Check in LLVM r95781.
diff --git a/lib/Target/ARM/ARMAddressingModes.h b/lib/Target/ARM/ARMAddressingModes.h
new file mode 100644
index 0000000..ddeb1b9
--- /dev/null
+++ b/lib/Target/ARM/ARMAddressingModes.h
@@ -0,0 +1,566 @@
+//===- ARMAddressingModes.h - ARM Addressing Modes --------------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the ARM addressing mode implementation stuff.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
+#define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
+
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/Support/MathExtras.h"
+#include <cassert>
+
+namespace llvm {
+
+/// ARM_AM - ARM Addressing Mode Stuff
+namespace ARM_AM {
+  enum ShiftOpc {
+    no_shift = 0,
+    asr,
+    lsl,
+    lsr,
+    ror,
+    rrx
+  };
+
+  enum AddrOpc {
+    add = '+', sub = '-'
+  };
+
+  static inline const char *getShiftOpcStr(ShiftOpc Op) {
+    switch (Op) {
+    default: assert(0 && "Unknown shift opc!");
+    case ARM_AM::asr: return "asr";
+    case ARM_AM::lsl: return "lsl";
+    case ARM_AM::lsr: return "lsr";
+    case ARM_AM::ror: return "ror";
+    case ARM_AM::rrx: return "rrx";
+    }
+  }
+
+  static inline ShiftOpc getShiftOpcForNode(SDValue N) {
+    switch (N.getOpcode()) {
+    default:          return ARM_AM::no_shift;
+    case ISD::SHL:    return ARM_AM::lsl;
+    case ISD::SRL:    return ARM_AM::lsr;
+    case ISD::SRA:    return ARM_AM::asr;
+    case ISD::ROTR:   return ARM_AM::ror;
+    //case ISD::ROTL:  // Only if imm -> turn into ROTR.
+    // Can't handle RRX here, because it would require folding a flag into
+    // the addressing mode.  :(  This causes us to miss certain things.
+    //case ARMISD::RRX: return ARM_AM::rrx;
+    }
+  }
+
+  enum AMSubMode {
+    bad_am_submode = 0,
+    ia,
+    ib,
+    da,
+    db
+  };
+
+  static inline const char *getAMSubModeStr(AMSubMode Mode) {
+    switch (Mode) {
+    default: assert(0 && "Unknown addressing sub-mode!");
+    case ARM_AM::ia: return "ia";
+    case ARM_AM::ib: return "ib";
+    case ARM_AM::da: return "da";
+    case ARM_AM::db: return "db";
+    }
+  }
+
+  static inline const char *getAMSubModeAltStr(AMSubMode Mode, bool isLD) {
+    switch (Mode) {
+    default: assert(0 && "Unknown addressing sub-mode!");
+    case ARM_AM::ia: return isLD ? "fd" : "ea";
+    case ARM_AM::ib: return isLD ? "ed" : "fa";
+    case ARM_AM::da: return isLD ? "fa" : "ed";
+    case ARM_AM::db: return isLD ? "ea" : "fd";
+    }
+  }
+
+  /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
+  ///
+  static inline unsigned rotr32(unsigned Val, unsigned Amt) {
+    assert(Amt < 32 && "Invalid rotate amount");
+    return (Val >> Amt) | (Val << ((32-Amt)&31));
+  }
+
+  /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
+  ///
+  static inline unsigned rotl32(unsigned Val, unsigned Amt) {
+    assert(Amt < 32 && "Invalid rotate amount");
+    return (Val << Amt) | (Val >> ((32-Amt)&31));
+  }
+
+  //===--------------------------------------------------------------------===//
+  // Addressing Mode #1: shift_operand with registers
+  //===--------------------------------------------------------------------===//
+  //
+  // This 'addressing mode' is used for arithmetic instructions.  It can
+  // represent things like:
+  //   reg
+  //   reg [asr|lsl|lsr|ror|rrx] reg
+  //   reg [asr|lsl|lsr|ror|rrx] imm
+  //
+  // This is stored three operands [rega, regb, opc].  The first is the base
+  // reg, the second is the shift amount (or reg0 if not present or imm).  The
+  // third operand encodes the shift opcode and the imm if a reg isn't present.
