Check in LLVM r95781.
diff --git a/lib/Target/ARM/ARMJITInfo.cpp b/lib/Target/ARM/ARMJITInfo.cpp
new file mode 100644
index 0000000..bef5a06
--- /dev/null
+++ b/lib/Target/ARM/ARMJITInfo.cpp
@@ -0,0 +1,323 @@
+//===-- ARMJITInfo.cpp - Implement the JIT interfaces for the ARM target --===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the JIT interfaces for the ARM target.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "jit"
+#include "ARMJITInfo.h"
+#include "ARMInstrInfo.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMRelocations.h"
+#include "ARMSubtarget.h"
+#include "llvm/Function.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/System/Memory.h"
+#include <cstdlib>
+using namespace llvm;
+
+void ARMJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
+  llvm_report_error("ARMJITInfo::replaceMachineCodeForFunction");
+}
+
+/// JITCompilerFunction - This contains the address of the JIT function used to
+/// compile a function lazily.
+static TargetJITInfo::JITCompilerFn JITCompilerFunction;
+
+// Get the ASMPREFIX for the current host.  This is often '_'.
+#ifndef __USER_LABEL_PREFIX__
+#define __USER_LABEL_PREFIX__
+#endif
+#define GETASMPREFIX2(X) #X
+#define GETASMPREFIX(X) GETASMPREFIX2(X)
+#define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
+
+// CompilationCallback stub - We can't use a C function with inline assembly in
+// it, because we the prolog/epilog inserted by GCC won't work for us (we need
+// to preserve more context and manipulate the stack directly).  Instead,
+// write our own wrapper, which does things our way, so we have complete
+// control over register saving and restoring.
+extern "C" {
+#if defined(__arm__)
+  void ARMCompilationCallback();
+  asm(
+    ".text\n"
+    ".align 2\n"
+    ".globl " ASMPREFIX "ARMCompilationCallback\n"
+    ASMPREFIX "ARMCompilationCallback:\n"
+    // Save caller saved registers since they may contain stuff
+    // for the real target function right now. We have to act as if this
+    // whole compilation callback doesn't exist as far as the caller is
+    // concerned, so we can't just preserve the callee saved regs.
+    "stmdb sp!, {r0, r1, r2, r3, lr}\n"
+#ifndef __SOFTFP__
+    "fstmfdd sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
+#endif
+    // The LR contains the address of the stub function on entry.
+    // pass it as the argument to the C part of the callback
+    "mov  r0, lr\n"
+    "sub  sp, sp, #4\n"
+    // Call the C portion of the callback
+    "bl   " ASMPREFIX "ARMCompilationCallbackC\n"
+    "add  sp, sp, #4\n"
+    // Restoring the LR to the return address of the function that invoked
+    // the stub and de-allocating the stack space for it requires us to
+    // swap the two saved LR values on the stack, as they're backwards
+    // for what we need since the pop instruction has a pre-determined
+    // order for the registers.
+    //      +--------+
+    //   0  | LR     | Original return address
+    //      +--------+
+    //   1  | LR     | Stub address (start of stub)
+    // 2-5  | R3..R0 | Saved registers (we need to preserve all regs)
+    // 6-20 | D0..D7 | Saved VFP registers
+    //      +--------+
+    //
+#ifndef __SOFTFP__
+    // Restore VFP caller-saved registers.
+    "fldmfdd sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
+#endif
+    //
+    //      We need to exchange the values in slots 0 and 1 so we can
+    //      return to the address in slot 1 with the address in slot 0
+    //      restored to the LR.
+    "ldr  r0, [sp,#20]\n"
+    "ldr  r1, [sp,#16]\n"
+    "str  r1, [sp,#20]\n"
+    "str  r0, [sp,#16]\n"
+    // Return to the (newly modified) stub to invoke the real function.
+    // The above twiddling of the saved return addresses allows us to
+    // deallocate everything, including the LR the stub saved, all in one
+    // pop instruction.
+    "ldmia  sp!, {r0, r1, r2, r3, lr, pc}\n"
+      );
+#else  // Not an ARM host
+  void ARMCompilationCallback() {
+    llvm_unreachable("Cannot call ARMCompilationCallback() on a non-ARM arch!");
+  }
+#endif
+}
+
+/// ARMCompilationCallbackC - This is the target-specific function invoked
+/// by the function stub when we did not know the real target of a call.
+/// This function must locate the start of the stub or call site and pass
+/// it into the JIT compiler function.
+extern "C" void ARMCompilationCallbackC(intptr_t StubAddr) {
+  // Get the address of the compiled code for this function.
