| //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Bitcode writer implementation. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Bitcode/ReaderWriter.h" |
| #include "llvm/Bitcode/BitstreamWriter.h" |
| #include "llvm/Bitcode/LLVMBitCodes.h" |
| #include "ValueEnumerator.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Module.h" |
| #include "llvm/TypeSymbolTable.h" |
| #include "llvm/ValueSymbolTable.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Streams.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/System/Program.h" |
| using namespace llvm; |
| |
| /// These are manifest constants used by the bitcode writer. They do not need to |
| /// be kept in sync with the reader, but need to be consistent within this file. |
| enum { |
| CurVersion = 0, |
| |
| // VALUE_SYMTAB_BLOCK abbrev id's. |
| VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, |
| VST_ENTRY_7_ABBREV, |
| VST_ENTRY_6_ABBREV, |
| VST_BBENTRY_6_ABBREV, |
| |
| // CONSTANTS_BLOCK abbrev id's. |
| CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, |
| CONSTANTS_INTEGER_ABBREV, |
| CONSTANTS_CE_CAST_Abbrev, |
| CONSTANTS_NULL_Abbrev, |
| |
| // FUNCTION_BLOCK abbrev id's. |
| FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, |
| FUNCTION_INST_BINOP_ABBREV, |
| FUNCTION_INST_CAST_ABBREV, |
| FUNCTION_INST_RET_VOID_ABBREV, |
| FUNCTION_INST_RET_VAL_ABBREV, |
| FUNCTION_INST_UNREACHABLE_ABBREV |
| }; |
| |
| |
| static unsigned GetEncodedCastOpcode(unsigned Opcode) { |
| switch (Opcode) { |
| default: assert(0 && "Unknown cast instruction!"); |
| case Instruction::Trunc : return bitc::CAST_TRUNC; |
| case Instruction::ZExt : return bitc::CAST_ZEXT; |
| case Instruction::SExt : return bitc::CAST_SEXT; |
| case Instruction::FPToUI : return bitc::CAST_FPTOUI; |
| case Instruction::FPToSI : return bitc::CAST_FPTOSI; |
| case Instruction::UIToFP : return bitc::CAST_UITOFP; |
| case Instruction::SIToFP : return bitc::CAST_SITOFP; |
| case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; |
| case Instruction::FPExt : return bitc::CAST_FPEXT; |
| case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; |
| case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; |
| case Instruction::BitCast : return bitc::CAST_BITCAST; |
| } |
| } |
| |
| static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { |
| switch (Opcode) { |
| default: assert(0 && "Unknown binary instruction!"); |
| case Instruction::Add: return bitc::BINOP_ADD; |
| case Instruction::Sub: return bitc::BINOP_SUB; |
| case Instruction::Mul: return bitc::BINOP_MUL; |
| case Instruction::UDiv: return bitc::BINOP_UDIV; |
| case Instruction::FDiv: |
| case Instruction::SDiv: return bitc::BINOP_SDIV; |
| case Instruction::URem: return bitc::BINOP_UREM; |
| case Instruction::FRem: |
| case Instruction::SRem: return bitc::BINOP_SREM; |
| case Instruction::Shl: return bitc::BINOP_SHL; |
| case Instruction::LShr: return bitc::BINOP_LSHR; |
| case Instruction::AShr: return bitc::BINOP_ASHR; |
| case Instruction::And: return bitc::BINOP_AND; |
| case Instruction::Or: return bitc::BINOP_OR; |
| case Instruction::Xor: return bitc::BINOP_XOR; |
| } |
| } |
| |
| |
| |
| static void WriteStringRecord(unsigned Code, const std::string &Str, |
| unsigned AbbrevToUse, BitstreamWriter &Stream) { |
| SmallVector<unsigned, 64> Vals; |
| |
| // Code: [strchar x N] |
| for (unsigned i = 0, e = Str.size(); i != e; ++i) |
| Vals.push_back(Str[i]); |
| |
| // Emit the finished record. |
| Stream.EmitRecord(Code, Vals, AbbrevToUse); |
| } |
| |
| // Emit information about parameter attributes. |
| static void WriteAttributeTable(const ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); |
| if (Attrs.empty()) return; |
| |
| Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); |
| |
| SmallVector<uint64_t, 64> Record; |
| for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { |
| const AttrListPtr &A = Attrs[i]; |
| for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { |
| const AttributeWithIndex &PAWI = A.getSlot(i); |
| Record.push_back(PAWI.Index); |
| Record.push_back(PAWI.Attrs); |
| } |
| |
| Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); |
| Record.clear(); |
| } |
| |
| Stream.ExitBlock(); |
| } |
| |
| /// WriteTypeTable - Write out the type table for a module. |
| static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { |
| const ValueEnumerator::TypeList &TypeList = VE.getTypes(); |
| |
| Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); |
| SmallVector<uint64_t, 64> TypeVals; |
| |
| // Abbrev for TYPE_CODE_POINTER. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, |