+  //
+  static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
+    return ShOp | (Imm << 3);
+  }
+  static inline unsigned getSORegOffset(unsigned Op) {
+    return Op >> 3;
+  }
+  static inline ShiftOpc getSORegShOp(unsigned Op) {
+    return (ShiftOpc)(Op & 7);
+  }
+
+  /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
+  /// the 8-bit imm value.
+  static inline unsigned getSOImmValImm(unsigned Imm) {
+    return Imm & 0xFF;
+  }
+  /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
+  /// the rotate amount.
+  static inline unsigned getSOImmValRot(unsigned Imm) {
+    return (Imm >> 8) * 2;
+  }
+
+  /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
+  /// computing the rotate amount to use.  If this immediate value cannot be
+  /// handled with a single shifter-op, determine a good rotate amount that will
+  /// take a maximal chunk of bits out of the immediate.
+  static inline unsigned getSOImmValRotate(unsigned Imm) {
+    // 8-bit (or less) immediates are trivially shifter_operands with a rotate
+    // of zero.
+    if ((Imm & ~255U) == 0) return 0;
+
+    // Use CTZ to compute the rotate amount.
+    unsigned TZ = CountTrailingZeros_32(Imm);
+
+    // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
+    // not 9.
+    unsigned RotAmt = TZ & ~1;
+
+    // If we can handle this spread, return it.
+    if ((rotr32(Imm, RotAmt) & ~255U) == 0)
+      return (32-RotAmt)&31;  // HW rotates right, not left.
+
+    // For values like 0xF000000F, we should skip the first run of ones, then
+    // retry the hunt.
+    if (Imm & 1) {
+      unsigned TrailingOnes = CountTrailingZeros_32(~Imm);
+      if (TrailingOnes != 32) {  // Avoid overflow on 0xFFFFFFFF
+        // Restart the search for a high-order bit after the initial seconds of
+        // ones.
+        unsigned TZ2 = CountTrailingZeros_32(Imm & ~((1 << TrailingOnes)-1));
+
+        // Rotate amount must be even.
+        unsigned RotAmt2 = TZ2 & ~1;
+
+        // If this fits, use it.
+        if (RotAmt2 != 32 && (rotr32(Imm, RotAmt2) & ~255U) == 0)
+          return (32-RotAmt2)&31;  // HW rotates right, not left.
+      }
+    }
+
+    // Otherwise, we have no way to cover this span of bits with a single
+    // shifter_op immediate.  Return a chunk of bits that will be useful to
+    // handle.
+    return (32-RotAmt)&31;  // HW rotates right, not left.
+  }
+
+  /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
+  /// into an shifter_operand immediate operand, return the 12-bit encoding for
+  /// it.  If not, return -1.
+  static inline int getSOImmVal(unsigned Arg) {
+    // 8-bit (or less) immediates are trivially shifter_operands with a rotate
+    // of zero.
+    if ((Arg & ~255U) == 0) return Arg;
+
+    unsigned RotAmt = getSOImmValRotate(Arg);
+
+    // If this cannot be handled with a single shifter_op, bail out.
+    if (rotr32(~255U, RotAmt) & Arg)
+      return -1;
+
+    // Encode this correctly.
+    return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
+  }
+
+  /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
+  /// or'ing together two SOImmVal's.
+  static inline bool isSOImmTwoPartVal(unsigned V) {
+    // If this can be handled with a single shifter_op, bail out.
+    V = rotr32(~255U, getSOImmValRotate(V)) & V;
+    if (V == 0)
+      return false;
+
+    // If this can be handled with two shifter_op's, accept.
+    V = rotr32(~255U, getSOImmValRotate(V)) & V;
+    return V == 0;
+  }
+
+  /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
+  /// return the first chunk of it.
+  static inline unsigned getSOImmTwoPartFirst(unsigned V) {
+    return rotr32(255U, getSOImmValRotate(V)) & V;
+  }
+
+  /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
+  /// return the second chunk of it.
+  static inline unsigned getSOImmTwoPartSecond(unsigned V) {
+    // Mask out the first hunk.
+    V = rotr32(~255U, getSOImmValRotate(V)) & V;
+
+    // Take what's left.
