used for
+/// general code.
+Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
+  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
+    if (Function *F = Modules[i]->getFunction(FnName))
+      return F;
+  }
+  return 0;
+}
+
+
+void *ExecutionEngineState::RemoveMapping(
+  const MutexGuard &, const GlobalValue *ToUnmap) {
+  GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
+  void *OldVal;
+  if (I == GlobalAddressMap.end())
+    OldVal = 0;
+  else {
+    OldVal = I->second;
+    GlobalAddressMap.erase(I);
+  }
+
+  GlobalAddressReverseMap.erase(OldVal);
+  return OldVal;
+}
+
+/// addGlobalMapping - Tell the execution engine that the specified global is
+/// at the specified location.  This is used internally as functions are JIT'd
+/// and as global variables are laid out in memory.  It can and should also be
+/// used by clients of the EE that want to have an LLVM global overlay
+/// existing data in memory.
+void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
+  MutexGuard locked(lock);
+
+  DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 
+        << "\' to [" << Addr << "]\n";);
+  void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
+  assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
+  CurVal = Addr;
+  
+  // If we are using the reverse mapping, add it too
+  if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
+    AssertingVH<const GlobalValue> &V =
+      EEState.getGlobalAddressReverseMap(locked)[Addr];
+    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
+    V = GV;
+  }
+}
+
+/// clearAllGlobalMappings - Clear all global mappings and start over again
+/// use in dynamic compilation scenarios when you want to move globals
+void ExecutionEngine::clearAllGlobalMappings() {
+  MutexGuard locked(lock);
+  
+  EEState.getGlobalAddressMap(locked).clear();
+  EEState.getGlobalAddressReverseMap(locked).clear();
+}
+
+/// clearGlobalMappingsFromModule - Clear all global mappings that came from a
+/// particular module, because it has been removed from the JIT.
+void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
+  MutexGuard locked(lock);
+  
+  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
+    EEState.RemoveMapping(locked, FI);
+  }
+  for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 
+       GI != GE; ++GI) {
+    EEState.RemoveMapping(locked, GI);
+  }
+}
+
+/// updateGlobalMapping - Replace an existing mapping for GV with a new
+/// address.  This updates both maps as required.  If "Addr" is null, the
+/// entry for the global is removed from the mappings.
+void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
+  MutexGuard locked(lock);
+
+  ExecutionEngineState::GlobalAddressMapTy &Map =
+    EEState.getGlobalAddressMap(locked);
+
+  // Deleting from the mapping?
+  if (Addr == 0) {
+    return EEState.RemoveMapping(locked, GV);
+  }
+  
+  void *&CurVal = Map[GV];
+  void *OldVal = CurVal;
+
+  if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
+    EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
+  CurVal = Addr;
+  
+  // If we are using the reverse mapping, add it too
+  if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
+    AssertingVH<const GlobalValue> &V =
+      EEState.getGlobalAddressReverseMap(locked)[Addr];
+    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
+    V = GV;
+  }
+  return OldVal;
+}
+
+/// getPointerToGlobalIfAvailable - This returns the address of the specified
+/// global value if it is has already been codegen'd, otherwise it returns null.
+///
+void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
+  MutexGuard locked(lock);
+  
+  ExecutionEngineState::GlobalAddressMapTy::iterator I =
+    EEState.getGlobalAddressMap(locked).find(GV);
+  return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
+}
+
+/// getGlobalValueAtAddress - Return the LLVM global value object that starts
+/// at the specified address.
+///
+const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
+  MutexGuard locked(lock);
+
+  // If we haven't computed the reverse mapping yet, do so first.
+  if (EEState.getGlobalAddressReverseMap(locked).empty()) {
+    for (ExecutionEngineState::GlobalAddressMapTy::iterator
+         I = EEState.getGlobalAddressMap(locked).begin(),
+         E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
+      EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
+                                                                     I->first));
+  }
+
+  std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
+    EEState.getGlobalAddressReverseMap(locked).find(Addr);
+  return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
+}
+
+// CreateArgv - Turn a vector of strings into a nice argv style array of
+// pointers to null terminated strings.
