Check in LLVM r95781.
diff --git a/lib/Support/APFloat.cpp b/lib/Support/APFloat.cpp
new file mode 100644
index 0000000..1e6d22f
--- /dev/null
+++ b/lib/Support/APFloat.cpp
@@ -0,0 +1,3505 @@
+//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a class to represent arbitrary precision floating
+// point values and provide a variety of arithmetic operations on them.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include <cstring>
+
+using namespace llvm;
+
+#define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
+
+/* Assumed in hexadecimal significand parsing, and conversion to
+   hexadecimal strings.  */
+#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
+COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
+
+namespace llvm {
+
+  /* Represents floating point arithmetic semantics.  */
+  struct fltSemantics {
+    /* The largest E such that 2^E is representable; this matches the
+       definition of IEEE 754.  */
+    exponent_t maxExponent;
+
+    /* The smallest E such that 2^E is a normalized number; this
+       matches the definition of IEEE 754.  */
+    exponent_t minExponent;
+
+    /* Number of bits in the significand.  This includes the integer
+       bit.  */
+    unsigned int precision;
+
+    /* True if arithmetic is supported.  */
+    unsigned int arithmeticOK;
+  };
+
+  const fltSemantics APFloat::IEEEhalf = { 15, -14, 11, true };
+  const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
+  const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
+  const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
+  const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
+  const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
+
+  // The PowerPC format consists of two doubles.  It does not map cleanly
+  // onto the usual format above.  For now only storage of constants of
+  // this type is supported, no arithmetic.
+  const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
+
+  /* A tight upper bound on number of parts required to hold the value
+     pow(5, power) is
+
+       power * 815 / (351 * integerPartWidth) + 1
+       
+     However, whilst the result may require only this many parts,
+     because we are multiplying two values to get it, the
+     multiplication may require an extra part with the excess part
+     being zero (consider the trivial case of 1 * 1, tcFullMultiply
+     requires two parts to hold the single-part result).  So we add an
+     extra one to guarantee enough space whilst multiplying.  */
+  const unsigned int maxExponent = 16383;
+  const unsigned int maxPrecision = 113;
+  const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
+  const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
+                                                / (351 * integerPartWidth));
+}
+
+/* A bunch of private, handy routines.  */
+
+static inline unsigned int
+partCountForBits(unsigned int bits)
+{
+  return ((bits) + integerPartWidth - 1) / integerPartWidth;
+}
+
+/* Returns 0U-9U.  Return values >= 10U are not digits.  */
+static inline unsigned int
+decDigitValue(unsigned int c)
+{
+  return c - '0';
+}
+
+static unsigned int
+hexDigitValue(unsigned int c)
+{
+  unsigned int r;
+
+  r = c - '0';
+  if(r <= 9)
+    return r;
+
+  r = c - 'A';
+  if(r <= 5)
+    return r + 10;
+
+  r = c - 'a';
+  if(r <= 5)
+    return r + 10;
+
+  return -1U;
+}
+
+static inline void
+assertArithmeticOK(const llvm::fltSemantics &semantics) {
+  assert(semantics.arithmeticOK
+         && "Compile-time arithmetic does not support these semantics");
+}
+
+/* Return the value of a decimal exponent of the form
+   [+-]ddddddd.
+
+   If the exponent overflows, returns a large exponent with the
+   appropriate sign.  */
+static int
+readExponent(StringRef::iterator begin, StringRef::iterator end)
+{
+  bool isNegative;
+  unsigned int absExponent;
+  const unsigned int overlargeExponent = 24000;  /* FIXME.  */
+  StringRef::iterator p = begin;
+
+  assert(p != end && "Exponent has no digits");
+
+  isNegative = (*p == '-');
+  if (*p == '-' || *p == '+') {
+    p++;
+    assert(p != end && "Exponent has no digits");
+  }
+
+  absExponent = decDigitValue(*p++);
+  assert(absExponent < 10U && "Invalid character in exponent");
+
+  for (; p != end; ++p) {
+    unsigned int value;
+
+    value = decDigitValue(*p);
+    assert(value < 10U && "Invalid character in exponent");
+
+    value += absExponent * 10;
+    if (absExponent >= overlargeExponent) {
+      absExponent = overlargeExponent;
+      break;
+    }
+    absExponent = value;
+  }
+
+  assert(p == end && "Invalid exponent in exponent");
+
+  if (isNegative)
+    return -(int) absExponent;
+  else
+    return (int) absExponent;
+}
+
+/* This is ugly and needs cleaning up, but I don't immediately see
+   how whilst remaining safe.  */
+static int
+totalExponent(StringRef::iterator p, StringRef::iterator end,
+              int exponentAdjustment)
+{
+  int unsignedExponent;
+  bool negative, overflow;
+  int exponent;
+
+  assert(p != end && "Exponent has no digits");
+
+  negative = *p == '-';
+  if(*p == '-' || *p == '+') {
+    p++;
+    assert(p != end && "Exponent has no digits");
+  }
+
+  unsignedExponent = 0;
+  overflow = false;
+  for(; p != end; ++p) {
+    unsigned int value;
+
+    value = decDigitValue(*p);
+    assert(value < 10U && "Invalid character in exponent");
+
+    unsignedExponent = unsignedExponent * 10 + value;
+    if(unsignedExponent > 65535)
+      overflow = true;
+  }
+
+  if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
+    overflow = true;
+
+  if(!overflow) {
+    exponent = unsignedExponent;
+    if(negative)
+      exponent = -exponent;
+    exponent += exponentAdjustment;
+    if(exponent > 65535 || exponent < -65536)
+      overflow = true;
+  }
+
+  if(overflow)
+    exponent = negative ? -65536: 65535;
+
+  return exponent;
+}
+
+static StringRef::iterator
+skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
+                           StringRef::iterator *dot)
+{
+  StringRef::iterator p = begin;
+  *dot = end;
+  while(*p == '0' && p != end)
+    p++;
+
+  if(*p == '.') {
+    *dot = p++;
+
+    assert(end - begin != 1 && "Significand has no digits");
+
+    while(*p == '0' && p != end)
+      p++;
+  }
+
+  return p;
+}
+
+/* Given a normal decimal floating point number of the form
+
+     dddd.dddd[eE][+-]ddd
+
+   where the decimal point and exponent are optional, fill out the
+   structure D.  Exponent is appropriate if the significand is
+   treated as an integer, and normalizedExponent if the significand
+   is taken to have the decimal point after a single leading
+   non-zero digit.
+
+   If the value is zero, V->firstSigDigit points to a non-digit, and
+   the return exponent is zero.
+*/
+struct decimalInfo {
+  const char *firstSigDigit;
+  const char *lastSigDigit;
+  int exponent;
+  int normalizedExponent;
+};
+
+static void
+interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
+                 decimalInfo *D)
+{
+  StringRef::iterator dot = end;
+  StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
+
+  D->firstSigDigit = p;
+  D->exponent = 0;
+  D->normalizedExponent = 0;
+
+  for (; p != end; ++p) {
+    if (*p == '.') {
+      assert(dot == end && "String contains multiple dots");
+      dot = p++;
+      if (p == end)
+        break;
+    }
+    if (decDigitValue(*p) >= 10U)
+      break;
+  }
+
+  if (p != end) {
+    assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
+    assert(p != begin && "Significand has no digits");
+    assert((dot == end || p - begin != 1) && "Significand has no digits");
+
+    /* p points to the first non-digit in the string */
+    D->exponent = readExponent(p + 1, end);
+
+    /* Implied decimal point?  */
+    if (dot == end)
+      dot = p;
+  }
+
+  /* If number is all zeroes accept any exponent.  */
+  if (p != D->firstSigDigit) {
+    /* Drop insignificant trailing zeroes.  */
+    if (p != begin) {
+      do
+        do
+          p--;
+        while (p != begin && *p == '0');
+      while (p != begin && *p == '.');
+    }
+
+    /* Adjust the exponents for any decimal point.  */
+    D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
+    D->normalizedExponent = (D->exponent +
+              static_cast<exponent_t>((p - D->firstSigDigit)
+                                      - (dot > D->firstSigDigit && dot < p)));
+  }
+
+  D->lastSigDigit = p;
+}
+
+/* Return the trailing fraction of a hexadecimal number.
+   DIGITVALUE is the first hex digit of the fraction, P points to
+   the next digit.  */
+static lostFraction
+trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
+                            unsigned int digitValue)
+{
+  unsigned int hexDigit;
+
+  /* If the first trailing digit isn't 0 or 8 we can work out the
+     fraction immediately.  */
+  if(digitValue > 8)
+    return lfMoreThanHalf;
+  else if(digitValue < 8 && digitValue > 0)
+    return lfLessThanHalf;
+
+  /* Otherwise we need to find the first non-zero digit.  */
+  while(*p == '0')
+    p++;
+
+  assert(p != end && "Invalid trailing hexadecimal fraction!");
+
+  hexDigit = hexDigitValue(*p);
+
+  /* If we ran off the end it is exactly zero or one-half, otherwise
+     a little more.  */
+  if(hexDigit == -1U)
+    return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
+  else
+    return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
+}
+
+/* Return the fraction lost were a bignum truncated losing the least
+   significant BITS bits.  */
+static lostFraction
+lostFractionThroughTruncation(const integerPart *parts,
+                              unsigned int partCount,
+                              unsigned int bits)
+{
+  unsigned int lsb;
+
+  lsb = APInt::tcLSB(parts, partCount);
+
+  /* Note this is guaranteed true if bits == 0, or LSB == -1U.  */
+  if(bits <= lsb)
+    return lfExactlyZero;
+  if(bits == lsb + 1)
+    return lfExactlyHalf;
+  if(bits <= partCount * integerPartWidth
+     && APInt::tcExtractBit(parts, bits - 1))
+    return lfMoreThanHalf;
+
+  return lfLessThanHalf;
+}
+
+/* Shift DST right BITS bits noting lost fraction.  */
+static lostFraction
+shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
+{
+  lostFraction lost_fraction;
+
+  lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
+
+  APInt::tcShiftRight(dst, parts, bits);
+
+  return lost_fraction;
+}
+
+/* Combine the effect of two lost fractions.  */
+static lostFraction
+combineLostFractions(lostFraction moreSignificant,
+                     lostFraction lessSignificant)
+{
+  if(lessSignificant != lfExactlyZero) {
+    if(moreSignificant == lfExactlyZero)
+      moreSignificant = lfLessThanHalf;
+    else if(moreSignificant == lfExactlyHalf)
+      moreSignificant = lfMoreThanHalf;
+  }
+
+  return moreSignificant;
+}
+
+/* The error from the true value, in half-ulps, on multiplying two
+   floating point numbers, which differ from the value they
+   approximate by at most HUE1 and HUE2 half-ulps, is strictly less
+   than the returned value.
+
+   See "How to Read Floating Point Numbers Accurately" by William D
+   Clinger.  */
+static unsigned int
+HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
+{
+  assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
+
+  if (HUerr1 + HUerr2 == 0)
+    return inexactMultiply * 2;  /* <= inexactMultiply half-ulps.  */
+  else
+    return inexactMultiply + 2 * (HUerr1 + HUerr2);
+}
+
+/* The number of ulps from the boundary (zero, or half if ISNEAREST)
+   when the least significant BITS are truncated.  BITS cannot be
+   zero.  */
+static integerPart
+ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
+{
+  unsigned int count, partBits;
+  integerPart part, boundary;
+
+  assert(bits != 0);
+
+  bits--;
+  count = bits / integerPartWidth;
+  partBits = bits % integerPartWidth + 1;
+
+  part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
+
+  if (isNearest)
+    boundary = (integerPart) 1 << (partBits - 1);
+  else
+    boundary = 0;
+
+  if (count == 0) {
+    if (part - boundary <= boundary - part)
+      return part - boundary;
+    else
+      return boundary - part;
+  }
+
+  if (part == boundary) {
+    while (--count)
+      if (parts[count])
+        return ~(integerPart) 0; /* A lot.  */
+
+    return parts[0];
+  } else if (part == boundary - 1) {
+    while (--count)
+      if (~parts[count])
+        return ~(integerPart) 0; /* A lot.  */
+
+    return -parts[0];
+  }
+
+  return ~(integerPart) 0; /* A lot.  */
+}
+
+/* Place pow(5, power) in DST, and return the number of parts used.