+    assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
+    return V;
+  }
+
+  /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
+  /// by a left shift. Returns the shift amount to use.
+  static inline unsigned getThumbImmValShift(unsigned Imm) {
+    // 8-bit (or less) immediates are trivially immediate operand with a shift
+    // of zero.
+    if ((Imm & ~255U) == 0) return 0;
+
+    // Use CTZ to compute the shift amount.
+    return CountTrailingZeros_32(Imm);
+  }
+
+  /// isThumbImmShiftedVal - Return true if the specified value can be obtained
+  /// by left shifting a 8-bit immediate.
+  static inline bool isThumbImmShiftedVal(unsigned V) {
+    // If this can be handled with
+    V = (~255U << getThumbImmValShift(V)) & V;
+    return V == 0;
+  }
+
+  /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
+  /// by a left shift. Returns the shift amount to use.
+  static inline unsigned getThumbImm16ValShift(unsigned Imm) {
+    // 16-bit (or less) immediates are trivially immediate operand with a shift
+    // of zero.
+    if ((Imm & ~65535U) == 0) return 0;
+
+    // Use CTZ to compute the shift amount.
+    return CountTrailingZeros_32(Imm);
+  }
+
+  /// isThumbImm16ShiftedVal - Return true if the specified value can be
+  /// obtained by left shifting a 16-bit immediate.
+  static inline bool isThumbImm16ShiftedVal(unsigned V) {
+    // If this can be handled with
+    V = (~65535U << getThumbImm16ValShift(V)) & V;
+    return V == 0;
+  }
+
+  /// getThumbImmNonShiftedVal - If V is a value that satisfies
+  /// isThumbImmShiftedVal, return the non-shiftd value.
+  static inline unsigned getThumbImmNonShiftedVal(unsigned V) {
+    return V >> getThumbImmValShift(V);
+  }
+
+
+  /// getT2SOImmValSplat - Return the 12-bit encoded representation
+  /// if the specified value can be obtained by splatting the low 8 bits
+  /// into every other byte or every byte of a 32-bit value. i.e.,
+  ///     00000000 00000000 00000000 abcdefgh    control = 0
+  ///     00000000 abcdefgh 00000000 abcdefgh    control = 1
+  ///     abcdefgh 00000000 abcdefgh 00000000    control = 2
+  ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3
+  /// Return -1 if none of the above apply.
+  /// See ARM Reference Manual A6.3.2.
+  static inline int getT2SOImmValSplatVal(unsigned V) {
+    unsigned u, Vs, Imm;
+    // control = 0
+    if ((V & 0xffffff00) == 0)
+      return V;
+
+    // If the value is zeroes in the first byte, just shift those off
+    Vs = ((V & 0xff) == 0) ? V >> 8 : V;
+    // Any passing value only has 8 bits of payload, splatted across the word
+    Imm = Vs & 0xff;
+    // Likewise, any passing values have the payload splatted into the 3rd byte
+    u = Imm | (Imm << 16);
+
+    // control = 1 or 2
+    if (Vs == u)
+      return (((Vs == V) ? 1 : 2) << 8) | Imm;
+
+    // control = 3
+    if (Vs == (u | (u << 8)))
+      return (3 << 8) | Imm;
+
+    return -1;
+  }
+
+  /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
+  /// specified value is a rotated 8-bit value. Return -1 if no rotation
+  /// encoding is possible.
+  /// See ARM Reference Manual A6.3.2.
+  static inline int getT2SOImmValRotateVal(unsigned V) {
+    unsigned RotAmt = CountLeadingZeros_32(V);
+    if (RotAmt >= 24)
+      return -1;
+
+    // If 'Arg' can be handled with a single shifter_op return the value.
+    if ((rotr32(0xff000000U, RotAmt) & V) == V)
+      return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
+
+    return -1;
+  }
+
+  /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
+  /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
+  /// encoding for it.  If not, return -1.
+  /// See ARM Reference Manual A6.3.2.
+  static inline int getT2SOImmVal(unsigned Arg) {
+    // If 'Arg' is an 8-bit splat, then get the encoded value.
+    int Splat = getT2SOImmValSplatVal(Arg);
+    if (Splat != -1)
+      return Splat;
+
+    // If 'Arg' can be handled with a single shifter_op return the value.