+  intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)StubAddr);
+
+  // Rewrite the call target... so that we don't end up here every time we
+  // execute the call. We're replacing the first two instructions of the
+  // stub with:
+  //   ldr pc, [pc,#-4]
+  //   <addr>
+  if (!sys::Memory::setRangeWritable((void*)StubAddr, 8)) {
+    llvm_unreachable("ERROR: Unable to mark stub writable");
+  }
+  *(intptr_t *)StubAddr = 0xe51ff004;  // ldr pc, [pc, #-4]
+  *(intptr_t *)(StubAddr+4) = NewVal;
+  if (!sys::Memory::setRangeExecutable((void*)StubAddr, 8)) {
+    llvm_unreachable("ERROR: Unable to mark stub executable");
+  }
+}
+
+TargetJITInfo::LazyResolverFn
+ARMJITInfo::getLazyResolverFunction(JITCompilerFn F) {
+  JITCompilerFunction = F;
+  return ARMCompilationCallback;
+}
+
+void *ARMJITInfo::emitGlobalValueIndirectSym(const GlobalValue *GV, void *Ptr,
+                                             JITCodeEmitter &JCE) {
+  uint8_t Buffer[4];
+  uint8_t *Cur = Buffer;
+  MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)Ptr);
+  void *PtrAddr = JCE.allocIndirectGV(
+      GV, Buffer, sizeof(Buffer), /*Alignment=*/4);
+  addIndirectSymAddr(Ptr, (intptr_t)PtrAddr);
+  return PtrAddr;
+}
+
+TargetJITInfo::StubLayout ARMJITInfo::getStubLayout() {
+  // The stub contains up to 3 4-byte instructions, aligned at 4 bytes, and a
+  // 4-byte address.  See emitFunctionStub for details.
+  StubLayout Result = {16, 4};
+  return Result;
+}
+
+void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn,
+                                   JITCodeEmitter &JCE) {
+  void *Addr;
+  // If this is just a call to an external function, emit a branch instead of a
+  // call.  The code is the same except for one bit of the last instruction.
+  if (Fn != (void*)(intptr_t)ARMCompilationCallback) {
+    // Branch to the corresponding function addr.
+    if (IsPIC) {
+      // The stub is 16-byte size and 4-aligned.
+      intptr_t LazyPtr = getIndirectSymAddr(Fn);
+      if (!LazyPtr) {
+        // In PIC mode, the function stub is loading a lazy-ptr.
+        LazyPtr= (intptr_t)emitGlobalValueIndirectSym((GlobalValue*)F, Fn, JCE);
+        DEBUG(if (F)
+                errs() << "JIT: Indirect symbol emitted at [" << LazyPtr
+                       << "] for GV '" << F->getName() << "'\n";
+              else
+                errs() << "JIT: Stub emitted at [" << LazyPtr
+                       << "] for external function at '" << Fn << "'\n");
+      }
+      JCE.emitAlignment(4);
+      Addr = (void*)JCE.getCurrentPCValue();
+      if (!sys::Memory::setRangeWritable(Addr, 16)) {
+        llvm_unreachable("ERROR: Unable to mark stub writable");
+      }
+      JCE.emitWordLE(0xe59fc004);            // ldr ip, [pc, #+4]
+      JCE.emitWordLE(0xe08fc00c);            // L_func$scv: add ip, pc, ip
+      JCE.emitWordLE(0xe59cf000);            // ldr pc, [ip]
+      JCE.emitWordLE(LazyPtr - (intptr_t(Addr)+4+8));  // func - (L_func$scv+8)
+      sys::Memory::InvalidateInstructionCache(Addr, 16);
+      if (!sys::Memory::setRangeExecutable(Addr, 16)) {
+        llvm_unreachable("ERROR: Unable to mark stub executable");
+      }
+    } else {
+      // The stub is 8-byte size and 4-aligned.
+      JCE.emitAlignment(4);
+      Addr = (void*)JCE.getCurrentPCValue();
+      if (!sys::Memory::setRangeWritable(Addr, 8)) {
+        llvm_unreachable("ERROR: Unable to mark stub writable");
+      }
+      JCE.emitWordLE(0xe51ff004);    // ldr pc, [pc, #-4]
+      JCE.emitWordLE((intptr_t)Fn);  // addr of function
+      sys::Memory::InvalidateInstructionCache(Addr, 8);
+      if (!sys::Memory::setRangeExecutable(Addr, 8)) {
+        llvm_unreachable("ERROR: Unable to mark stub executable");
+      }
+    }
+  } else {
+    // The compilation callback will overwrite the first two words of this
+    // stub with indirect branch instructions targeting the compiled code.
+    // This stub sets the return address to restart the stub, so that
+    // the new branch will be invoked when we come back.
+    //
+    // Branch and link to the compilation callback.
+    // The stub is 16-byte size and 4-byte aligned.
+    JCE.emitAlignment(4);
+    Addr = (void*)JCE.getCurrentPCValue();
+    if (!sys::Memory::setRangeWritable(Addr, 16)) {
+      llvm_unreachable("ERROR: Unable to mark stub writable");
+    }
+    // Save LR so the callback can determine which stub called it.