+//
+static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE,
+                        const std::vector<std::string> &InputArgv) {
+  unsigned PtrSize = EE->getTargetData()->getPointerSize();
+  char *Result = new char[(InputArgv.size()+1)*PtrSize];
+
+  DEBUG(dbgs() << "JIT: ARGV = " << (void*)Result << "\n");
+  const Type *SBytePtr = Type::getInt8PtrTy(C);
+
+  for (unsigned i = 0; i != InputArgv.size(); ++i) {
+    unsigned Size = InputArgv[i].size()+1;
+    char *Dest = new char[Size];
+    DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
+
+    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
+    Dest[Size-1] = 0;
+
+    // Endian safe: Result[i] = (PointerTy)Dest;
+    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
+                           SBytePtr);
+  }
+
+  // Null terminate it
+  EE->StoreValueToMemory(PTOGV(0),
+                         (GenericValue*)(Result+InputArgv.size()*PtrSize),
+                         SBytePtr);
+  return Result;
+}
+
+
+/// runStaticConstructorsDestructors - This method is used to execute all of
+/// the static constructors or destructors for a module, depending on the
+/// value of isDtors.
+void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
+                                                       bool isDtors) {
+  const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
+  
+  // Execute global ctors/dtors for each module in the program.
+  
+ GlobalVariable *GV = module->getNamedGlobal(Name);
+
+ // If this global has internal linkage, or if it has a use, then it must be
+ // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
+ // this is the case, don't execute any of the global ctors, __main will do
+ // it.
+ if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
+ 
+ // Should be an array of '{ int, void ()* }' structs.  The first value is
+ // the init priority, which we ignore.
+ ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
+ if (!InitList) return;
+ for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
+   if (ConstantStruct *CS = 
+       dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
+     if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
+   
+     Constant *FP = CS->getOperand(1);
+     if (FP->isNullValue())
+       break;  // Found a null terminator, exit.
+   
+     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
+       if (CE->isCast())
+         FP = CE->getOperand(0);
+     if (Function *F = dyn_cast<Function>(FP)) {
+       // Execute the ctor/dtor function!
+       runFunction(F, std::vector<GenericValue>());
+     }
+   }
+}
+
+/// runStaticConstructorsDestructors - This method is used to execute all of
+/// the static constructors or destructors for a program, depending on the
+/// value of isDtors.
+void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
+  // Execute global ctors/dtors for each module in the program.
+  for (unsigned m = 0, e = Modules.size(); m != e; ++m)
+    runStaticConstructorsDestructors(Modules[m], isDtors);
+}
+
+#ifndef NDEBUG
+/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
+static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
+  unsigned PtrSize = EE->getTargetData()->getPointerSize();
+  for (unsigned i = 0; i < PtrSize; ++i)
+    if (*(i + (uint8_t*)Loc))
+      return false;
+  return true;
+}
+#endif
+
+/// runFunctionAsMain - This is a helper function which wraps runFunction to
+/// handle the common task of starting up main with the specified argc, argv,
+/// and envp parameters.
+int ExecutionEngine::runFunctionAsMain(Function *Fn,
+                                       const std::vector<std::string> &argv,
+                                       const char * const * envp) {
+  std::vector<GenericValue> GVArgs;
+  GenericValue GVArgc;
+  GVArgc.IntVal = APInt(32, argv.size());
+
+  // Check main() type
+  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
+  const FunctionType *FTy = Fn->getFunctionType();
+  const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
+  switch (NumArgs) {
+  case 3:
+   if (FTy->getParamType(2) != PPInt8Ty) {
+     llvm_report_error("Invalid type for third argument of main() supplied");
+   }
+   // FALLS THROUGH
+  case 2:
+   if (FTy->getParamType(1) != PPInt8Ty) {
+     llvm_report_error("Invalid type for second argument of main() supplied");
+   }
+   // FALLS THROUGH
+  case 1:
+   if (!FTy->getParamType(0)->isInteger(32)) {
+     llvm_report_error("Invalid type for first argument of main() supplied");
+   }
+   // FALLS THROUGH
+  case 0:
+   if (!isa<IntegerType>(FTy->getReturnType()) &&
+       !FTy->getReturnType()->isVoidTy()) {
+     llvm_report_error("Invalid return type of main() supplied");
+   }
+   break;
+  default:
+   llvm_report_error("Invalid number of arguments of main() supplied");
+  }
+  
+  if (NumArgs) {
+    GVArgs.push_back(GVArgc); // Arg #0 = argc.