+    int Rot = getT2SOImmValRotateVal(Arg);
+    if (Rot != -1)
+      return Rot;
+
+    return -1;
+  }
+
+  static inline unsigned getT2SOImmValRotate(unsigned V) {
+    if ((V & ~255U) == 0) return 0;
+    // Use CTZ to compute the rotate amount.
+    unsigned RotAmt = CountTrailingZeros_32(V);
+    return (32 - RotAmt) & 31;
+  }
+
+  static inline bool isT2SOImmTwoPartVal (unsigned Imm) {
+    unsigned V = Imm;
+    // Passing values can be any combination of splat values and shifter
+    // values. If this can be handled with a single shifter or splat, bail
+    // out. Those should be handled directly, not with a two-part val.
+    if (getT2SOImmValSplatVal(V) != -1)
+      return false;
+    V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
+    if (V == 0)
+      return false;
+
+    // If this can be handled as an immediate, accept.
+    if (getT2SOImmVal(V) != -1) return true;
+
+    // Likewise, try masking out a splat value first.
+    V = Imm;
+    if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
+      V &= ~0xff00ff00U;
+    else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
+      V &= ~0x00ff00ffU;
+    // If what's left can be handled as an immediate, accept.
+    if (getT2SOImmVal(V) != -1) return true;
+
+    // Otherwise, do not accept.
+    return false;
+  }
+
+  static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
+    assert (isT2SOImmTwoPartVal(Imm) &&
+            "Immedate cannot be encoded as two part immediate!");
+    // Try a shifter operand as one part
+    unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
+    // If the rest is encodable as an immediate, then return it.
+    if (getT2SOImmVal(V) != -1) return V;
+
+    // Try masking out a splat value first.
+    if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
+      return Imm & 0xff00ff00U;
+
+    // The other splat is all that's left as an option.
+    assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
+    return Imm & 0x00ff00ffU;
+  }
+
+  static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
+    // Mask out the first hunk
+    Imm ^= getT2SOImmTwoPartFirst(Imm);
+    // Return what's left
+    assert (getT2SOImmVal(Imm) != -1 &&
+            "Unable to encode second part of T2 two part SO immediate");
+    return Imm;
+  }
+
+
+  //===--------------------------------------------------------------------===//
+  // Addressing Mode #2
+  //===--------------------------------------------------------------------===//
+  //
+  // This is used for most simple load/store instructions.
+  //
+  // addrmode2 := reg +/- reg shop imm
+  // addrmode2 := reg +/- imm12
+  //
+  // The first operand is always a Reg.  The second operand is a reg if in
+  // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
+  // in bit 12, the immediate in bits 0-11, and the shift op in 13-15.
+  //
+  // If this addressing mode is a frame index (before prolog/epilog insertion
+  // and code rewriting), this operand will have the form:  FI#, reg0, <offs>
+  // with no shift amount for the frame offset.
+  //
+  static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO) {
+    assert(Imm12 < (1 << 12) && "Imm too large!");
+    bool isSub = Opc == sub;
+    return Imm12 | ((int)isSub << 12) | (SO << 13);
+  }
+  static inline unsigned getAM2Offset(unsigned AM2Opc) {
+    return AM2Opc & ((1 << 12)-1);
+  }
+  static inline AddrOpc getAM2Op(unsigned AM2Opc) {
+    return ((AM2Opc >> 12) & 1) ? sub : add;
+  }
+  static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
+    return (ShiftOpc)(AM2Opc >> 13);
+  }
+
+
+  //===--------------------------------------------------------------------===//
+  // Addressing Mode #3
+  //===--------------------------------------------------------------------===//
+  //
+  // This is used for sign-extending loads, and load/store-pair instructions.
+  //
+  // addrmode3 := reg +/- reg
+  // addrmode3 := reg +/- imm8
+  //
+  // The first operand is always a Reg.  The second operand is a reg if in
+  // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
+  // in bit 8, the immediate in bits 0-7.
+
+  /// getAM3Opc - This function encodes the addrmode3 opc field.