+   DST must be at least one part larger than size of the answer.  */
+static unsigned int
+powerOf5(integerPart *dst, unsigned int power)
+{
+  static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
+                                                  15625, 78125 };
+  integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
+  pow5s[0] = 78125 * 5;
+  
+  unsigned int partsCount[16] = { 1 };
+  integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
+  unsigned int result;
+  assert(power <= maxExponent);
+
+  p1 = dst;
+  p2 = scratch;
+
+  *p1 = firstEightPowers[power & 7];
+  power >>= 3;
+
+  result = 1;
+  pow5 = pow5s;
+
+  for (unsigned int n = 0; power; power >>= 1, n++) {
+    unsigned int pc;
+
+    pc = partsCount[n];
+
+    /* Calculate pow(5,pow(2,n+3)) if we haven't yet.  */
+    if (pc == 0) {
+      pc = partsCount[n - 1];
+      APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
+      pc *= 2;
+      if (pow5[pc - 1] == 0)
+        pc--;
+      partsCount[n] = pc;
+    }
+
+    if (power & 1) {
+      integerPart *tmp;
+
+      APInt::tcFullMultiply(p2, p1, pow5, result, pc);
+      result += pc;
+      if (p2[result - 1] == 0)
+        result--;
+
+      /* Now result is in p1 with partsCount parts and p2 is scratch
+         space.  */
+      tmp = p1, p1 = p2, p2 = tmp;
+    }
+
+    pow5 += pc;
+  }
+
+  if (p1 != dst)
+    APInt::tcAssign(dst, p1, result);
+
+  return result;
+}
+
+/* Zero at the end to avoid modular arithmetic when adding one; used
+   when rounding up during hexadecimal output.  */
+static const char hexDigitsLower[] = "0123456789abcdef0";
+static const char hexDigitsUpper[] = "0123456789ABCDEF0";
+static const char infinityL[] = "infinity";
+static const char infinityU[] = "INFINITY";
+static const char NaNL[] = "nan";
+static const char NaNU[] = "NAN";
+
+/* Write out an integerPart in hexadecimal, starting with the most
+   significant nibble.  Write out exactly COUNT hexdigits, return
+   COUNT.  */
+static unsigned int
+partAsHex (char *dst, integerPart part, unsigned int count,
+           const char *hexDigitChars)
+{
+  unsigned int result = count;
+
+  assert(count != 0 && count <= integerPartWidth / 4);
+
+  part >>= (integerPartWidth - 4 * count);
+  while (count--) {
+    dst[count] = hexDigitChars[part & 0xf];
+    part >>= 4;
+  }
+
+  return result;
+}
+
+/* Write out an unsigned decimal integer.  */
+static char *
+writeUnsignedDecimal (char *dst, unsigned int n)
+{
+  char buff[40], *p;
+
+  p = buff;
+  do
+    *p++ = '0' + n % 10;
+  while (n /= 10);
+
+  do
+    *dst++ = *--p;
+  while (p != buff);
+
+  return dst;
+}
+
+/* Write out a signed decimal integer.  */
+static char *
+writeSignedDecimal (char *dst, int value)
+{
+  if (value < 0) {
+    *dst++ = '-';
+    dst = writeUnsignedDecimal(dst, -(unsigned) value);
+  } else
+    dst = writeUnsignedDecimal(dst, value);
+
+  return dst;
+}
+
+/* Constructors.  */
+void
+APFloat::initialize(const fltSemantics *ourSemantics)
+{
+  unsigned int count;
+
+  semantics = ourSemantics;
+  count = partCount();
+  if(count > 1)
+    significand.parts = new integerPart[count];
+}
+
+void
+APFloat::freeSignificand()
+{
+  if(partCount() > 1)
+    delete [] significand.parts;
+}
+
+void
+APFloat::assign(const APFloat &rhs)
+{
+  assert(semantics == rhs.semantics);
+
+  sign = rhs.sign;
+  category = rhs.category;
+  exponent = rhs.exponent;
+  sign2 = rhs.sign2;
+  exponent2 = rhs.exponent2;
+  if(category == fcNormal || category == fcNaN)
+    copySignificand(rhs);
+}
+
+void
+APFloat::copySignificand(const APFloat &rhs)
+{
+  assert(category == fcNormal || category == fcNaN);
+  assert(rhs.partCount() >= partCount());
+
+  APInt::tcAssign(significandParts(), rhs.significandParts(),
+                  partCount());
+}
+
+/* Make this number a NaN, with an arbitrary but deterministic value
+   for the significand.  If double or longer, this is a signalling NaN,
+   which may not be ideal.  If float, this is QNaN(0).  */
+void
+APFloat::makeNaN(unsigned type)
+{
+  category = fcNaN;
+  // FIXME: Add double and long double support for QNaN(0).
+  if (semantics->precision == 24 && semantics->maxExponent == 127) {
+    type |=  0x7fc00000U;
+    type &= ~0x80000000U;
+  } else
+    type = ~0U;
+  APInt::tcSet(significandParts(), type, partCount());
+}
+
+APFloat &
+APFloat::operator=(const APFloat &rhs)
+{
+  if(this != &rhs) {
+    if(semantics != rhs.semantics) {
+      freeSignificand();
+      initialize(rhs.semantics);
+    }
+    assign(rhs);
+  }
+
+  return *this;
+}
+
+bool
+APFloat::bitwiseIsEqual(const APFloat &rhs) const {
+  if (this == &rhs)
+    return true;
+  if (semantics != rhs.semantics ||
+      category != rhs.category ||
+      sign != rhs.sign)
+    return false;
+  if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
+      sign2 != rhs.sign2)
+    return false;
+  if (category==fcZero || category==fcInfinity)
+    return true;
+  else if (category==fcNormal && exponent!=rhs.exponent)
+    return false;
+  else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
+           exponent2!=rhs.exponent2)
+    return false;
+  else {
+    int i= partCount();
+    const integerPart* p=significandParts();
+    const integerPart* q=rhs.significandParts();
+    for (; i>0; i--, p++, q++) {
+      if (*p != *q)
+        return false;
+    }
+    return true;
+  }
+}
+
+APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
+{
+  assertArithmeticOK(ourSemantics);
+  initialize(&ourSemantics);
+  sign = 0;
+  zeroSignificand();
+  exponent = ourSemantics.precision - 1;
+  significandParts()[0] = value;
+  normalize(rmNearestTiesToEven, lfExactlyZero);
+}
+
+APFloat::APFloat(const fltSemantics &ourSemantics) {
+  assertArithmeticOK(ourSemantics);
+  initialize(&ourSemantics);
+  category = fcZero;
+  sign = false;
+}
+
+
+APFloat::APFloat(const fltSemantics &ourSemantics,
+                 fltCategory ourCategory, bool negative, unsigned type)
+{
+  assertArithmeticOK(ourSemantics);
+  initialize(&ourSemantics);
+  category = ourCategory;
+  sign = negative;
+  if (category == fcNormal)
+    category = fcZero;
+  else if (ourCategory == fcNaN)
+    makeNaN(type);
+}
+
+APFloat::APFloat(const fltSemantics &ourSemantics, const StringRef& text)
+{
+  assertArithmeticOK(ourSemantics);
+  initialize(&ourSemantics);
+  convertFromString(text, rmNearestTiesToEven);
+}
+
+APFloat::APFloat(const APFloat &rhs)
+{
+  initialize(rhs.semantics);
+  assign(rhs);
+}
+
+APFloat::~APFloat()
+{
+  freeSignificand();
+}
+
+// Profile - This method 'profiles' an APFloat for use with FoldingSet.
+void APFloat::Profile(FoldingSetNodeID& ID) const {
+  ID.Add(bitcastToAPInt());
+}
+
+unsigned int
+APFloat::partCount() const
+{
+  return partCountForBits(semantics->precision + 1);
+}
+
+unsigned int
+APFloat::semanticsPrecision(const fltSemantics &semantics)
+{
+  return semantics.precision;
+}
+
+const integerPart *
+APFloat::significandParts() const
+{
+  return const_cast<APFloat *>(this)->significandParts();
+}
+
+integerPart *
+APFloat::significandParts()
+{
+  assert(category == fcNormal || category == fcNaN);
+
+  if (partCount() > 1)
+    return significand.parts;
+  else
+    return &significand.part;
+}
+
+void
+APFloat::zeroSignificand()
+{
+  category = fcNormal;
+  APInt::tcSet(significandParts(), 0, partCount());
+}
+
+/* Increment an fcNormal floating point number's significand.  */
+void
+APFloat::incrementSignificand()
+{
+  integerPart carry;
+
+  carry = APInt::tcIncrement(significandParts(), partCount());
+
+  /* Our callers should never cause us to overflow.  */
+  assert(carry == 0);
+}
+
+/* Add the significand of the RHS.  Returns the carry flag.  */
+integerPart
+APFloat::addSignificand(const APFloat &rhs)
+{
+  integerPart *parts;
+
+  parts = significandParts();
+
+  assert(semantics == rhs.semantics);
+  assert(exponent == rhs.exponent);
+
+  return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
+}
+
+/* Subtract the significand of the RHS with a borrow flag.  Returns
+   the borrow flag.  */
+integerPart
+APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
+{
+  integerPart *parts;
+
+  parts = significandParts();
+
+  assert(semantics == rhs.semantics);
+  assert(exponent == rhs.exponent);
+
+  return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
+                           partCount());
+}
+
+/* Multiply the significand of the RHS.  If ADDEND is non-NULL, add it
+   on to the full-precision result of the multiplication.  Returns the
+   lost fraction.  */
+lostFraction
+APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
+{
+  unsigned int omsb;        // One, not zero, based MSB.
+  unsigned int partsCount, newPartsCount, precision;
+  integerPart *lhsSignificand;
+  integerPart scratch[4];
+  integerPart *fullSignificand;
+  lostFraction lost_fraction;
+  bool ignored;
+
+  assert(semantics == rhs.semantics);
+
+  precision = semantics->precision;
+  newPartsCount = partCountForBits(precision * 2);
+
+  if(newPartsCount > 4)
+    fullSignificand = new integerPart[newPartsCount];
+  else
+    fullSignificand = scratch;
+
+  lhsSignificand = significandParts();
+  partsCount = partCount();
+
+  APInt::tcFullMultiply(fullSignificand, lhsSignificand,
+                        rhs.significandParts(), partsCount, partsCount);
+
+  lost_fraction = lfExactlyZero;
+  omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
+  exponent += rhs.exponent;
+
+  if(addend) {
+    Significand savedSignificand = significand;
+    const fltSemantics *savedSemantics = semantics;
+    fltSemantics extendedSemantics;
+    opStatus status;
+    unsigned int extendedPrecision;
+
+    /* Normalize our MSB.  */
+    extendedPrecision = precision + precision - 1;
+    if(omsb != extendedPrecision)
+      {
+        APInt::tcShiftLeft(fullSignificand, newPartsCount,
+                           extendedPrecision - omsb);
+        exponent -= extendedPrecision - omsb;
+      }
+
+    /* Create new semantics.  */
+    extendedSemantics = *semantics;
+    extendedSemantics.precision = extendedPrecision;
+
+    if(newPartsCount == 1)
+      significand.part = fullSignificand[0];
+    else
+      significand.parts = fullSignificand;
+    semantics = &extendedSemantics;
+
+    APFloat extendedAddend(*addend);
+    status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
+    assert(status == opOK);
+    lost_fraction = addOrSubtractSignificand(extendedAddend, false);
+
+    /* Restore our state.  */
+    if(newPartsCount == 1)
+      fullSignificand[0] = significand.part;
+    significand = savedSignificand;
+    semantics = savedSemantics;
+
+    omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
+  }
+
+  exponent -= (precision - 1);
+
+  if(omsb > precision) {
+    unsigned int bits, significantParts;
+    lostFraction lf;
+
+    bits = omsb - precision;
+    significantParts = partCountForBits(omsb);
+    lf = shiftRight(fullSignificand, significantParts, bits);
+    lost_fraction = combineLostFractions(lf, lost_fraction);
+    exponent += bits;
+  }
+
+  APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
+
+  if(newPartsCount > 4)
+    delete [] fullSignificand;
+
+  return lost_fraction;
+}
+
+/* Multiply the significands of LHS and RHS to DST.  */
+lostFraction
+APFloat::divideSignificand(const APFloat &rhs)
+{
+  unsigned int bit, i, partsCount;
+  const integerPart *rhsSignificand;
+  integerPart *lhsSignificand, *dividend, *divisor;
+  integerPart scratch[4];
+  lostFraction lost_fraction;
+
+  assert(semantics == rhs.semantics);
+
+  lhsSignificand = significandParts();
+  rhsSignificand = rhs.significandParts();
+  partsCount = partCount();
+
+  if(partsCount > 2)
+    dividend = new integerPart[partsCount * 2];
+  else
+    dividend = scratch;
+
+  divisor = dividend + partsCount;
+
+  /* Copy the dividend and divisor as they will be modified in-place.  */
+  for(i = 0; i < partsCount; i++) {
+    dividend[i] = lhsSignificand[i];
+    divisor[i] = rhsSignificand[i];
+    lhsSignificand[i] = 0;
+  }
+
+  exponent -= rhs.exponent;
+
+  unsigned int precision = semantics->precision;
+
+  /* Normalize the divisor.  */
+  bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
+  if(bit) {
+    exponent += bit;
+    APInt::tcShiftLeft(divisor, partsCount, bit);
+  }
+
+  /* Normalize the dividend.  */
+  bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
+  if(bit) {
+    exponent -= bit;
+    APInt::tcShiftLeft(dividend, partsCount, bit);
+  }
+
+  /* Ensure the dividend >= divisor initially for the loop below.