+    if (NumArgs > 1) {
+      // Arg #1 = argv.
+      GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv))); 
+      assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
+             "argv[0] was null after CreateArgv");
+      if (NumArgs > 2) {
+        std::vector<std::string> EnvVars;
+        for (unsigned i = 0; envp[i]; ++i)
+          EnvVars.push_back(envp[i]);
+        // Arg #2 = envp.
+        GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars)));
+      }
+    }
+  }
+  return runFunction(Fn, GVArgs).IntVal.getZExtValue();
+}
+
+/// If possible, create a JIT, unless the caller specifically requests an
+/// Interpreter or there's an error. If even an Interpreter cannot be created,
+/// NULL is returned.
+///
+ExecutionEngine *ExecutionEngine::create(Module *M,
+                                         bool ForceInterpreter,
+                                         std::string *ErrorStr,
+                                         CodeGenOpt::Level OptLevel,
+                                         bool GVsWithCode) {
+  return EngineBuilder(M)
+      .setEngineKind(ForceInterpreter
+                     ? EngineKind::Interpreter
+                     : EngineKind::JIT)
+      .setErrorStr(ErrorStr)
+      .setOptLevel(OptLevel)
+      .setAllocateGVsWithCode(GVsWithCode)
+      .create();
+}
+
+ExecutionEngine *EngineBuilder::create() {
+  // Make sure we can resolve symbols in the program as well. The zero arg
+  // to the function tells DynamicLibrary to load the program, not a library.
+  if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
+    return 0;
+
+  // If the user specified a memory manager but didn't specify which engine to
+  // create, we assume they only want the JIT, and we fail if they only want
+  // the interpreter.
+  if (JMM) {
+    if (WhichEngine & EngineKind::JIT)
+      WhichEngine = EngineKind::JIT;
+    else {
+      if (ErrorStr)
+        *ErrorStr = "Cannot create an interpreter with a memory manager.";
+      return 0;
+    }
+  }
+
+  // Unless the interpreter was explicitly selected or the JIT is not linked,
+  // try making a JIT.
+  if (WhichEngine & EngineKind::JIT) {
+    if (ExecutionEngine::JITCtor) {
+      ExecutionEngine *EE =
+        ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel,
+                                 AllocateGVsWithCode, CMModel,
+                                 MArch, MCPU, MAttrs);
+      if (EE) return EE;
+    }
+  }
+
+  // If we can't make a JIT and we didn't request one specifically, try making
+  // an interpreter instead.
+  if (WhichEngine & EngineKind::Interpreter) {
+    if (ExecutionEngine::InterpCtor)
+      return ExecutionEngine::InterpCtor(M, ErrorStr);
+    if (ErrorStr)
+      *ErrorStr = "Interpreter has not been linked in.";
+    return 0;
+  }
+
+  if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) {
+    if (ErrorStr)
+      *ErrorStr = "JIT has not been linked in.";
+  }    
+  return 0;
+}
+
+/// getPointerToGlobal - This returns the address of the specified global
+/// value.  This may involve code generation if it's a function.
+///
+void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
+  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
+    return getPointerToFunction(F);
+
+  MutexGuard locked(lock);
+  void *p = EEState.getGlobalAddressMap(locked)[GV];
+  if (p)
+    return p;
+
+  // Global variable might have been added since interpreter started.
+  if (GlobalVariable *GVar =
+          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
+    EmitGlobalVariable(GVar);
+  else
+    llvm_unreachable("Global hasn't had an address allocated yet!");
+  return EEState.getGlobalAddressMap(locked)[GV];
+}
+
+/// This function converts a Constant* into a GenericValue. The interesting 
+/// part is if C is a ConstantExpr.