+  static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset) {
+    bool isSub = Opc == sub;
+    return ((int)isSub << 8) | Offset;
+  }
+  static inline unsigned char getAM3Offset(unsigned AM3Opc) {
+    return AM3Opc & 0xFF;
+  }
+  static inline AddrOpc getAM3Op(unsigned AM3Opc) {
+    return ((AM3Opc >> 8) & 1) ? sub : add;
+  }
+
+  //===--------------------------------------------------------------------===//
+  // Addressing Mode #4
+  //===--------------------------------------------------------------------===//
+  //
+  // This is used for load / store multiple instructions.
+  //
+  // addrmode4 := reg, <mode>
+  //
+  // The four modes are:
+  //    IA - Increment after
+  //    IB - Increment before
+  //    DA - Decrement after
+  //    DB - Decrement before
+  //
+  // If the 4th bit (writeback)is set, then the base register is updated after
+  // the memory transfer.
+
+  static inline AMSubMode getAM4SubMode(unsigned Mode) {
+    return (AMSubMode)(Mode & 0x7);
+  }
+
+  static inline unsigned getAM4ModeImm(AMSubMode SubMode, bool WB = false) {
+    return (int)SubMode | ((int)WB << 3);
+  }
+
+  static inline bool getAM4WBFlag(unsigned Mode) {
+    return (Mode >> 3) & 1;
+  }
+
+  //===--------------------------------------------------------------------===//
+  // Addressing Mode #5
+  //===--------------------------------------------------------------------===//
+  //
+  // This is used for coprocessor instructions, such as FP load/stores.
+  //
+  // addrmode5 := reg +/- imm8*4
+  //
+  // The first operand is always a Reg.  The second operand encodes the
+  // operation in bit 8 and the immediate in bits 0-7.
+  //
+  // This is also used for FP load/store multiple ops. The second operand
+  // encodes the writeback mode in bit 8 and the number of registers (or 2
+  // times the number of registers for DPR ops) in bits 0-7. In addition,
+  // bits 9-11 encode one of the following two sub-modes:
+  //
+  //    IA - Increment after
+  //    DB - Decrement before
+
+  /// getAM5Opc - This function encodes the addrmode5 opc field.
+  static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
+    bool isSub = Opc == sub;
+    return ((int)isSub << 8) | Offset;
+  }
+  static inline unsigned char getAM5Offset(unsigned AM5Opc) {
+    return AM5Opc & 0xFF;
+  }
+  static inline AddrOpc getAM5Op(unsigned AM5Opc) {
+    return ((AM5Opc >> 8) & 1) ? sub : add;
+  }
+
+  /// getAM5Opc - This function encodes the addrmode5 opc field for VLDM and
+  /// VSTM instructions.
+  static inline unsigned getAM5Opc(AMSubMode SubMode, bool WB,
+                                   unsigned char Offset) {
+    assert((SubMode == ia || SubMode == db) &&
+           "Illegal addressing mode 5 sub-mode!");
+    return ((int)SubMode << 9) | ((int)WB << 8) | Offset;
+  }
+  static inline AMSubMode getAM5SubMode(unsigned AM5Opc) {
+    return (AMSubMode)((AM5Opc >> 9) & 0x7);
+  }
+  static inline bool getAM5WBFlag(unsigned AM5Opc) {
+    return ((AM5Opc >> 8) & 1);
+  }
+
+  //===--------------------------------------------------------------------===//
+  // Addressing Mode #6
+  //===--------------------------------------------------------------------===//
+  //
+  // This is used for NEON load / store instructions.
+  //
+  // addrmode6 := reg with optional writeback and alignment
+  //
+  // This is stored in four operands [regaddr, regupdate, opc, align].  The
+  // first is the address register.  The second register holds the value of
+  // a post-access increment for writeback or reg0 if no writeback or if the
+  // writeback increment is the size of the memory access.  The third
+  // operand encodes whether there is writeback to the address register. The
+  // fourth operand is the value of the alignment specifier to use or zero if
+  // no explicit alignment.
+
+  static inline unsigned getAM6Opc(bool WB = false) {
+    return (int)WB;
+  }
+
+  static inline bool getAM6WBFlag(unsigned Mode) {
+    return Mode & 1;
+  }
+
+} // end namespace ARM_AM
+} // end namespace llvm
+
+#endif
+