+     Incidentally, this means that the division loop below is
+     guaranteed to set the integer bit to one.  */
+  if(APInt::tcCompare(dividend, divisor, partsCount) < 0) {
+    exponent--;
+    APInt::tcShiftLeft(dividend, partsCount, 1);
+    assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
+  }
+
+  /* Long division.  */
+  for(bit = precision; bit; bit -= 1) {
+    if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
+      APInt::tcSubtract(dividend, divisor, 0, partsCount);
+      APInt::tcSetBit(lhsSignificand, bit - 1);
+    }
+
+    APInt::tcShiftLeft(dividend, partsCount, 1);
+  }
+
+  /* Figure out the lost fraction.  */
+  int cmp = APInt::tcCompare(dividend, divisor, partsCount);
+
+  if(cmp > 0)
+    lost_fraction = lfMoreThanHalf;
+  else if(cmp == 0)
+    lost_fraction = lfExactlyHalf;
+  else if(APInt::tcIsZero(dividend, partsCount))
+    lost_fraction = lfExactlyZero;
+  else
+    lost_fraction = lfLessThanHalf;
+
+  if(partsCount > 2)
+    delete [] dividend;
+
+  return lost_fraction;
+}
+
+unsigned int
+APFloat::significandMSB() const
+{
+  return APInt::tcMSB(significandParts(), partCount());
+}
+
+unsigned int
+APFloat::significandLSB() const
+{
+  return APInt::tcLSB(significandParts(), partCount());
+}
+
+/* Note that a zero result is NOT normalized to fcZero.  */
+lostFraction
+APFloat::shiftSignificandRight(unsigned int bits)
+{
+  /* Our exponent should not overflow.  */
+  assert((exponent_t) (exponent + bits) >= exponent);
+
+  exponent += bits;
+
+  return shiftRight(significandParts(), partCount(), bits);
+}
+
+/* Shift the significand left BITS bits, subtract BITS from its exponent.  */
+void
+APFloat::shiftSignificandLeft(unsigned int bits)
+{
+  assert(bits < semantics->precision);
+
+  if(bits) {
+    unsigned int partsCount = partCount();
+
+    APInt::tcShiftLeft(significandParts(), partsCount, bits);
+    exponent -= bits;
+
+    assert(!APInt::tcIsZero(significandParts(), partsCount));
+  }
+}
+
+APFloat::cmpResult
+APFloat::compareAbsoluteValue(const APFloat &rhs) const
+{
+  int compare;
+
+  assert(semantics == rhs.semantics);
+  assert(category == fcNormal);
+  assert(rhs.category == fcNormal);
+
+  compare = exponent - rhs.exponent;
+
+  /* If exponents are equal, do an unsigned bignum comparison of the
+     significands.  */
+  if(compare == 0)
+    compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
+                               partCount());
+
+  if(compare > 0)
+    return cmpGreaterThan;
+  else if(compare < 0)
+    return cmpLessThan;
+  else
+    return cmpEqual;
+}
+
+/* Handle overflow.  Sign is preserved.  We either become infinity or
+   the largest finite number.  */
+APFloat::opStatus
+APFloat::handleOverflow(roundingMode rounding_mode)
+{
+  /* Infinity?  */
+  if(rounding_mode == rmNearestTiesToEven
+     || rounding_mode == rmNearestTiesToAway
+     || (rounding_mode == rmTowardPositive && !sign)
+     || (rounding_mode == rmTowardNegative && sign))
+    {
+      category = fcInfinity;
+      return (opStatus) (opOverflow | opInexact);
+    }
+
+  /* Otherwise we become the largest finite number.  */
+  category = fcNormal;
+  exponent = semantics->maxExponent;
+  APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
+                                   semantics->precision);
+
+  return opInexact;
+}
+
+/* Returns TRUE if, when truncating the current number, with BIT the
+   new LSB, with the given lost fraction and rounding mode, the result
+   would need to be rounded away from zero (i.e., by increasing the
+   signficand).  This routine must work for fcZero of both signs, and
+   fcNormal numbers.  */
+bool
+APFloat::roundAwayFromZero(roundingMode rounding_mode,
+                           lostFraction lost_fraction,
+                           unsigned int bit) const
+{
+  /* NaNs and infinities should not have lost fractions.  */
+  assert(category == fcNormal || category == fcZero);
+
+  /* Current callers never pass this so we don't handle it.  */
+  assert(lost_fraction != lfExactlyZero);
+
+  switch (rounding_mode) {
+  default:
+    llvm_unreachable(0);
+
+  case rmNearestTiesToAway:
+    return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
+
+  case rmNearestTiesToEven:
+    if(lost_fraction == lfMoreThanHalf)
+      return true;
+
+    /* Our zeroes don't have a significand to test.  */
+    if(lost_fraction == lfExactlyHalf && category != fcZero)
+      return APInt::tcExtractBit(significandParts(), bit);
+
+    return false;
+
+  case rmTowardZero:
+    return false;
+
+  case rmTowardPositive:
+    return sign == false;
+
+  case rmTowardNegative:
+    return sign == true;
+  }
+}
+
+APFloat::opStatus
+APFloat::normalize(roundingMode rounding_mode,
+                   lostFraction lost_fraction)
+{
+  unsigned int omsb;                /* One, not zero, based MSB.  */
+  int exponentChange;
+
+  if(category != fcNormal)
+    return opOK;
+
+  /* Before rounding normalize the exponent of fcNormal numbers.  */
+  omsb = significandMSB() + 1;
+
+  if(omsb) {
+    /* OMSB is numbered from 1.  We want to place it in the integer
+       bit numbered PRECISON if possible, with a compensating change in
+       the exponent.  */
+    exponentChange = omsb - semantics->precision;
+
+    /* If the resulting exponent is too high, overflow according to
+       the rounding mode.  */
+    if(exponent + exponentChange > semantics->maxExponent)
+      return handleOverflow(rounding_mode);
+
+    /* Subnormal numbers have exponent minExponent, and their MSB
+       is forced based on that.  */
+    if(exponent + exponentChange < semantics->minExponent)
+      exponentChange = semantics->minExponent - exponent;
+
+    /* Shifting left is easy as we don't lose precision.  */
+    if(exponentChange < 0) {
+      assert(lost_fraction == lfExactlyZero);
+
+      shiftSignificandLeft(-exponentChange);
+
+      return opOK;
+    }
+
+    if(exponentChange > 0) {
+      lostFraction lf;
+
+      /* Shift right and capture any new lost fraction.  */
+      lf = shiftSignificandRight(exponentChange);
+
+      lost_fraction = combineLostFractions(lf, lost_fraction);
+
+      /* Keep OMSB up-to-date.  */
+      if(omsb > (unsigned) exponentChange)
+        omsb -= exponentChange;
+      else
+        omsb = 0;
+    }
+  }
+
+  /* Now round the number according to rounding_mode given the lost
+     fraction.  */
+
+  /* As specified in IEEE 754, since we do not trap we do not report
+     underflow for exact results.  */
+  if(lost_fraction == lfExactlyZero) {
+    /* Canonicalize zeroes.  */
+    if(omsb == 0)
+      category = fcZero;
+
+    return opOK;
+  }
+
+  /* Increment the significand if we're rounding away from zero.  */
+  if(roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
+    if(omsb == 0)
+      exponent = semantics->minExponent;
+
+    incrementSignificand();
+    omsb = significandMSB() + 1;
+
+    /* Did the significand increment overflow?  */
+    if(omsb == (unsigned) semantics->precision + 1) {
+      /* Renormalize by incrementing the exponent and shifting our
+         significand right one.  However if we already have the
+         maximum exponent we overflow to infinity.  */
+      if(exponent == semantics->maxExponent) {
+        category = fcInfinity;
+
+        return (opStatus) (opOverflow | opInexact);
+      }
+
+      shiftSignificandRight(1);
+
+      return opInexact;
+    }
+  }
+
+  /* The normal case - we were and are not denormal, and any
+     significand increment above didn't overflow.  */
+  if(omsb == semantics->precision)
+    return opInexact;
+
+  /* We have a non-zero denormal.  */
+  assert(omsb < semantics->precision);
+
+  /* Canonicalize zeroes.  */
+  if(omsb == 0)
+    category = fcZero;
+
+  /* The fcZero case is a denormal that underflowed to zero.  */
+  return (opStatus) (opUnderflow | opInexact);
+}
+
+APFloat::opStatus
+APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
+{
+  switch (convolve(category, rhs.category)) {
+  default:
+    llvm_unreachable(0);
+
+  case convolve(fcNaN, fcZero):
+  case convolve(fcNaN, fcNormal):
+  case convolve(fcNaN, fcInfinity):
+  case convolve(fcNaN, fcNaN):
+  case convolve(fcNormal, fcZero):
+  case convolve(fcInfinity, fcNormal):
+  case convolve(fcInfinity, fcZero):
+    return opOK;
+
+  case convolve(fcZero, fcNaN):
+  case convolve(fcNormal, fcNaN):
+  case convolve(fcInfinity, fcNaN):
+    category = fcNaN;
+    copySignificand(rhs);
+    return opOK;
+
+  case convolve(fcNormal, fcInfinity):
+  case convolve(fcZero, fcInfinity):
+    category = fcInfinity;
+    sign = rhs.sign ^ subtract;
+    return opOK;
+
+  case convolve(fcZero, fcNormal):
+    assign(rhs);
+    sign = rhs.sign ^ subtract;
+    return opOK;
+
+  case convolve(fcZero, fcZero):
+    /* Sign depends on rounding mode; handled by caller.  */
+    return opOK;
+
+  case convolve(fcInfinity, fcInfinity):
+    /* Differently signed infinities can only be validly
+       subtracted.  */
+    if(((sign ^ rhs.sign)!=0) != subtract) {
+      makeNaN();
+      return opInvalidOp;
+    }
+
+    return opOK;
+
+  case convolve(fcNormal, fcNormal):
+    return opDivByZero;
+  }
+}
+
+/* Add or subtract two normal numbers.  */
+lostFraction
+APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
+{
+  integerPart carry;
+  lostFraction lost_fraction;
+  int bits;
+
+  /* Determine if the operation on the absolute values is effectively
+     an addition or subtraction.  */
+  subtract ^= (sign ^ rhs.sign) ? true : false;
+
+  /* Are we bigger exponent-wise than the RHS?  */
+  bits = exponent - rhs.exponent;
+
+  /* Subtraction is more subtle than one might naively expect.  */
+  if(subtract) {
+    APFloat temp_rhs(rhs);
+    bool reverse;
+
+    if (bits == 0) {
+      reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
+      lost_fraction = lfExactlyZero;
+    } else if (bits > 0) {
+      lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
+      shiftSignificandLeft(1);
+      reverse = false;
+    } else {
+      lost_fraction = shiftSignificandRight(-bits - 1);
+      temp_rhs.shiftSignificandLeft(1);
+      reverse = true;
+    }
+
+    if (reverse) {
+      carry = temp_rhs.subtractSignificand
+        (*this, lost_fraction != lfExactlyZero);
+      copySignificand(temp_rhs);
+      sign = !sign;
+    } else {
+      carry = subtractSignificand
+        (temp_rhs, lost_fraction != lfExactlyZero);
+    }
+
+    /* Invert the lost fraction - it was on the RHS and
+       subtracted.  */
+    if(lost_fraction == lfLessThanHalf)
+      lost_fraction = lfMoreThanHalf;
+    else if(lost_fraction == lfMoreThanHalf)
+      lost_fraction = lfLessThanHalf;
+
+    /* The code above is intended to ensure that no borrow is
+       necessary.  */
+    assert(!carry);
+  } else {
+    if(bits > 0) {
+      APFloat temp_rhs(rhs);
+
+      lost_fraction = temp_rhs.shiftSignificandRight(bits);
+      carry = addSignificand(temp_rhs);
+    } else {
+      lost_fraction = shiftSignificandRight(-bits);
+      carry = addSignificand(rhs);
+    }
+
+    /* We have a guard bit; generating a carry cannot happen.  */
+    assert(!carry);
+  }
+
+  return lost_fraction;
+}
+
+APFloat::opStatus
+APFloat::multiplySpecials(const APFloat &rhs)
+{
+  switch (convolve(category, rhs.category)) {
+  default:
+    llvm_unreachable(0);
+
+  case convolve(fcNaN, fcZero):
+  case convolve(fcNaN, fcNormal):
+  case convolve(fcNaN, fcInfinity):
+  case convolve(fcNaN, fcNaN):
+    return opOK;
+
+  case convolve(fcZero, fcNaN):
+  case convolve(fcNormal, fcNaN):
+  case convolve(fcInfinity, fcNaN):
+    category = fcNaN;
+    copySignificand(rhs);
+    return opOK;
+
+  case convolve(fcNormal, fcInfinity):
+  case convolve(fcInfinity, fcNormal):
+  case convolve(fcInfinity, fcInfinity):
+    category = fcInfinity;
+    return opOK;
+
+  case convolve(fcZero, fcNormal):
+  case convolve(fcNormal, fcZero):
+  case convolve(fcZero, fcZero):
+    category = fcZero;
+    return opOK;
+
+  case convolve(fcZero, fcInfinity):
+  case convolve(fcInfinity, fcZero):
+    makeNaN();
+    return opInvalidOp;
+
+  case convolve(fcNormal, fcNormal):
+    return opOK;
+  }
+}
+
+APFloat::opStatus
+APFloat::divideSpecials(const APFloat &rhs)
+{
+  switch (convolve(category, rhs.category)) {
+  default:
+    llvm_unreachable(0);
+
+  case convolve(fcNaN, fcZero):
+  case convolve(fcNaN, fcNormal):
+  case convolve(fcNaN, fcInfinity):
+  case convolve(fcNaN, fcNaN):
+  case convolve(fcInfinity, fcZero):
+  case convolve(fcInfinity, fcNormal):
+  case convolve(fcZero, fcInfinity):
+  case convolve(fcZero, fcNormal):
+    return opOK;
+
+  case convolve(fcZero, fcNaN):
+  case convolve(fcNormal, fcNaN):