+/// @brief Get a GenericValue for a Constant*
+GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
+  // If its undefined, return the garbage.
+  if (isa<UndefValue>(C)) {
+    GenericValue Result;
+    switch (C->getType()->getTypeID()) {
+    case Type::IntegerTyID:
+    case Type::X86_FP80TyID:
+    case Type::FP128TyID:
+    case Type::PPC_FP128TyID:
+      // Although the value is undefined, we still have to construct an APInt
+      // with the correct bit width.
+      Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
+      break;
+    default:
+      break;
+    }
+    return Result;
+  }
+
+  // If the value is a ConstantExpr
+  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+    Constant *Op0 = CE->getOperand(0);
+    switch (CE->getOpcode()) {
+    case Instruction::GetElementPtr: {
+      // Compute the index 
+      GenericValue Result = getConstantValue(Op0);
+      SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
+      uint64_t Offset =
+        TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
+
+      char* tmp = (char*) Result.PointerVal;
+      Result = PTOGV(tmp + Offset);
+      return Result;
+    }
+    case Instruction::Trunc: {
+      GenericValue GV = getConstantValue(Op0);
+      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+      GV.IntVal = GV.IntVal.trunc(BitWidth);
+      return GV;
+    }
+    case Instruction::ZExt: {
+      GenericValue GV = getConstantValue(Op0);
+      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+      GV.IntVal = GV.IntVal.zext(BitWidth);
+      return GV;
+    }
+    case Instruction::SExt: {
+      GenericValue GV = getConstantValue(Op0);
+      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+      GV.IntVal = GV.IntVal.sext(BitWidth);
+      return GV;
+    }
+    case Instruction::FPTrunc: {
+      // FIXME long double
+      GenericValue GV = getConstantValue(Op0);
+      GV.FloatVal = float(GV.DoubleVal);
+      return GV;
+    }
+    case Instruction::FPExt:{
+      // FIXME long double
+      GenericValue GV = getConstantValue(Op0);
+      GV.DoubleVal = double(GV.FloatVal);
+      return GV;
+    }
+    case Instruction::UIToFP: {
+      GenericValue GV = getConstantValue(Op0);
+      if (CE->getType()->isFloatTy())
+        GV.FloatVal = float(GV.IntVal.roundToDouble());
+      else if (CE->getType()->isDoubleTy())
+        GV.DoubleVal = GV.IntVal.roundToDouble();
+      else if (CE->getType()->isX86_FP80Ty()) {
+        const uint64_t zero[] = {0, 0};
+        APFloat apf = APFloat(APInt(80, 2, zero));
+        (void)apf.convertFromAPInt(GV.IntVal, 
+                                   false,
+                                   APFloat::rmNearestTiesToEven);
+        GV.IntVal = apf.bitcastToAPInt();
+      }
+      return GV;
+    }
+    case Instruction::SIToFP: {
+      GenericValue GV = getConstantValue(Op0);
+      if (CE->getType()->isFloatTy())
+        GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
+      else if (CE->getType()->isDoubleTy())
+        GV.DoubleVal = GV.IntVal.signedRoundToDouble();
+      else if (CE->getType()->isX86_FP80Ty()) {
+        const uint64_t zero[] = { 0, 0};
+        APFloat apf = APFloat(APInt(80, 2, zero));
+        (void)apf.convertFromAPInt(GV.IntVal, 
+                                   true,
+                                   APFloat::rmNearestTiesToEven);
+        GV.IntVal = apf.bitcastToAPInt();
+      }
+      return GV;
+    }
+    case Instruction::FPToUI: // double->APInt conversion handles sign
+    case Instruction::FPToSI: {
+      GenericValue GV = getConstantValue(Op0);
+      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+      if (Op0->getType()->isFloatTy())
+        GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
+      else if (Op0->getType()->isDoubleTy())
+        GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
+      else if (Op0->getType()->isX86_FP80Ty()) {
+        APFloat apf = APFloat(GV.IntVal);
+        uint64_t v;
+        bool ignored;
+        (void)apf.convertToInteger(&v, BitWidth,
+                                   CE->getOpcode()==Instruction::FPToSI, 
+                                   APFloat::rmTowardZero, &ignored);
+        GV.IntVal = v; // endian?