+    // The compilation callback is responsible for popping this prior
+    // to returning.
+    JCE.emitWordLE(0xe92d4000); // push {lr}
+    // Set the return address to go back to the start of this stub.
+    JCE.emitWordLE(0xe24fe00c); // sub lr, pc, #12
+    // Invoke the compilation callback.
+    JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
+    // The address of the compilation callback.
+    JCE.emitWordLE((intptr_t)ARMCompilationCallback);
+    sys::Memory::InvalidateInstructionCache(Addr, 16);
+    if (!sys::Memory::setRangeExecutable(Addr, 16)) {
+      llvm_unreachable("ERROR: Unable to mark stub executable");
+    }
+  }
+
+  return Addr;
+}
+
+intptr_t ARMJITInfo::resolveRelocDestAddr(MachineRelocation *MR) const {
+  ARM::RelocationType RT = (ARM::RelocationType)MR->getRelocationType();
+  switch (RT) {
+  default:
+    return (intptr_t)(MR->getResultPointer());
+  case ARM::reloc_arm_pic_jt:
+    // Destination address - jump table base.
+    return (intptr_t)(MR->getResultPointer()) - MR->getConstantVal();
+  case ARM::reloc_arm_jt_base:
+    // Jump table base address.
+    return getJumpTableBaseAddr(MR->getJumpTableIndex());
+  case ARM::reloc_arm_cp_entry:
+  case ARM::reloc_arm_vfp_cp_entry:
+    // Constant pool entry address.
+    return getConstantPoolEntryAddr(MR->getConstantPoolIndex());
+  case ARM::reloc_arm_machine_cp_entry: {
+    ARMConstantPoolValue *ACPV = (ARMConstantPoolValue*)MR->getConstantVal();
+    assert((!ACPV->hasModifier() && !ACPV->mustAddCurrentAddress()) &&
+           "Can't handle this machine constant pool entry yet!");
+    intptr_t Addr = (intptr_t)(MR->getResultPointer());
+    Addr -= getPCLabelAddr(ACPV->getLabelId()) + ACPV->getPCAdjustment();
+    return Addr;
+  }
+  }
+}
+
+/// relocate - Before the JIT can run a block of code that has been emitted,
+/// it must rewrite the code to contain the actual addresses of any
+/// referenced global symbols.
+void ARMJITInfo::relocate(void *Function, MachineRelocation *MR,
+                          unsigned NumRelocs, unsigned char* GOTBase) {
+  for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
+    void *RelocPos = (char*)Function + MR->getMachineCodeOffset();
+    intptr_t ResultPtr = resolveRelocDestAddr(MR);
+    switch ((ARM::RelocationType)MR->getRelocationType()) {
+    case ARM::reloc_arm_cp_entry:
+    case ARM::reloc_arm_vfp_cp_entry:
+    case ARM::reloc_arm_relative: {
+      // It is necessary to calculate the correct PC relative value. We
+      // subtract the base addr from the target addr to form a byte offset.
+      ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
+      // If the result is positive, set bit U(23) to 1.
+      if (ResultPtr >= 0)
+        *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift;
+      else {
+        // Otherwise, obtain the absolute value and set bit U(23) to 0.
+        *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift);
+        ResultPtr = - ResultPtr;
+      }
+      // Set the immed value calculated.
+      // VFP immediate offset is multiplied by 4.
+      if (MR->getRelocationType() == ARM::reloc_arm_vfp_cp_entry)
+        ResultPtr = ResultPtr >> 2;
+      *((intptr_t*)RelocPos) |= ResultPtr;
+      // Set register Rn to PC.
+      *((intptr_t*)RelocPos) |=
+        ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
+      break;
+    }
+    case ARM::reloc_arm_pic_jt:
+    case ARM::reloc_arm_machine_cp_entry:
+    case ARM::reloc_arm_absolute: {
+      // These addresses have already been resolved.
+      *((intptr_t*)RelocPos) |= (intptr_t)ResultPtr;
+      break;
+    }
+    case ARM::reloc_arm_branch: {
+      // It is necessary to calculate the correct value of signed_immed_24
+      // field. We subtract the base addr from the target addr to form a
+      // byte offset, which must be inside the range -33554432 and +33554428.
+      // Then, we set the signed_immed_24 field of the instruction to bits
+      // [25:2] of the byte offset. More details ARM-ARM p. A4-11.
+      ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
+      ResultPtr = (ResultPtr & 0x03FFFFFC) >> 2;
+      assert(ResultPtr >= -33554432 && ResultPtr <= 33554428);
+      *((intptr_t*)RelocPos) |= ResultPtr;
+      break;
+    }
+    case ARM::reloc_arm_jt_base: {
+      // JT base - (instruction addr + 8)
+      ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
+      *((intptr_t*)RelocPos) |= ResultPtr;
+      break;
+    }
+    }
+  }
+}