+  case convolve(fcInfinity, fcNaN):
+    category = fcNaN;
+    copySignificand(rhs);
+    return opOK;
+
+  case convolve(fcNormal, fcInfinity):
+    category = fcZero;
+    return opOK;
+
+  case convolve(fcNormal, fcZero):
+    category = fcInfinity;
+    return opDivByZero;
+
+  case convolve(fcInfinity, fcInfinity):
+  case convolve(fcZero, fcZero):
+    makeNaN();
+    return opInvalidOp;
+
+  case convolve(fcNormal, fcNormal):
+    return opOK;
+  }
+}
+
+APFloat::opStatus
+APFloat::modSpecials(const APFloat &rhs)
+{
+  switch (convolve(category, rhs.category)) {
+  default:
+    llvm_unreachable(0);
+
+  case convolve(fcNaN, fcZero):
+  case convolve(fcNaN, fcNormal):
+  case convolve(fcNaN, fcInfinity):
+  case convolve(fcNaN, fcNaN):
+  case convolve(fcZero, fcInfinity):
+  case convolve(fcZero, fcNormal):
+  case convolve(fcNormal, fcInfinity):
+    return opOK;
+
+  case convolve(fcZero, fcNaN):
+  case convolve(fcNormal, fcNaN):
+  case convolve(fcInfinity, fcNaN):
+    category = fcNaN;
+    copySignificand(rhs);
+    return opOK;
+
+  case convolve(fcNormal, fcZero):
+  case convolve(fcInfinity, fcZero):
+  case convolve(fcInfinity, fcNormal):
+  case convolve(fcInfinity, fcInfinity):
+  case convolve(fcZero, fcZero):
+    makeNaN();
+    return opInvalidOp;
+
+  case convolve(fcNormal, fcNormal):
+    return opOK;
+  }
+}
+
+/* Change sign.  */
+void
+APFloat::changeSign()
+{
+  /* Look mummy, this one's easy.  */
+  sign = !sign;
+}
+
+void
+APFloat::clearSign()
+{
+  /* So is this one. */
+  sign = 0;
+}
+
+void
+APFloat::copySign(const APFloat &rhs)
+{
+  /* And this one. */
+  sign = rhs.sign;
+}
+
+/* Normalized addition or subtraction.  */
+APFloat::opStatus
+APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
+                       bool subtract)
+{
+  opStatus fs;
+
+  assertArithmeticOK(*semantics);
+
+  fs = addOrSubtractSpecials(rhs, subtract);
+
+  /* This return code means it was not a simple case.  */
+  if(fs == opDivByZero) {
+    lostFraction lost_fraction;
+
+    lost_fraction = addOrSubtractSignificand(rhs, subtract);
+    fs = normalize(rounding_mode, lost_fraction);
+
+    /* Can only be zero if we lost no fraction.  */
+    assert(category != fcZero || lost_fraction == lfExactlyZero);
+  }
+
+  /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
+     positive zero unless rounding to minus infinity, except that
+     adding two like-signed zeroes gives that zero.  */
+  if(category == fcZero) {
+    if(rhs.category != fcZero || (sign == rhs.sign) == subtract)
+      sign = (rounding_mode == rmTowardNegative);
+  }
+
+  return fs;
+}
+
+/* Normalized addition.  */
+APFloat::opStatus
+APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
+{
+  return addOrSubtract(rhs, rounding_mode, false);
+}
+
+/* Normalized subtraction.  */
+APFloat::opStatus
+APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
+{
+  return addOrSubtract(rhs, rounding_mode, true);
+}
+
+/* Normalized multiply.  */
+APFloat::opStatus
+APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
+{
+  opStatus fs;
+
+  assertArithmeticOK(*semantics);
+  sign ^= rhs.sign;
+  fs = multiplySpecials(rhs);
+
+  if(category == fcNormal) {
+    lostFraction lost_fraction = multiplySignificand(rhs, 0);
+    fs = normalize(rounding_mode, lost_fraction);
+    if(lost_fraction != lfExactlyZero)
+      fs = (opStatus) (fs | opInexact);
+  }
+
+  return fs;
+}
+
+/* Normalized divide.  */
+APFloat::opStatus
+APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
+{
+  opStatus fs;
+
+  assertArithmeticOK(*semantics);
+  sign ^= rhs.sign;
+  fs = divideSpecials(rhs);
+
+  if(category == fcNormal) {
+    lostFraction lost_fraction = divideSignificand(rhs);
+    fs = normalize(rounding_mode, lost_fraction);
+    if(lost_fraction != lfExactlyZero)
+      fs = (opStatus) (fs | opInexact);
+  }
+
+  return fs;
+}
+
+/* Normalized remainder.  This is not currently correct in all cases.  */
+APFloat::opStatus
+APFloat::remainder(const APFloat &rhs)
+{
+  opStatus fs;
+  APFloat V = *this;
+  unsigned int origSign = sign;
+
+  assertArithmeticOK(*semantics);
+  fs = V.divide(rhs, rmNearestTiesToEven);
+  if (fs == opDivByZero)
+    return fs;
+
+  int parts = partCount();
+  integerPart *x = new integerPart[parts];
+  bool ignored;
+  fs = V.convertToInteger(x, parts * integerPartWidth, true,
+                          rmNearestTiesToEven, &ignored);
+  if (fs==opInvalidOp)
+    return fs;
+
+  fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
+                                        rmNearestTiesToEven);
+  assert(fs==opOK);   // should always work
+
+  fs = V.multiply(rhs, rmNearestTiesToEven);
+  assert(fs==opOK || fs==opInexact);   // should not overflow or underflow
+
+  fs = subtract(V, rmNearestTiesToEven);
+  assert(fs==opOK || fs==opInexact);   // likewise
+
+  if (isZero())
+    sign = origSign;    // IEEE754 requires this
+  delete[] x;
+  return fs;
+}
+
+/* Normalized llvm frem (C fmod).  
+   This is not currently correct in all cases.  */
+APFloat::opStatus
+APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
+{
+  opStatus fs;
+  assertArithmeticOK(*semantics);
+  fs = modSpecials(rhs);
+
+  if (category == fcNormal && rhs.category == fcNormal) {
+    APFloat V = *this;
+    unsigned int origSign = sign;
+
+    fs = V.divide(rhs, rmNearestTiesToEven);
+    if (fs == opDivByZero)
+      return fs;
+
+    int parts = partCount();
+    integerPart *x = new integerPart[parts];
+    bool ignored;
+    fs = V.convertToInteger(x, parts * integerPartWidth, true,
+                            rmTowardZero, &ignored);
+    if (fs==opInvalidOp)
+      return fs;
+
+    fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
+                                          rmNearestTiesToEven);
+    assert(fs==opOK);   // should always work
+
+    fs = V.multiply(rhs, rounding_mode);
+    assert(fs==opOK || fs==opInexact);   // should not overflow or underflow
+
+    fs = subtract(V, rounding_mode);
+    assert(fs==opOK || fs==opInexact);   // likewise
+
+    if (isZero())
+      sign = origSign;    // IEEE754 requires this
+    delete[] x;
+  }
+  return fs;
+}
+
+/* Normalized fused-multiply-add.  */
+APFloat::opStatus
+APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
+                          const APFloat &addend,
+                          roundingMode rounding_mode)
+{
+  opStatus fs;
+
+  assertArithmeticOK(*semantics);
+
+  /* Post-multiplication sign, before addition.  */
+  sign ^= multiplicand.sign;
+
+  /* If and only if all arguments are normal do we need to do an
+     extended-precision calculation.  */
+  if(category == fcNormal
+     && multiplicand.category == fcNormal
+     && addend.category == fcNormal) {
+    lostFraction lost_fraction;
+
+    lost_fraction = multiplySignificand(multiplicand, &addend);
+    fs = normalize(rounding_mode, lost_fraction);
+    if(lost_fraction != lfExactlyZero)
+      fs = (opStatus) (fs | opInexact);
+
+    /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
+       positive zero unless rounding to minus infinity, except that
+       adding two like-signed zeroes gives that zero.  */
+    if(category == fcZero && sign != addend.sign)
+      sign = (rounding_mode == rmTowardNegative);
+  } else {
+    fs = multiplySpecials(multiplicand);
+
+    /* FS can only be opOK or opInvalidOp.  There is no more work
+       to do in the latter case.  The IEEE-754R standard says it is
+       implementation-defined in this case whether, if ADDEND is a
+       quiet NaN, we raise invalid op; this implementation does so.
+
+       If we need to do the addition we can do so with normal
+       precision.  */
+    if(fs == opOK)
+      fs = addOrSubtract(addend, rounding_mode, false);
+  }
+
+  return fs;
+}
+
+/* Comparison requires normalized numbers.  */
+APFloat::cmpResult
+APFloat::compare(const APFloat &rhs) const
+{
+  cmpResult result;
+
+  assertArithmeticOK(*semantics);
+  assert(semantics == rhs.semantics);
+
+  switch (convolve(category, rhs.category)) {
+  default:
+    llvm_unreachable(0);
+
+  case convolve(fcNaN, fcZero):
+  case convolve(fcNaN, fcNormal):
+  case convolve(fcNaN, fcInfinity):
+  case convolve(fcNaN, fcNaN):
+  case convolve(fcZero, fcNaN):
+  case convolve(fcNormal, fcNaN):
+  case convolve(fcInfinity, fcNaN):
+    return cmpUnordered;
+
+  case convolve(fcInfinity, fcNormal):
+  case convolve(fcInfinity, fcZero):
+  case convolve(fcNormal, fcZero):
+    if(sign)
+      return cmpLessThan;
+    else
+      return cmpGreaterThan;
+
+  case convolve(fcNormal, fcInfinity):
+  case convolve(fcZero, fcInfinity):
+  case convolve(fcZero, fcNormal):
+    if(rhs.sign)
+      return cmpGreaterThan;
+    else
+      return cmpLessThan;
+
+  case convolve(fcInfinity, fcInfinity):
+    if(sign == rhs.sign)
+      return cmpEqual;
+    else if(sign)
+      return cmpLessThan;
+    else
+      return cmpGreaterThan;
+
+  case convolve(fcZero, fcZero):
+    return cmpEqual;
+
+  case convolve(fcNormal, fcNormal):
+    break;
+  }
+
+  /* Two normal numbers.  Do they have the same sign?  */
+  if(sign != rhs.sign) {
+    if(sign)
+      result = cmpLessThan;
+    else
+      result = cmpGreaterThan;
+  } else {
+    /* Compare absolute values; invert result if negative.  */
+    result = compareAbsoluteValue(rhs);
+
+    if(sign) {
+      if(result == cmpLessThan)
+        result = cmpGreaterThan;
+      else if(result == cmpGreaterThan)
+        result = cmpLessThan;
+    }
+  }
+
+  return result;
+}
+
+/// APFloat::convert - convert a value of one floating point type to another.
+/// The return value corresponds to the IEEE754 exceptions.  *losesInfo
+/// records whether the transformation lost information, i.e. whether
+/// converting the result back to the original type will produce the
+/// original value (this is almost the same as return value==fsOK, but there
+/// are edge cases where this is not so).
+
+APFloat::opStatus
+APFloat::convert(const fltSemantics &toSemantics,
+                 roundingMode rounding_mode, bool *losesInfo)
+{
+  lostFraction lostFraction;
+  unsigned int newPartCount, oldPartCount;
+  opStatus fs;
+
+  assertArithmeticOK(*semantics);
+  assertArithmeticOK(toSemantics);
+  lostFraction = lfExactlyZero;
+  newPartCount = partCountForBits(toSemantics.precision + 1);
+  oldPartCount = partCount();
+
+  /* Handle storage complications.  If our new form is wider,
+     re-allocate our bit pattern into wider storage.  If it is
+     narrower, we ignore the excess parts, but if narrowing to a
+     single part we need to free the old storage.
+     Be careful not to reference significandParts for zeroes
+     and infinities, since it aborts.  */
+  if (newPartCount > oldPartCount) {
+    integerPart *newParts;
+    newParts = new integerPart[newPartCount];
+    APInt::tcSet(newParts, 0, newPartCount);
+    if (category==fcNormal || category==fcNaN)
+      APInt::tcAssign(newParts, significandParts(), oldPartCount);
+    freeSignificand();
+    significand.parts = newParts;
+  } else if (newPartCount < oldPartCount) {
+    /* Capture any lost fraction through truncation of parts so we get
+       correct rounding whilst normalizing.  */
+    if (category==fcNormal)
+      lostFraction = lostFractionThroughTruncation
+        (significandParts(), oldPartCount, toSemantics.precision);
+    if (newPartCount == 1) {
+        integerPart newPart = 0;
+        if (category==fcNormal || category==fcNaN)
+          newPart = significandParts()[0];
+        freeSignificand();
+        significand.part = newPart;
+    }
+  }
+
+  if(category == fcNormal) {
+    /* Re-interpret our bit-pattern.  */
+    exponent += toSemantics.precision - semantics->precision;
+    semantics = &toSemantics;
+    fs = normalize(rounding_mode, lostFraction);
+    *losesInfo = (fs != opOK);
+  } else if (category == fcNaN) {
+    int shift = toSemantics.precision - semantics->precision;
+    // Do this now so significandParts gets the right answer
+    const fltSemantics *oldSemantics = semantics;
+    semantics = &toSemantics;
+    *losesInfo = false;
+    // No normalization here, just truncate
+    if (shift>0)
+      APInt::tcShiftLeft(significandParts(), newPartCount, shift);
+    else if (shift < 0) {
+      unsigned ushift = -shift;
+      // Figure out if we are losing information.  This happens
+      // if are shifting out something other than 0s, or if the x87 long
+      // double input did not have its integer bit set (pseudo-NaN), or if the
+      // x87 long double input did not have its QNan bit set (because the x87
+      // hardware sets this bit when converting a lower-precision NaN to
+      // x87 long double).