+      }
+      return GV;
+    }
+    case Instruction::PtrToInt: {
+      GenericValue GV = getConstantValue(Op0);
+      uint32_t PtrWidth = TD->getPointerSizeInBits();
+      GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
+      return GV;
+    }
+    case Instruction::IntToPtr: {
+      GenericValue GV = getConstantValue(Op0);
+      uint32_t PtrWidth = TD->getPointerSizeInBits();
+      if (PtrWidth != GV.IntVal.getBitWidth())
+        GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
+      assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
+      GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
+      return GV;
+    }
+    case Instruction::BitCast: {
+      GenericValue GV = getConstantValue(Op0);
+      const Type* DestTy = CE->getType();
+      switch (Op0->getType()->getTypeID()) {
+        default: llvm_unreachable("Invalid bitcast operand");
+        case Type::IntegerTyID:
+          assert(DestTy->isFloatingPoint() && "invalid bitcast");
+          if (DestTy->isFloatTy())
+            GV.FloatVal = GV.IntVal.bitsToFloat();
+          else if (DestTy->isDoubleTy())
+            GV.DoubleVal = GV.IntVal.bitsToDouble();
+          break;
+        case Type::FloatTyID: 
+          assert(DestTy->isInteger(32) && "Invalid bitcast");
+          GV.IntVal.floatToBits(GV.FloatVal);
+          break;
+        case Type::DoubleTyID:
+          assert(DestTy->isInteger(64) && "Invalid bitcast");
+          GV.IntVal.doubleToBits(GV.DoubleVal);
+          break;
+        case Type::PointerTyID:
+          assert(isa<PointerType>(DestTy) && "Invalid bitcast");
+          break; // getConstantValue(Op0)  above already converted it
+      }
+      return GV;
+    }
+    case Instruction::Add:
+    case Instruction::FAdd:
+    case Instruction::Sub:
+    case Instruction::FSub:
+    case Instruction::Mul:
+    case Instruction::FMul:
+    case Instruction::UDiv:
+    case Instruction::SDiv:
+    case Instruction::URem:
+    case Instruction::SRem:
+    case Instruction::And:
+    case Instruction::Or:
+    case Instruction::Xor: {
+      GenericValue LHS = getConstantValue(Op0);
+      GenericValue RHS = getConstantValue(CE->getOperand(1));
+      GenericValue GV;
+      switch (CE->getOperand(0)->getType()->getTypeID()) {
+      default: llvm_unreachable("Bad add type!");
+      case Type::IntegerTyID:
+        switch (CE->getOpcode()) {
+          default: llvm_unreachable("Invalid integer opcode");
+          case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
+          case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
+          case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
+          case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
+          case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
+          case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
+          case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
+          case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
+          case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
+          case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
+        }
+        break;
+      case Type::FloatTyID:
+        switch (CE->getOpcode()) {
+          default: llvm_unreachable("Invalid float opcode");
+          case Instruction::FAdd:
+            GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
+          case Instruction::FSub:
+            GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
+          case Instruction::FMul:
+            GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
+          case Instruction::FDiv: 
+            GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
+          case Instruction::FRem: 
+            GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
+        }
+        break;
+      case Type::DoubleTyID:
+        switch (CE->getOpcode()) {
+          default: llvm_unreachable("Invalid double opcode");
+          case Instruction::FAdd:
+            GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
+          case Instruction::FSub:
+            GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
+          case Instruction::FMul:
+            GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
+          case Instruction::FDiv: 
+            GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
+          case Instruction::FRem: 
+            GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
+        }
+        break;
+      case Type::X86_FP80TyID:
+      case Type::PPC_FP128TyID:
+      case Type::FP128TyID: {
+        APFloat apfLHS = APFloat(LHS.IntVal);
+        switch (CE->getOpcode()) {
+          default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0);