+      if (APInt::tcLSB(significandParts(), newPartCount) < ushift)
+        *losesInfo = true;
+      if (oldSemantics == &APFloat::x87DoubleExtended && 
+          (!(*significandParts() & 0x8000000000000000ULL) ||
+           !(*significandParts() & 0x4000000000000000ULL)))
+        *losesInfo = true;
+      APInt::tcShiftRight(significandParts(), newPartCount, ushift);
+    }
+    // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
+    // does not give you back the same bits.  This is dubious, and we
+    // don't currently do it.  You're really supposed to get
+    // an invalid operation signal at runtime, but nobody does that.
+    fs = opOK;
+  } else {
+    semantics = &toSemantics;
+    fs = opOK;
+    *losesInfo = false;
+  }
+
+  return fs;
+}
+
+/* Convert a floating point number to an integer according to the
+   rounding mode.  If the rounded integer value is out of range this
+   returns an invalid operation exception and the contents of the
+   destination parts are unspecified.  If the rounded value is in
+   range but the floating point number is not the exact integer, the C
+   standard doesn't require an inexact exception to be raised.  IEEE
+   854 does require it so we do that.
+
+   Note that for conversions to integer type the C standard requires
+   round-to-zero to always be used.  */
+APFloat::opStatus
+APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
+                                      bool isSigned,
+                                      roundingMode rounding_mode,
+                                      bool *isExact) const
+{
+  lostFraction lost_fraction;
+  const integerPart *src;
+  unsigned int dstPartsCount, truncatedBits;
+
+  assertArithmeticOK(*semantics);
+
+  *isExact = false;
+
+  /* Handle the three special cases first.  */
+  if(category == fcInfinity || category == fcNaN)
+    return opInvalidOp;
+
+  dstPartsCount = partCountForBits(width);
+
+  if(category == fcZero) {
+    APInt::tcSet(parts, 0, dstPartsCount);
+    // Negative zero can't be represented as an int.
+    *isExact = !sign;
+    return opOK;
+  }
+
+  src = significandParts();
+
+  /* Step 1: place our absolute value, with any fraction truncated, in
+     the destination.  */
+  if (exponent < 0) {
+    /* Our absolute value is less than one; truncate everything.  */
+    APInt::tcSet(parts, 0, dstPartsCount);
+    /* For exponent -1 the integer bit represents .5, look at that.
+       For smaller exponents leftmost truncated bit is 0. */
+    truncatedBits = semantics->precision -1U - exponent;
+  } else {
+    /* We want the most significant (exponent + 1) bits; the rest are
+       truncated.  */
+    unsigned int bits = exponent + 1U;
+
+    /* Hopelessly large in magnitude?  */
+    if (bits > width)
+      return opInvalidOp;
+
+    if (bits < semantics->precision) {
+      /* We truncate (semantics->precision - bits) bits.  */
+      truncatedBits = semantics->precision - bits;
+      APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
+    } else {
+      /* We want at least as many bits as are available.  */
+      APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
+      APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
+      truncatedBits = 0;
+    }
+  }
+
+  /* Step 2: work out any lost fraction, and increment the absolute
+     value if we would round away from zero.  */
+  if (truncatedBits) {
+    lost_fraction = lostFractionThroughTruncation(src, partCount(),
+                                                  truncatedBits);
+    if (lost_fraction != lfExactlyZero
+        && roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
+      if (APInt::tcIncrement(parts, dstPartsCount))
+        return opInvalidOp;     /* Overflow.  */
+    }
+  } else {
+    lost_fraction = lfExactlyZero;
+  }
+
+  /* Step 3: check if we fit in the destination.  */
+  unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
+
+  if (sign) {
+    if (!isSigned) {
+      /* Negative numbers cannot be represented as unsigned.  */
+      if (omsb != 0)
+        return opInvalidOp;
+    } else {
+      /* It takes omsb bits to represent the unsigned integer value.
+         We lose a bit for the sign, but care is needed as the
+         maximally negative integer is a special case.  */
+      if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
+        return opInvalidOp;
+
+      /* This case can happen because of rounding.  */
+      if (omsb > width)
+        return opInvalidOp;
+    }
+
+    APInt::tcNegate (parts, dstPartsCount);
+  } else {
+    if (omsb >= width + !isSigned)
+      return opInvalidOp;
+  }
+
+  if (lost_fraction == lfExactlyZero) {
+    *isExact = true;
+    return opOK;
+  } else
+    return opInexact;
+}
+
+/* Same as convertToSignExtendedInteger, except we provide
+   deterministic values in case of an invalid operation exception,
+   namely zero for NaNs and the minimal or maximal value respectively
+   for underflow or overflow.
+   The *isExact output tells whether the result is exact, in the sense
+   that converting it back to the original floating point type produces
+   the original value.  This is almost equivalent to result==opOK,
+   except for negative zeroes.
+*/
+APFloat::opStatus
+APFloat::convertToInteger(integerPart *parts, unsigned int width,
+                          bool isSigned,
+                          roundingMode rounding_mode, bool *isExact) const
+{
+  opStatus fs;
+
+  fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode, 
+                                    isExact);
+
+  if (fs == opInvalidOp) {
+    unsigned int bits, dstPartsCount;
+
+    dstPartsCount = partCountForBits(width);
+
+    if (category == fcNaN)
+      bits = 0;
+    else if (sign)
+      bits = isSigned;
+    else
+      bits = width - isSigned;
+
+    APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
+    if (sign && isSigned)
+      APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
+  }
+
+  return fs;
+}
+
+/* Convert an unsigned integer SRC to a floating point number,
+   rounding according to ROUNDING_MODE.  The sign of the floating
+   point number is not modified.  */
+APFloat::opStatus
+APFloat::convertFromUnsignedParts(const integerPart *src,
+                                  unsigned int srcCount,
+                                  roundingMode rounding_mode)
+{
+  unsigned int omsb, precision, dstCount;
+  integerPart *dst;
+  lostFraction lost_fraction;
+
+  assertArithmeticOK(*semantics);
+  category = fcNormal;
+  omsb = APInt::tcMSB(src, srcCount) + 1;
+  dst = significandParts();
+  dstCount = partCount();
+  precision = semantics->precision;
+
+  /* We want the most significant PRECISON bits of SRC.  There may not
+     be that many; extract what we can.  */
+  if (precision <= omsb) {
+    exponent = omsb - 1;
+    lost_fraction = lostFractionThroughTruncation(src, srcCount,
+                                                  omsb - precision);
+    APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
+  } else {
+    exponent = precision - 1;
+    lost_fraction = lfExactlyZero;
+    APInt::tcExtract(dst, dstCount, src, omsb, 0);
+  }
+
+  return normalize(rounding_mode, lost_fraction);
+}
+
+APFloat::opStatus
+APFloat::convertFromAPInt(const APInt &Val,
+                          bool isSigned,
+                          roundingMode rounding_mode)
+{
+  unsigned int partCount = Val.getNumWords();
+  APInt api = Val;
+
+  sign = false;
+  if (isSigned && api.isNegative()) {
+    sign = true;
+    api = -api;
+  }
+
+  return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
+}
+
+/* Convert a two's complement integer SRC to a floating point number,
+   rounding according to ROUNDING_MODE.  ISSIGNED is true if the
+   integer is signed, in which case it must be sign-extended.  */
+APFloat::opStatus
+APFloat::convertFromSignExtendedInteger(const integerPart *src,
+                                        unsigned int srcCount,
+                                        bool isSigned,
+                                        roundingMode rounding_mode)
+{
+  opStatus status;
+
+  assertArithmeticOK(*semantics);
+  if (isSigned
+      && APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
+    integerPart *copy;
+
+    /* If we're signed and negative negate a copy.  */
+    sign = true;
+    copy = new integerPart[srcCount];
+    APInt::tcAssign(copy, src, srcCount);
+    APInt::tcNegate(copy, srcCount);
+    status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
+    delete [] copy;
+  } else {
+    sign = false;
+    status = convertFromUnsignedParts(src, srcCount, rounding_mode);
+  }
+
+  return status;
+}
+
+/* FIXME: should this just take a const APInt reference?  */
+APFloat::opStatus
+APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
+                                        unsigned int width, bool isSigned,
+                                        roundingMode rounding_mode)
+{
+  unsigned int partCount = partCountForBits(width);
+  APInt api = APInt(width, partCount, parts);
+
+  sign = false;
+  if(isSigned && APInt::tcExtractBit(parts, width - 1)) {
+    sign = true;
+    api = -api;
+  }
+
+  return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
+}
+
+APFloat::opStatus
+APFloat::convertFromHexadecimalString(const StringRef &s,
+                                      roundingMode rounding_mode)
+{
+  lostFraction lost_fraction = lfExactlyZero;
+  integerPart *significand;
+  unsigned int bitPos, partsCount;
+  StringRef::iterator dot, firstSignificantDigit;
+
+  zeroSignificand();
+  exponent = 0;
+  category = fcNormal;
+
+  significand = significandParts();
+  partsCount = partCount();
+  bitPos = partsCount * integerPartWidth;
+
+  /* Skip leading zeroes and any (hexa)decimal point.  */
+  StringRef::iterator begin = s.begin();
+  StringRef::iterator end = s.end();
+  StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
+  firstSignificantDigit = p;
+
+  for(; p != end;) {
+    integerPart hex_value;
+
+    if(*p == '.') {
+      assert(dot == end && "String contains multiple dots");
+      dot = p++;
+      if (p == end) {
+        break;
+      }
+    }
+
+    hex_value = hexDigitValue(*p);
+    if(hex_value == -1U) {
+      break;
+    }
+
+    p++;
+
+    if (p == end) {
+      break;
+    } else {
+      /* Store the number whilst 4-bit nibbles remain.  */
+      if(bitPos) {
+        bitPos -= 4;
+        hex_value <<= bitPos % integerPartWidth;
+        significand[bitPos / integerPartWidth] |= hex_value;
+      } else {
+        lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
+        while(p != end && hexDigitValue(*p) != -1U)
+          p++;
+        break;
+      }
+    }
+  }
+
+  /* Hex floats require an exponent but not a hexadecimal point.  */
+  assert(p != end && "Hex strings require an exponent");
+  assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
+  assert(p != begin && "Significand has no digits");
+  assert((dot == end || p - begin != 1) && "Significand has no digits");
+
+  /* Ignore the exponent if we are zero.  */
+  if(p != firstSignificantDigit) {
+    int expAdjustment;
+
+    /* Implicit hexadecimal point?  */
+    if (dot == end)
+      dot = p;
+
+    /* Calculate the exponent adjustment implicit in the number of
+       significant digits.  */
+    expAdjustment = static_cast<int>(dot - firstSignificantDigit);
+    if(expAdjustment < 0)
+      expAdjustment++;
+    expAdjustment = expAdjustment * 4 - 1;
+
+    /* Adjust for writing the significand starting at the most
+       significant nibble.  */
+    expAdjustment += semantics->precision;
+    expAdjustment -= partsCount * integerPartWidth;
+
+    /* Adjust for the given exponent.  */
+    exponent = totalExponent(p + 1, end, expAdjustment);
+  }
+
+  return normalize(rounding_mode, lost_fraction);
+}
+
+APFloat::opStatus
+APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
+                                      unsigned sigPartCount, int exp,
+                                      roundingMode rounding_mode)
+{
+  unsigned int parts, pow5PartCount;
+  fltSemantics calcSemantics = { 32767, -32767, 0, true };
+  integerPart pow5Parts[maxPowerOfFiveParts];
+  bool isNearest;
+
+  isNearest = (rounding_mode == rmNearestTiesToEven
+               || rounding_mode == rmNearestTiesToAway);
+
+  parts = partCountForBits(semantics->precision + 11);
+
+  /* Calculate pow(5, abs(exp)).  */
+  pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
+
+  for (;; parts *= 2) {
+    opStatus sigStatus, powStatus;
+    unsigned int excessPrecision, truncatedBits;
+
+    calcSemantics.precision = parts * integerPartWidth - 1;
+    excessPrecision = calcSemantics.precision - semantics->precision;
+    truncatedBits = excessPrecision;
+
+    APFloat decSig(calcSemantics, fcZero, sign);
+    APFloat pow5(calcSemantics, fcZero, false);
+
+    sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
+                                                rmNearestTiesToEven);
+    powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
+                                              rmNearestTiesToEven);
+    /* Add exp, as 10^n = 5^n * 2^n.  */
+    decSig.exponent += exp;
+
+    lostFraction calcLostFraction;
+    integerPart HUerr, HUdistance;
+    unsigned int powHUerr;
+
+    if (exp >= 0) {
+      /* multiplySignificand leaves the precision-th bit set to 1.  */
+      calcLostFraction = decSig.multiplySignificand(pow5, NULL);
+      powHUerr = powStatus != opOK;
+    } else {
+      calcLostFraction = decSig.divideSignificand(pow5);
+      /* Denormal numbers have less precision.  */
+      if (decSig.exponent < semantics->minExponent) {
+        excessPrecision += (semantics->minExponent - decSig.exponent);
+        truncatedBits = excessPrecision;
+        if (excessPrecision > calcSemantics.precision)
+          excessPrecision = calcSemantics.precision;
+      }
+      /* Extra half-ulp lost in reciprocal of exponent.  */
+      powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
+    }
+
+    /* Both multiplySignificand and divideSignificand return the
+       result with the integer bit set.  */
+    assert(APInt::tcExtractBit
+           (decSig.significandParts(), calcSemantics.precision - 1) == 1);
+
+    HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
+                       powHUerr);
+    HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
+                                      excessPrecision, isNearest);
+
+    /* Are we guaranteed to round correctly if we truncate?  */
+    if (HUdistance >= HUerr) {
+      APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
+                       calcSemantics.precision - excessPrecision,
+                       excessPrecision);
+      /* Take the exponent of decSig.  If we tcExtract-ed less bits
+         above we must adjust our exponent to compensate for the
+         implicit right shift.  */
+      exponent = (decSig.exponent + semantics->precision
+                  - (calcSemantics.precision - excessPrecision));
+      calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
+                                                       decSig.partCount(),
+                                                       truncatedBits);
+      return normalize(rounding_mode, calcLostFraction);
+    }
+  }
+}
+
+APFloat::opStatus
+APFloat::convertFromDecimalString(const StringRef &str, roundingMode rounding_mode)
+{
+  decimalInfo D;
+  opStatus fs;
+
+  /* Scan the text.  */
+  StringRef::iterator p = str.begin();
+  interpretDecimal(p, str.end(), &D);
+
+  /* Handle the quick cases.  First the case of no significant digits,
+     i.e. zero, and then exponents that are obviously too large or too
+     small.  Writing L for log 10 / log 2, a number d.ddddd*10^exp
+     definitely overflows if
+
+           (exp - 1) * L >= maxExponent
+
+     and definitely underflows to zero where
+
+           (exp + 1) * L <= minExponent - precision
+
+     With integer arithmetic the tightest bounds for L are
+
+           93/28 < L < 196/59            [ numerator <= 256 ]
+           42039/12655 < L < 28738/8651  [ numerator <= 65536 ]
+  */
+
+  if (decDigitValue(*D.firstSigDigit) >= 10U) {
+    category = fcZero;
+    fs = opOK;
+  } else if ((D.normalizedExponent + 1) * 28738
+             <= 8651 * (semantics->minExponent - (int) semantics->precision)) {
+    /* Underflow to zero and round.  */
+    zeroSignificand();
+    fs = normalize(rounding_mode, lfLessThanHalf);
+  } else if ((D.normalizedExponent - 1) * 42039
+             >= 12655 * semantics->maxExponent) {
+    /* Overflow and round.  */
+    fs = handleOverflow(rounding_mode);
+  } else {
+    integerPart *decSignificand;
+    unsigned int partCount;
+
+    /* A tight upper bound on number of bits required to hold an
+       N-digit decimal integer is N * 196 / 59.  Allocate enough space
+       to hold the full significand, and an extra part required by
+       tcMultiplyPart.  */
+    partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
+    partCount = partCountForBits(1 + 196 * partCount / 59);
+    decSignificand = new integerPart[partCount + 1];
+    partCount = 0;
+
+    /* Convert to binary efficiently - we do almost all multiplication
+       in an integerPart.  When this would overflow do we do a single
+       bignum multiplication, and then revert again to multiplication
+       in an integerPart.  */
+    do {
+      integerPart decValue, val, multiplier;
+
+      val = 0;
+      multiplier = 1;
+
+      do {
+        if (*p == '.') {
+          p++;
+          if (p == str.end()) {
+            break;
+          }
+        }
+        decValue = decDigitValue(*p++);
+        assert(decValue < 10U && "Invalid character in significand");
+        multiplier *= 10;
+        val = val * 10 + decValue;
+        /* The maximum number that can be multiplied by ten with any
+           digit added without overflowing an integerPart.  */
+      } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
+
+      /* Multiply out the current part.  */
+      APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
+                            partCount, partCount + 1, false);
+
+      /* If we used another part (likely but not guaranteed), increase
+         the count.  */
+      if (decSignificand[partCount])
+        partCount++;
+    } while (p <= D.lastSigDigit);
+
+    category = fcNormal;
+    fs = roundSignificandWithExponent(decSignificand, partCount,
+                                      D.exponent, rounding_mode);
+
+    delete [] decSignificand;
+  }
+
+  return fs;
+}
+
+APFloat::opStatus
+APFloat::convertFromString(const StringRef &str, roundingMode rounding_mode)
+{
+  assertArithmeticOK(*semantics);
+  assert(!str.empty() && "Invalid string length");
+
+  /* Handle a leading minus sign.  */
+  StringRef::iterator p = str.begin();
+  size_t slen = str.size();
+  sign = *p == '-' ? 1 : 0;
+  if(*p == '-' || *p == '+') {
+    p++;
+    slen--;
+    assert(slen && "String has no digits");
+  }
+
+  if(slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
+    assert(slen - 2 && "Invalid string");
+    return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
+                                        rounding_mode);
+  }
+
+  return convertFromDecimalString(StringRef(p, slen), rounding_mode);
+}
+
+/* Write out a hexadecimal representation of the floating point value
+   to DST, which must be of sufficient size, in the C99 form
+   [-]0xh.hhhhp[+-]d.  Return the number of characters written,
+   excluding the terminating NUL.
+
+   If UPPERCASE, the output is in upper case, otherwise in lower case.
+
+   HEXDIGITS digits appear altogether, rounding the value if
+   necessary.  If HEXDIGITS is 0, the minimal precision to display the
+   number precisely is used instead.  If nothing would appear after
+   the decimal point it is suppressed.
+
+   The decimal exponent is always printed and has at least one digit.
+   Zero values display an exponent of zero.  Infinities and NaNs
+   appear as "infinity" or "nan" respectively.
+
+   The above rules are as specified by C99.  There is ambiguity about
+   what the leading hexadecimal digit should be.  This implementation
+   uses whatever is necessary so that the exponent is displayed as
+   stored.  This implies the exponent will fall within the IEEE format
+   range, and the leading hexadecimal digit will be 0 (for denormals),
+   1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
+   any other digits zero).
+*/
+unsigned int
+APFloat::convertToHexString(char *dst, unsigned int hexDigits,
+                            bool upperCase, roundingMode rounding_mode) const
+{
+  char *p;
+
+  assertArithmeticOK(*semantics);
+
+  p = dst;
+  if (sign)
+    *dst++ = '-';
+
+  switch (category) {
+  case fcInfinity:
+    memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
+    dst += sizeof infinityL - 1;
+    break;
+
+  case fcNaN:
+    memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
+    dst += sizeof NaNU - 1;
+    break;
+
+  case fcZero:
+    *dst++ = '0';
+    *dst++ = upperCase ? 'X': 'x';
+    *dst++ = '0';
+    if (hexDigits > 1) {
+      *dst++ = '.';
+      memset (dst, '0', hexDigits - 1);
+      dst += hexDigits - 1;
+    }
+    *dst++ = upperCase ? 'P': 'p';
+    *dst++ = '0';
+    break;
+
+  case fcNormal:
+    dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
+    break;
+  }
+
+  *dst = 0;
+
+  return static_cast<unsigned int>(dst - p);
+}
+
+/* Does the hard work of outputting the correctly rounded hexadecimal
+   form of a normal floating point number with the specified number of
+   hexadecimal digits.  If HEXDIGITS is zero the minimum number of
+   digits necessary to print the value precisely is output.  */
+char *
+APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
+                                  bool upperCase,
+                                  roundingMode rounding_mode) const
+{
+  unsigned int count, valueBits, shift, partsCount, outputDigits;
+  const char *hexDigitChars;
+  const integerPart *significand;
+  char *p;
+  bool roundUp;
+
+  *dst++ = '0';
+  *dst++ = upperCase ? 'X': 'x';
+
+  roundUp = false;
+  hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
+
+  significand = significandParts();
+  partsCount = partCount();
+
+  /* +3 because the first digit only uses the single integer bit, so
+     we have 3 virtual zero most-significant-bits.  */
+  valueBits = semantics->precision + 3;
+  shift = integerPartWidth - valueBits % integerPartWidth;
+
+  /* The natural number of digits required ignoring trailing
+     insignificant zeroes.  */
+  outputDigits = (valueBits - significandLSB () + 3) / 4;
+
+  /* hexDigits of zero means use the required number for the
+     precision.  Otherwise, see if we are truncating.  If we are,
+     find out if we need to round away from zero.  */
+  if (hexDigits) {
+    if (hexDigits < outputDigits) {
+      /* We are dropping non-zero bits, so need to check how to round.
+         "bits" is the number of dropped bits.  */
+      unsigned int bits;
+      lostFraction fraction;
+
+      bits = valueBits - hexDigits * 4;
+      fraction = lostFractionThroughTruncation (significand, partsCount, bits);
+      roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
+    }
+    outputDigits = hexDigits;
+  }
+
+  /* Write the digits consecutively, and start writing in the location
+     of the hexadecimal point.  We move the most significant digit
+     left and add the hexadecimal point later.  */
+  p = ++dst;
+
+  count = (valueBits + integerPartWidth - 1) / integerPartWidth;
+
+  while (outputDigits && count) {
+    integerPart part;
+
+    /* Put the most significant integerPartWidth bits in "part".  */
+    if (--count == partsCount)
+      part = 0;  /* An imaginary higher zero part.  */
+    else
+      part = significand[count] << shift;
+
+    if (count && shift)
+      part |= significand[count - 1] >> (integerPartWidth - shift);
+
+    /* Convert as much of "part" to hexdigits as we can.  */
+    unsigned int curDigits = integerPartWidth / 4;
+
+    if (curDigits > outputDigits)
+      curDigits = outputDigits;
+    dst += partAsHex (dst, part, curDigits, hexDigitChars);
+    outputDigits -= curDigits;
+  }
+
+  if (roundUp) {
+    char *q = dst;
+
+    /* Note that hexDigitChars has a trailing '0'.  */
+    do {
+      q--;
+      *q = hexDigitChars[hexDigitValue (*q) + 1];
+    } while (*q == '0');
+    assert(q >= p);
+  } else {
+    /* Add trailing zeroes.  */
+    memset (dst, '0', outputDigits);
+    dst += outputDigits;
+  }
+
+  /* Move the most significant digit to before the point, and if there
+     is something after the decimal point add it.  This must come
+     after rounding above.  */
+  p[-1] = p[0];
+  if (dst -1 == p)
+    dst--;
+  else
+    p[0] = '.';
+
+  /* Finally output the exponent.  */
+  *dst++ = upperCase ? 'P': 'p';
+
+  return writeSignedDecimal (dst, exponent);
+}
+
+// For good performance it is desirable for different APFloats
+// to produce different integers.
+uint32_t
+APFloat::getHashValue() const
+{
+  if (category==fcZero) return sign<<8 | semantics->precision ;
+  else if (category==fcInfinity) return sign<<9 | semantics->precision;
+  else if (category==fcNaN) return 1<<10 | semantics->precision;
+  else {
+    uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
+    const integerPart* p = significandParts();
+    for (int i=partCount(); i>0; i--, p++)
+      hash ^= ((uint32_t)*p) ^ (uint32_t)((*p)>>32);
+    return hash;
+  }
+}
+
+// Conversion from APFloat to/from host float/double.  It may eventually be
+// possible to eliminate these and have everybody deal with APFloats, but that
+// will take a while.  This approach will not easily extend to long double.
+// Current implementation requires integerPartWidth==64, which is correct at
+// the moment but could be made more general.
+
+// Denormals have exponent minExponent in APFloat, but minExponent-1 in
+// the actual IEEE respresentations.  We compensate for that here.