+          case Instruction::FAdd:
+            apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+            GV.IntVal = apfLHS.bitcastToAPInt();
+            break;
+          case Instruction::FSub:
+            apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+            GV.IntVal = apfLHS.bitcastToAPInt();
+            break;
+          case Instruction::FMul:
+            apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+            GV.IntVal = apfLHS.bitcastToAPInt();
+            break;
+          case Instruction::FDiv: 
+            apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+            GV.IntVal = apfLHS.bitcastToAPInt();
+            break;
+          case Instruction::FRem: 
+            apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+            GV.IntVal = apfLHS.bitcastToAPInt();
+            break;
+          }
+        }
+        break;
+      }
+      return GV;
+    }
+    default:
+      break;
+    }
+    std::string msg;
+    raw_string_ostream Msg(msg);
+    Msg << "ConstantExpr not handled: " << *CE;
+    llvm_report_error(Msg.str());
+  }
+
+  GenericValue Result;
+  switch (C->getType()->getTypeID()) {
+  case Type::FloatTyID: 
+    Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 
+    break;
+  case Type::DoubleTyID:
+    Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
+    break;
+  case Type::X86_FP80TyID:
+  case Type::FP128TyID:
+  case Type::PPC_FP128TyID:
+    Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
+    break;
+  case Type::IntegerTyID:
+    Result.IntVal = cast<ConstantInt>(C)->getValue();
+    break;
+  case Type::PointerTyID:
+    if (isa<ConstantPointerNull>(C))
+      Result.PointerVal = 0;
+    else if (const Function *F = dyn_cast<Function>(C))
+      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
+    else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
+      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
+    else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
+      Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
+                                                        BA->getBasicBlock())));
+    else
+      llvm_unreachable("Unknown constant pointer type!");
+    break;
+  default:
+    std::string msg;
+    raw_string_ostream Msg(msg);
+    Msg << "ERROR: Constant unimplemented for type: " << *C->getType();
+    llvm_report_error(Msg.str());
+  }
+  return Result;
+}
+
+/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
+/// with the integer held in IntVal.
+static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
+                             unsigned StoreBytes) {
+  assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
+  uint8_t *Src = (uint8_t *)IntVal.getRawData();
+
+  if (sys::isLittleEndianHost())
+    // Little-endian host - the source is ordered from LSB to MSB.  Order the
+    // destination from LSB to MSB: Do a straight copy.
+    memcpy(Dst, Src, StoreBytes);
+  else {
+    // Big-endian host - the source is an array of 64 bit words ordered from
+    // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
+    // from MSB to LSB: Reverse the word order, but not the bytes in a word.
+    while (StoreBytes > sizeof(uint64_t)) {
+      StoreBytes -= sizeof(uint64_t);
+      // May not be aligned so use memcpy.
+      memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
+      Src += sizeof(uint64_t);
+    }
+
+    memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
+  }
+}
+
+/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.  Ptr
+/// is the address of the memory at which to store Val, cast to GenericValue *.
+/// It is not a pointer to a GenericValue containing the address at which to
+/// store Val.
+void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
+                                         GenericValue *Ptr, const Type *Ty) {
+  const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
+
+  switch (Ty->getTypeID()) {
+  case Type::IntegerTyID:
+    StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
+    break;
+  case Type::FloatTyID:
+    *((float*)Ptr) = Val.FloatVal;
+    break;
+  case Type::DoubleTyID:
+    *((double*)Ptr) = Val.DoubleVal;
+    break;
+  case Type::X86_FP80TyID:
+    memcpy(Ptr, Val.IntVal.getRawData(), 10);
+    break;
+  case Type::PointerTyID:
+    // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
+    if (StoreBytes != sizeof(PointerTy))
+      memset(Ptr, 0, StoreBytes);
+
+    *((PointerTy*)Ptr) = Val.PointerVal;
+    break;
+  default:
+    dbgs() << "Cannot store value of type " << *Ty << "!\n";
+  }
+
+  if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
+    // Host and target are different endian - reverse the stored bytes.