+
+APInt
+APFloat::convertF80LongDoubleAPFloatToAPInt() const
+{
+  assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
+  assert(partCount()==2);
+
+  uint64_t myexponent, mysignificand;
+
+  if (category==fcNormal) {
+    myexponent = exponent+16383; //bias
+    mysignificand = significandParts()[0];
+    if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
+      myexponent = 0;   // denormal
+  } else if (category==fcZero) {
+    myexponent = 0;
+    mysignificand = 0;
+  } else if (category==fcInfinity) {
+    myexponent = 0x7fff;
+    mysignificand = 0x8000000000000000ULL;
+  } else {
+    assert(category == fcNaN && "Unknown category");
+    myexponent = 0x7fff;
+    mysignificand = significandParts()[0];
+  }
+
+  uint64_t words[2];
+  words[0] = mysignificand;
+  words[1] =  ((uint64_t)(sign & 1) << 15) |
+              (myexponent & 0x7fffLL);
+  return APInt(80, 2, words);
+}
+
+APInt
+APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
+{
+  assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
+  assert(partCount()==2);
+
+  uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
+
+  if (category==fcNormal) {
+    myexponent = exponent + 1023; //bias
+    myexponent2 = exponent2 + 1023;
+    mysignificand = significandParts()[0];
+    mysignificand2 = significandParts()[1];
+    if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
+      myexponent = 0;   // denormal
+    if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
+      myexponent2 = 0;   // denormal
+  } else if (category==fcZero) {
+    myexponent = 0;
+    mysignificand = 0;
+    myexponent2 = 0;
+    mysignificand2 = 0;
+  } else if (category==fcInfinity) {
+    myexponent = 0x7ff;
+    myexponent2 = 0;
+    mysignificand = 0;
+    mysignificand2 = 0;
+  } else {
+    assert(category == fcNaN && "Unknown category");
+    myexponent = 0x7ff;
+    mysignificand = significandParts()[0];
+    myexponent2 = exponent2;
+    mysignificand2 = significandParts()[1];
+  }
+
+  uint64_t words[2];
+  words[0] =  ((uint64_t)(sign & 1) << 63) |
+              ((myexponent & 0x7ff) <<  52) |
+              (mysignificand & 0xfffffffffffffLL);
+  words[1] =  ((uint64_t)(sign2 & 1) << 63) |
+              ((myexponent2 & 0x7ff) <<  52) |
+              (mysignificand2 & 0xfffffffffffffLL);
+  return APInt(128, 2, words);
+}
+
+APInt
+APFloat::convertQuadrupleAPFloatToAPInt() const
+{
+  assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
+  assert(partCount()==2);
+
+  uint64_t myexponent, mysignificand, mysignificand2;
+
+  if (category==fcNormal) {
+    myexponent = exponent+16383; //bias
+    mysignificand = significandParts()[0];
+    mysignificand2 = significandParts()[1];
+    if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
+      myexponent = 0;   // denormal
+  } else if (category==fcZero) {
+    myexponent = 0;
+    mysignificand = mysignificand2 = 0;
+  } else if (category==fcInfinity) {
+    myexponent = 0x7fff;
+    mysignificand = mysignificand2 = 0;
+  } else {
+    assert(category == fcNaN && "Unknown category!");
+    myexponent = 0x7fff;
+    mysignificand = significandParts()[0];
+    mysignificand2 = significandParts()[1];
+  }
+
+  uint64_t words[2];
+  words[0] = mysignificand;
+  words[1] = ((uint64_t)(sign & 1) << 63) |
+             ((myexponent & 0x7fff) << 48) |
+             (mysignificand2 & 0xffffffffffffLL);
+
+  return APInt(128, 2, words);
+}
+
+APInt
+APFloat::convertDoubleAPFloatToAPInt() const
+{
+  assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
+  assert(partCount()==1);
+
+  uint64_t myexponent, mysignificand;
+
+  if (category==fcNormal) {
+    myexponent = exponent+1023; //bias
+    mysignificand = *significandParts();
+    if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
+      myexponent = 0;   // denormal
+  } else if (category==fcZero) {
+    myexponent = 0;
+    mysignificand = 0;
+  } else if (category==fcInfinity) {
+    myexponent = 0x7ff;
+    mysignificand = 0;
+  } else {
+    assert(category == fcNaN && "Unknown category!");
+    myexponent = 0x7ff;
+    mysignificand = *significandParts();
+  }
+
+  return APInt(64, ((((uint64_t)(sign & 1) << 63) |
+                     ((myexponent & 0x7ff) <<  52) |
+                     (mysignificand & 0xfffffffffffffLL))));
+}
+
+APInt
+APFloat::convertFloatAPFloatToAPInt() const
+{
+  assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
+  assert(partCount()==1);
+
+  uint32_t myexponent, mysignificand;
+
+  if (category==fcNormal) {
+    myexponent = exponent+127; //bias
+    mysignificand = (uint32_t)*significandParts();
+    if (myexponent == 1 && !(mysignificand & 0x800000))
+      myexponent = 0;   // denormal
+  } else if (category==fcZero) {
+    myexponent = 0;
+    mysignificand = 0;
+  } else if (category==fcInfinity) {
+    myexponent = 0xff;
+    mysignificand = 0;
+  } else {
+    assert(category == fcNaN && "Unknown category!");
+    myexponent = 0xff;
+    mysignificand = (uint32_t)*significandParts();
+  }
+
+  return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
+                    (mysignificand & 0x7fffff)));
+}
+
+APInt
+APFloat::convertHalfAPFloatToAPInt() const
+{
+  assert(semantics == (const llvm::fltSemantics*)&IEEEhalf);
+  assert(partCount()==1);
+
+  uint32_t myexponent, mysignificand;
+
+  if (category==fcNormal) {
+    myexponent = exponent+15; //bias
+    mysignificand = (uint32_t)*significandParts();
+    if (myexponent == 1 && !(mysignificand & 0x400))
+      myexponent = 0;   // denormal
+  } else if (category==fcZero) {
+    myexponent = 0;
+    mysignificand = 0;
+  } else if (category==fcInfinity) {
+    myexponent = 0x1f;
+    mysignificand = 0;
+  } else {
+    assert(category == fcNaN && "Unknown category!");
+    myexponent = 0x1f;
+    mysignificand = (uint32_t)*significandParts();
+  }
+
+  return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
+                    (mysignificand & 0x3ff)));
+}
+
+// This function creates an APInt that is just a bit map of the floating
+// point constant as it would appear in memory.  It is not a conversion,
+// and treating the result as a normal integer is unlikely to be useful.
+
+APInt
+APFloat::bitcastToAPInt() const
+{
+  if (semantics == (const llvm::fltSemantics*)&IEEEhalf)
+    return convertHalfAPFloatToAPInt();
+
+  if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
+    return convertFloatAPFloatToAPInt();
+
+  if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
+    return convertDoubleAPFloatToAPInt();
+
+  if (semantics == (const llvm::fltSemantics*)&IEEEquad)
+    return convertQuadrupleAPFloatToAPInt();
+
+  if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
+    return convertPPCDoubleDoubleAPFloatToAPInt();
+
+  assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
+         "unknown format!");
+  return convertF80LongDoubleAPFloatToAPInt();
+}
+
+float
+APFloat::convertToFloat() const
+{
+  assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
+         "Float semantics are not IEEEsingle");
+  APInt api = bitcastToAPInt();
+  return api.bitsToFloat();
+}
+
+double
+APFloat::convertToDouble() const
+{
+  assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
+         "Float semantics are not IEEEdouble");
+  APInt api = bitcastToAPInt();
+  return api.bitsToDouble();
+}
+
+/// Integer bit is explicit in this format.  Intel hardware (387 and later)
+/// does not support these bit patterns:
+///  exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
+///  exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
+///  exponent = 0, integer bit 1 ("pseudodenormal")
+///  exponent!=0 nor all 1's, integer bit 0 ("unnormal")
+/// At the moment, the first two are treated as NaNs, the second two as Normal.
+void
+APFloat::initFromF80LongDoubleAPInt(const APInt &api)
+{
+  assert(api.getBitWidth()==80);
+  uint64_t i1 = api.getRawData()[0];
+  uint64_t i2 = api.getRawData()[1];
+  uint64_t myexponent = (i2 & 0x7fff);
+  uint64_t mysignificand = i1;
+
+  initialize(&APFloat::x87DoubleExtended);
+  assert(partCount()==2);
+
+  sign = static_cast<unsigned int>(i2>>15);
+  if (myexponent==0 && mysignificand==0) {
+    // exponent, significand meaningless
+    category = fcZero;
+  } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
+    // exponent, significand meaningless
+    category = fcInfinity;
+  } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
+    // exponent meaningless
+    category = fcNaN;
+    significandParts()[0] = mysignificand;
+    significandParts()[1] = 0;
+  } else {
+    category = fcNormal;
+    exponent = myexponent - 16383;
+    significandParts()[0] = mysignificand;
+    significandParts()[1] = 0;
+    if (myexponent==0)          // denormal
+      exponent = -16382;
+  }
+}
+
+void
+APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
+{
+  assert(api.getBitWidth()==128);
+  uint64_t i1 = api.getRawData()[0];
+  uint64_t i2 = api.getRawData()[1];
+  uint64_t myexponent = (i1 >> 52) & 0x7ff;
+  uint64_t mysignificand = i1 & 0xfffffffffffffLL;
+  uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
+  uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
+
+  initialize(&APFloat::PPCDoubleDouble);
+  assert(partCount()==2);
+
+  sign = static_cast<unsigned int>(i1>>63);
+  sign2 = static_cast<unsigned int>(i2>>63);
+  if (myexponent==0 && mysignificand==0) {
+    // exponent, significand meaningless
+    // exponent2 and significand2 are required to be 0; we don't check
+    category = fcZero;
+  } else if (myexponent==0x7ff && mysignificand==0) {
+    // exponent, significand meaningless
+    // exponent2 and significand2 are required to be 0; we don't check
+    category = fcInfinity;
+  } else if (myexponent==0x7ff && mysignificand!=0) {
+    // exponent meaningless.  So is the whole second word, but keep it 
+    // for determinism.
+    category = fcNaN;
+    exponent2 = myexponent2;
+    significandParts()[0] = mysignificand;
+    significandParts()[1] = mysignificand2;
+  } else {
+    category = fcNormal;
+    // Note there is no category2; the second word is treated as if it is
+    // fcNormal, although it might be something else considered by itself.
+    exponent = myexponent - 1023;
+    exponent2 = myexponent2 - 1023;
+    significandParts()[0] = mysignificand;
+    significandParts()[1] = mysignificand2;
+    if (myexponent==0)          // denormal
+      exponent = -1022;
+    else
+      significandParts()[0] |= 0x10000000000000LL;  // integer bit
+    if (myexponent2==0) 
+      exponent2 = -1022;
+    else
+      significandParts()[1] |= 0x10000000000000LL;  // integer bit
+  }
+}
+
+void
+APFloat::initFromQuadrupleAPInt(const APInt &api)
+{
+  assert(api.getBitWidth()==128);
+  uint64_t i1 = api.getRawData()[0];
+  uint64_t i2 = api.getRawData()[1];
+  uint64_t myexponent = (i2 >> 48) & 0x7fff;
+  uint64_t mysignificand  = i1;
+  uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
+
+  initialize(&APFloat::IEEEquad);
+  assert(partCount()==2);
+
+  sign = static_cast<unsigned int>(i2>>63);
+  if (myexponent==0 &&
+      (mysignificand==0 && mysignificand2==0)) {
+    // exponent, significand meaningless
+    category = fcZero;
+  } else if (myexponent==0x7fff &&
+             (mysignificand==0 && mysignificand2==0)) {
+    // exponent, significand meaningless
+    category = fcInfinity;
+  } else if (myexponent==0x7fff &&
+             (mysignificand!=0 || mysignificand2 !=0)) {
+    // exponent meaningless
+    category = fcNaN;
+    significandParts()[0] = mysignificand;
+    significandParts()[1] = mysignificand2;
+  } else {
+    category = fcNormal;
+    exponent = myexponent - 16383;
+    significandParts()[0] = mysignificand;
+    significandParts()[1] = mysignificand2;
+    if (myexponent==0)          // denormal
+      exponent = -16382;
+    else
+      significandParts()[1] |= 0x1000000000000LL;  // integer bit
+  }
+}
+
+void
+APFloat::initFromDoubleAPInt(const APInt &api)
+{
+  assert(api.getBitWidth()==64);
+  uint64_t i = *api.getRawData();
+  uint64_t myexponent = (i >> 52) & 0x7ff;
+  uint64_t mysignificand = i & 0xfffffffffffffLL;
+
+  initialize(&APFloat::IEEEdouble);
+  assert(partCount()==1);
+
+  sign = static_cast<unsigned int>(i>>63);
+  if (myexponent==0 && mysignificand==0) {
+    // exponent, significand meaningless
+    category = fcZero;
+  } else if (myexponent==0x7ff && mysignificand==0) {
+    // exponent, significand meaningless
+    category = fcInfinity;
+  } else if (myexponent==0x7ff && mysignificand!=0) {
+    // exponent meaningless
+    category = fcNaN;
+    *significandParts() = mysignificand;
+  } else {
+    category = fcNormal;
+    exponent = myexponent - 1023;
+    *significandParts() = mysignificand;
+    if (myexponent==0)          // denormal
+      exponent = -1022;
+    else
+      *significandParts() |= 0x10000000000000LL;  // integer bit
+  }
+}
+
+void
+APFloat::initFromFloatAPInt(const APInt & api)
+{
+  assert(api.getBitWidth()==32);
+  uint32_t i = (uint32_t)*api.getRawData();
+  uint32_t myexponent = (i >> 23) & 0xff;
+  uint32_t mysignificand = i & 0x7fffff;
+
+  initialize(&APFloat::IEEEsingle);
+  assert(partCount()==1);
+
+  sign = i >> 31;
+  if (myexponent==0 && mysignificand==0) {
+    // exponent, significand meaningless
+    category = fcZero;
+  } else if (myexponent==0xff && mysignificand==0) {
+    // exponent, significand meaningless
+    category = fcInfinity;
+  } else if (myexponent==0xff && mysignificand!=0) {
+    // sign, exponent, significand meaningless
+    category = fcNaN;
+    *significandParts() = mysignificand;
+  } else {
+    category = fcNormal;
+    exponent = myexponent - 127;  //bias
+    *significandParts() = mysignificand;
+    if (myexponent==0)    // denormal
+      exponent = -126;
+    else
+      *significandParts() |= 0x800000; // integer bit
+  }
+}
+
+void
+APFloat::initFromHalfAPInt(const APInt & api)
+{
+  assert(api.getBitWidth()==16);
+  uint32_t i = (uint32_t)*api.getRawData();
+  uint32_t myexponent = (i >> 10) & 0x1f;
+  uint32_t mysignificand = i & 0x3ff;
+
+  initialize(&APFloat::IEEEhalf);
+  assert(partCount()==1);
+
+  sign = i >> 15;
+  if (myexponent==0 && mysignificand==0) {
+    // exponent, significand meaningless
+    category = fcZero;
+  } else if (myexponent==0x1f && mysignificand==0) {
+    // exponent, significand meaningless
+    category = fcInfinity;
+  } else if (myexponent==0x1f && mysignificand!=0) {
+    // sign, exponent, significand meaningless
+    category = fcNaN;
+    *significandParts() = mysignificand;
+  } else {
+    category = fcNormal;
+    exponent = myexponent - 15;  //bias
+    *significandParts() = mysignificand;
+    if (myexponent==0)    // denormal
+      exponent = -14;
+    else
+      *significandParts() |= 0x400; // integer bit
+  }
+}
+
+/// Treat api as containing the bits of a floating point number.  Currently
+/// we infer the floating point type from the size of the APInt.  The
+/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
+/// when the size is anything else).
+void
+APFloat::initFromAPInt(const APInt& api, bool isIEEE)
+{
+  if (api.getBitWidth() == 16)
+    return initFromHalfAPInt(api);
+  else if (api.getBitWidth() == 32)
+    return initFromFloatAPInt(api);
+  else if (api.getBitWidth()==64)
+    return initFromDoubleAPInt(api);
+  else if (api.getBitWidth()==80)
+    return initFromF80LongDoubleAPInt(api);
+  else if (api.getBitWidth()==128)
+    return (isIEEE ?
+            initFromQuadrupleAPInt(api) : initFromPPCDoubleDoubleAPInt(api));
+  else
+    llvm_unreachable(0);
+}
+
+APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) {
+  APFloat Val(Sem, fcNormal, Negative);
+
+  // We want (in interchange format):
+  //   sign = {Negative}
+  //   exponent = 1..10
+  //   significand = 1..1
+
+  Val.exponent = Sem.maxExponent; // unbiased
+
+  // 1-initialize all bits....
+  Val.zeroSignificand();
+  integerPart *significand = Val.significandParts();
+  unsigned N = partCountForBits(Sem.precision);
+  for (unsigned i = 0; i != N; ++i)
+    significand[i] = ~((integerPart) 0);
+
+  // ...and then clear the top bits for internal consistency.
+  significand[N-1]
+    &= (((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1)) - 1;
+
+  return Val;
+}
+
+APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) {
+  APFloat Val(Sem, fcNormal, Negative);
+
+  // We want (in interchange format):
+  //   sign = {Negative}
+  //   exponent = 0..0
+  //   significand = 0..01
+
+  Val.exponent = Sem.minExponent; // unbiased
+  Val.zeroSignificand();
+  Val.significandParts()[0] = 1;
+  return Val;
+}
+
+APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) {
+  APFloat Val(Sem, fcNormal, Negative);
+
+  // We want (in interchange format):
+  //   sign = {Negative}
+  //   exponent = 0..0
+  //   significand = 10..0
+
+  Val.exponent = Sem.minExponent;
+  Val.zeroSignificand();
+  Val.significandParts()[partCountForBits(Sem.precision)-1]
+    |= (((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1));
+
+  return Val;
+}
+
+APFloat::APFloat(const APInt& api, bool isIEEE)
+{
+  initFromAPInt(api, isIEEE);
+}
+
+APFloat::APFloat(float f)
+{
+  APInt api = APInt(32, 0);
+  initFromAPInt(api.floatToBits(f));
+}
+
+APFloat::APFloat(double d)
+{
+  APInt api = APInt(64, 0);
+  initFromAPInt(api.doubleToBits(d));
+}
+
+namespace {
+  static void append(SmallVectorImpl<char> &Buffer,
+                     unsigned N, const char *Str) {
+    unsigned Start = Buffer.size();
+    Buffer.set_size(Start + N);
+    memcpy(&Buffer[Start], Str, N);
+  }
+
+  template <unsigned N>
+  void append(SmallVectorImpl<char> &Buffer, const char (&Str)[N]) {
+    append(Buffer, N, Str);
+  }
+
+  /// Removes data from the given significand until it is no more
+  /// precise than is required for the desired precision.
+  void AdjustToPrecision(APInt &significand,
+                         int &exp, unsigned FormatPrecision) {
+    unsigned bits = significand.getActiveBits();
+
+    // 196/59 is a very slight overestimate of lg_2(10).
+    unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
+
+    if (bits <= bitsRequired) return;
+
+    unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
+    if (!tensRemovable) return;
+
+    exp += tensRemovable;
+
+    APInt divisor(significand.getBitWidth(), 1);
+    APInt powten(significand.getBitWidth(), 10);
+    while (true) {
+      if (tensRemovable & 1)
+        divisor *= powten;
+      tensRemovable >>= 1;
+      if (!tensRemovable) break;
+      powten *= powten;
+    }
+
+    significand = significand.udiv(divisor);
+
+    // Truncate the significand down to its active bit count, but
+    // don't try to drop below 32.
+    unsigned newPrecision = std::max(32U, significand.getActiveBits());
+    significand.trunc(newPrecision);
+  }
+
+
+  void AdjustToPrecision(SmallVectorImpl<char> &buffer,
+                         int &exp, unsigned FormatPrecision) {
+    unsigned N = buffer.size();
+    if (N <= FormatPrecision) return;
+
+    // The most significant figures are the last ones in the buffer.
+    unsigned FirstSignificant = N - FormatPrecision;
+
+    // Round.
+    // FIXME: this probably shouldn't use 'round half up'.
+
+    // Rounding down is just a truncation, except we also want to drop
+    // trailing zeros from the new result.
+    if (buffer[FirstSignificant - 1] < '5') {
+      while (buffer[FirstSignificant] == '0')
+        FirstSignificant++;
+
+      exp += FirstSignificant;
+      buffer.erase(&buffer[0], &buffer[FirstSignificant]);
+      return;
+    }
+
+    // Rounding up requires a decimal add-with-carry.  If we continue
+    // the carry, the newly-introduced zeros will just be truncated.
+    for (unsigned I = FirstSignificant; I != N; ++I) {
+      if (buffer[I] == '9') {
+        FirstSignificant++;
+      } else {
+        buffer[I]++;
+        break;
+      }
+    }
+
+    // If we carried through, we have exactly one digit of precision.
+    if (FirstSignificant == N) {
+      exp += FirstSignificant;
+      buffer.clear();
+      buffer.push_back('1');
+      return;
+    }
+
+    exp += FirstSignificant;
+    buffer.erase(&buffer[0], &buffer[FirstSignificant]);
+  }
+}
+
+void APFloat::toString(SmallVectorImpl<char> &Str,
+                       unsigned FormatPrecision,
+                       unsigned FormatMaxPadding) {
+  switch (category) {
+  case fcInfinity:
+    if (isNegative())
+      return append(Str, "-Inf");
+    else
+      return append(Str, "+Inf");
+
+  case fcNaN: return append(Str, "NaN");
+
+  case fcZero:
+    if (isNegative())
+      Str.push_back('-');
+
+    if (!FormatMaxPadding)
+      append(Str, "0.0E+0");
+    else
+      Str.push_back('0');
+    return;
+
+  case fcNormal:
+    break;
+  }
+
+  if (isNegative())
+    Str.push_back('-');
+
+  // Decompose the number into an APInt and an exponent.
+  int exp = exponent - ((int) semantics->precision - 1);
+  APInt significand(semantics->precision,
+                    partCountForBits(semantics->precision),
+                    significandParts());
+
+  // Set FormatPrecision if zero.  We want to do this before we
+  // truncate trailing zeros, as those are part of the precision.
+  if (!FormatPrecision) {
+    // It's an interesting question whether to use the nominal
+    // precision or the active precision here for denormals.
+
+    // FormatPrecision = ceil(significandBits / lg_2(10))
+    FormatPrecision = (semantics->precision * 59 + 195) / 196;
+  }
+
+  // Ignore trailing binary zeros.
+  int trailingZeros = significand.countTrailingZeros();
+  exp += trailingZeros;
+  significand = significand.lshr(trailingZeros);
+
+  // Change the exponent from 2^e to 10^e.
+  if (exp == 0) {
+    // Nothing to do.
+  } else if (exp > 0) {
+    // Just shift left.
+    significand.zext(semantics->precision + exp);
+    significand <<= exp;
+    exp = 0;
+  } else { /* exp < 0 */
+    int texp = -exp;
+
+    // We transform this using the identity:
+    //   (N)(2^-e) == (N)(5^e)(10^-e)
+    // This means we have to multiply N (the significand) by 5^e.
+    // To avoid overflow, we have to operate on numbers large
+    // enough to store N * 5^e:
+    //   log2(N * 5^e) == log2(N) + e * log2(5)
+    //                 <= semantics->precision + e * 137 / 59
+    //   (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
+    
+    unsigned precision = semantics->precision + 137 * texp / 59;
+
+    // Multiply significand by 5^e.
+    //   N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
+    significand.zext(precision);
+    APInt five_to_the_i(precision, 5);
+    while (true) {
+      if (texp & 1) significand *= five_to_the_i;
+      
+      texp >>= 1;
+      if (!texp) break;
+      five_to_the_i *= five_to_the_i;
+    }
+  }
+
+  AdjustToPrecision(significand, exp, FormatPrecision);
+
+  llvm::SmallVector<char, 256> buffer;
+
+  // Fill the buffer.
+  unsigned precision = significand.getBitWidth();
+  APInt ten(precision, 10);
+  APInt digit(precision, 0);
+
+  bool inTrail = true;
+  while (significand != 0) {
+    // digit <- significand % 10
+    // significand <- significand / 10
+    APInt::udivrem(significand, ten, significand, digit);
+
+    unsigned d = digit.getZExtValue();
+
+    // Drop trailing zeros.
+    if (inTrail && !d) exp++;
+    else {
+      buffer.push_back((char) ('0' + d));
+      inTrail = false;
+    }
+  }
+
+  assert(!buffer.empty() && "no characters in buffer!");
+
+  // Drop down to FormatPrecision.
+  // TODO: don't do more precise calculations above than are required.
+  AdjustToPrecision(buffer, exp, FormatPrecision);
+
+  unsigned NDigits = buffer.size();
+
+  // Check whether we should use scientific notation.
+  bool FormatScientific;
+  if (!FormatMaxPadding)
+    FormatScientific = true;
+  else {
+    if (exp >= 0) {
+      // 765e3 --> 765000
+      //              ^^^
+      // But we shouldn't make the number look more precise than it is.
+      FormatScientific = ((unsigned) exp > FormatMaxPadding ||
+                          NDigits + (unsigned) exp > FormatPrecision);
+    } else {
+      // Power of the most significant digit.
+      int MSD = exp + (int) (NDigits - 1);
+      if (MSD >= 0) {
+        // 765e-2 == 7.65
+        FormatScientific = false;
+      } else {
+        // 765e-5 == 0.00765
+        //           ^ ^^
+        FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
+      }
+    }
+  }
+
+  // Scientific formatting is pretty straightforward.
+  if (FormatScientific) {
+    exp += (NDigits - 1);
+
+    Str.push_back(buffer[NDigits-1]);
+    Str.push_back('.');
+    if (NDigits == 1)
+      Str.push_back('0');
+    else
+      for (unsigned I = 1; I != NDigits; ++I)
+        Str.push_back(buffer[NDigits-1-I]);
+    Str.push_back('E');
+
+    Str.push_back(exp >= 0 ? '+' : '-');
+    if (exp < 0) exp = -exp;
+    SmallVector<char, 6> expbuf;
+    do {
+      expbuf.push_back((char) ('0' + (exp % 10)));
+      exp /= 10;
+    } while (exp);
+    for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
+      Str.push_back(expbuf[E-1-I]);
+    return;
+  }
+
+  // Non-scientific, positive exponents.
+  if (exp >= 0) {
+    for (unsigned I = 0; I != NDigits; ++I)
+      Str.push_back(buffer[NDigits-1-I]);
+    for (unsigned I = 0; I != (unsigned) exp; ++I)
+      Str.push_back('0');
+    return;
+  }
+
+  // Non-scientific, negative exponents.
+
+  // The number of digits to the left of the decimal point.
+  int NWholeDigits = exp + (int) NDigits;
+
+  unsigned I = 0;
+  if (NWholeDigits > 0) {
+    for (; I != (unsigned) NWholeDigits; ++I)
+      Str.push_back(buffer[NDigits-I-1]);
+    Str.push_back('.');
+  } else {
+    unsigned NZeros = 1 + (unsigned) -NWholeDigits;
+
+    Str.push_back('0');
+    Str.push_back('.');
+    for (unsigned Z = 1; Z != NZeros; ++Z)
+      Str.push_back('0');
+  }
+
+  for (; I != NDigits; ++I)
+    Str.push_back(buffer[NDigits-I-1]);
+}