+    std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
+}
+
+/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
+/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
+static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
+  assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
+  uint8_t *Dst = (uint8_t *)IntVal.getRawData();
+
+  if (sys::isLittleEndianHost())
+    // Little-endian host - the destination must be ordered from LSB to MSB.
+    // The source is ordered from LSB to MSB: Do a straight copy.
+    memcpy(Dst, Src, LoadBytes);
+  else {
+    // Big-endian - the destination is an array of 64 bit words ordered from
+    // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
+    // ordered from MSB to LSB: Reverse the word order, but not the bytes in
+    // a word.
+    while (LoadBytes > sizeof(uint64_t)) {
+      LoadBytes -= sizeof(uint64_t);
+      // May not be aligned so use memcpy.
+      memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
+      Dst += sizeof(uint64_t);
+    }
+
+    memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
+  }
+}
+
+/// FIXME: document
+///
+void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
+                                          GenericValue *Ptr,
+                                          const Type *Ty) {
+  const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
+
+  switch (Ty->getTypeID()) {
+  case Type::IntegerTyID:
+    // An APInt with all words initially zero.
+    Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
+    LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
+    break;
+  case Type::FloatTyID:
+    Result.FloatVal = *((float*)Ptr);
+    break;
+  case Type::DoubleTyID:
+    Result.DoubleVal = *((double*)Ptr);
+    break;
+  case Type::PointerTyID:
+    Result.PointerVal = *((PointerTy*)Ptr);
+    break;
+  case Type::X86_FP80TyID: {
+    // This is endian dependent, but it will only work on x86 anyway.
+    // FIXME: Will not trap if loading a signaling NaN.
+    uint64_t y[2];
+    memcpy(y, Ptr, 10);
+    Result.IntVal = APInt(80, 2, y);
+    break;
+  }
+  default:
+    std::string msg;
+    raw_string_ostream Msg(msg);
+    Msg << "Cannot load value of type " << *Ty << "!";
+    llvm_report_error(Msg.str());
+  }
+}
+
+// InitializeMemory - Recursive function to apply a Constant value into the
+// specified memory location...
+//
+void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
+  DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
+  DEBUG(Init->dump());
+  if (isa<UndefValue>(Init)) {
+    return;
+  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
+    unsigned ElementSize =
+      getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
+    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
+      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
+    return;
+  } else if (isa<ConstantAggregateZero>(Init)) {
+    memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
+    return;
+  } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
+    unsigned ElementSize =
+      getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
+    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
+      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
+    return;
+  } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
+    const StructLayout *SL =
+      getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
+    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
+      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
+    return;
+  } else if (Init->getType()->isFirstClassType()) {
+    GenericValue Val = getConstantValue(Init);
+    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
+    return;
+  }
+
+  dbgs() << "Bad Type: " << *Init->getType() << "\n";
+  llvm_unreachable("Unknown constant type to initialize memory with!");
+}
+
+/// EmitGlobals - Emit all of the global variables to memory, storing their
+/// addresses into GlobalAddress.  This must make sure to copy the contents of
+/// their initializers into the memory.
+///
+void ExecutionEngine::emitGlobals() {
+
+  // Loop over all of the global variables in the program, allocating the memory
+  // to hold them.  If there is more than one module, do a prepass over globals
+  // to figure out how the different modules should link together.
+  //
+  std::map<std::pair<std::string, const Type*>,
+           const GlobalValue*> LinkedGlobalsMap;
+
+  if (Modules.size() != 1) {
+    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
+      Module &M = *Modules[m];
+      for (Module::const_global_iterator I = M.global_begin(),
+           E = M.global_end(); I != E; ++I) {
+        const GlobalValue *GV = I;
+        if (GV->hasLocalLinkage() || GV->isDeclaration() ||
+            GV->hasAppendingLinkage() || !GV->hasName())
+          continue;// Ignore external globals and globals with internal linkage.
+          
+        const GlobalValue *&GVEntry = 
+          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
+
+        // If this is the first time we've seen this global, it is the canonical
+        // version.
+        if (!GVEntry) {
+          GVEntry = GV;
+          continue;
+        }
+        
+        // If the existing global is strong, never replace it.
+        if (GVEntry->hasExternalLinkage() ||
+            GVEntry->hasDLLImportLinkage() ||
+            GVEntry->hasDLLExportLinkage())
+          continue;
+        
+        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
+        // symbol.  FIXME is this right for common?
+        if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
+          GVEntry = GV;
+      }
+    }
+  }
+  
+  std::vector<const GlobalValue*> NonCanonicalGlobals;
+  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
+    Module &M = *Modules[m];
+    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+         I != E; ++I) {
+      // In the multi-module case, see what this global maps to.
+      if (!LinkedGlobalsMap.empty()) {
+        if (const GlobalValue *GVEntry = 
+              LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
+          // If something else is the canonical global, ignore this one.
+          if (GVEntry != &*I) {
+            NonCanonicalGlobals.push_back(I);
+            continue;
+          }
+        }
+      }
+      
+      if (!I->isDeclaration()) {
+        addGlobalMapping(I, getMemoryForGV(I));
+      } else {
+        // External variable reference. Try to use the dynamic loader to
+        // get a pointer to it.
+        if (void *SymAddr =
+            sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
+          addGlobalMapping(I, SymAddr);
+        else {
+          llvm_report_error("Could not resolve external global address: "
+                            +I->getName());
+        }
+      }
+    }
+    
+    // If there are multiple modules, map the non-canonical globals to their
+    // canonical location.
+    if (!NonCanonicalGlobals.empty()) {
+      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
+        const GlobalValue *GV = NonCanonicalGlobals[i];
+        const GlobalValue *CGV =
+          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
+        void *Ptr = getPointerToGlobalIfAvailable(CGV);
+        assert(Ptr && "Canonical global wasn't codegen'd!");
+        addGlobalMapping(GV, Ptr);
+      }
+    }
+    
+    // Now that all of the globals are set up in memory, loop through them all 
+    // and initialize their contents.
+    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+         I != E; ++I) {
+      if (!I->isDeclaration()) {
+        if (!LinkedGlobalsMap.empty()) {
+          if (const GlobalValue *GVEntry = 
+                LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
+            if (GVEntry != &*I)  // Not the canonical variable.
+              continue;
+        }
+        EmitGlobalVariable(I);
+      }
+    }
+  }
+}
+
+// EmitGlobalVariable - This method emits the specified global variable to the
+// address specified in GlobalAddresses, or allocates new memory if it's not
+// already in the map.
+void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
+  void *GA = getPointerToGlobalIfAvailable(GV);
+
+  if (GA == 0) {
+    // If it's not already specified, allocate memory for the global.
+    GA = getMemoryForGV(GV);
+    addGlobalMapping(GV, GA);
+  }
+  
+  // Don't initialize if it's thread local, let the client do it.
+  if (!GV->isThreadLocal())
+    InitializeMemory(GV->getInitializer(), GA);
+  
+  const Type *ElTy = GV->getType()->getElementType();
+  size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
+  NumInitBytes += (unsigned)GVSize;
+  ++NumGlobals;
+}
+
+ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
+  : EE(EE), GlobalAddressMap(this) {
+}
+
+sys::Mutex *ExecutionEngineState::AddressMapConfig::getMutex(
+  ExecutionEngineState *EES) {
+  return &EES->EE.lock;
+}
+void ExecutionEngineState::AddressMapConfig::onDelete(
+  ExecutionEngineState *EES, const GlobalValue *Old) {
+  void *OldVal = EES->GlobalAddressMap.lookup(Old);
+  EES->GlobalAddressReverseMap.erase(OldVal);
+}
+
+void ExecutionEngineState::AddressMapConfig::onRAUW(
+  ExecutionEngineState *, const GlobalValue *, const GlobalValue *) {
+  assert(false && "The ExecutionEngine doesn't know how to handle a"
+         " RAUW on a value it has a global mapping for.");
+}