| Log2_32_Ceil(VE.getTypes().size()+1))); |
| Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 |
| unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); |
| |
| // Abbrev for TYPE_CODE_FUNCTION. |
| Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg |
| Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, |
| Log2_32_Ceil(VE.getTypes().size()+1))); |
| unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); |
| |
| // Abbrev for TYPE_CODE_STRUCT. |
| Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, |
| Log2_32_Ceil(VE.getTypes().size()+1))); |
| unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); |
| |
| // Abbrev for TYPE_CODE_ARRAY. |
| Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, |
| Log2_32_Ceil(VE.getTypes().size()+1))); |
| unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); |
| |
| // Emit an entry count so the reader can reserve space. |
| TypeVals.push_back(TypeList.size()); |
| Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); |
| TypeVals.clear(); |
| |
| // Loop over all of the types, emitting each in turn. |
| for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { |
| const Type *T = TypeList[i].first; |
| int AbbrevToUse = 0; |
| unsigned Code = 0; |
| |
| switch (T->getTypeID()) { |
| default: assert(0 && "Unknown type!"); |
| case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; |
| case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; |
| case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; |
| case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; |
| case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; |
| case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; |
| case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; |
| case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; |
| case Type::IntegerTyID: |
| // INTEGER: [width] |
| Code = bitc::TYPE_CODE_INTEGER; |
| TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); |
| break; |
| case Type::PointerTyID: { |
| const PointerType *PTy = cast<PointerType>(T); |
| // POINTER: [pointee type, address space] |
| Code = bitc::TYPE_CODE_POINTER; |
| TypeVals.push_back(VE.getTypeID(PTy->getElementType())); |
| unsigned AddressSpace = PTy->getAddressSpace(); |
| TypeVals.push_back(AddressSpace); |
| if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; |
| break; |
| } |
| case Type::FunctionTyID: { |
| const FunctionType *FT = cast<FunctionType>(T); |
| // FUNCTION: [isvararg, attrid, retty, paramty x N] |
| Code = bitc::TYPE_CODE_FUNCTION; |
| TypeVals.push_back(FT->isVarArg()); |
| TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 |
| TypeVals.push_back(VE.getTypeID(FT->getReturnType())); |
| for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) |
| TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); |
| AbbrevToUse = FunctionAbbrev; |
| break; |
| } |
| case Type::StructTyID: { |
| const StructType *ST = cast<StructType>(T); |
| // STRUCT: [ispacked, eltty x N] |
| Code = bitc::TYPE_CODE_STRUCT; |
| TypeVals.push_back(ST->isPacked()); |
| // Output all of the element types. |
| for (StructType::element_iterator I = ST->element_begin(), |
| E = ST->element_end(); I != E; ++I) |
| TypeVals.push_back(VE.getTypeID(*I)); |
| AbbrevToUse = StructAbbrev; |
| break; |
| } |
| case Type::ArrayTyID: { |
| const ArrayType *AT = cast<ArrayType>(T); |
| // ARRAY: [numelts, eltty] |
| Code = bitc::TYPE_CODE_ARRAY; |
| TypeVals.push_back(AT->getNumElements()); |
| TypeVals.push_back(VE.getTypeID(AT->getElementType())); |
| AbbrevToUse = ArrayAbbrev; |
| break; |
| } |
| case Type::VectorTyID: { |
| const VectorType *VT = cast<VectorType>(T); |
| // VECTOR [numelts, eltty] |
| Code = bitc::TYPE_CODE_VECTOR; |
| TypeVals.push_back(VT->getNumElements()); |
| TypeVals.push_back(VE.getTypeID(VT->getElementType())); |
| break; |
| } |
| } |
| |
| // Emit the finished record. |
| Stream.EmitRecord(Code, TypeVals, AbbrevToUse); |
| TypeVals.clear(); |
| } |
| |
| Stream.ExitBlock(); |
| } |
| |
| static unsigned getEncodedLinkage(const GlobalValue *GV) { |
| switch (GV->getLinkage()) { |
| default: assert(0 && "Invalid linkage!"); |
| case GlobalValue::GhostLinkage: // Map ghost linkage onto external. |
| case GlobalValue::ExternalLinkage: return 0; |
| case GlobalValue::WeakLinkage: return 1; |
| case GlobalValue::AppendingLinkage: return 2; |
| case GlobalValue::InternalLinkage: return 3; |
| case GlobalValue::LinkOnceLinkage: return 4; |
| case GlobalValue::DLLImportLinkage: return 5; |
| case GlobalValue::DLLExportLinkage: return 6; |
| case GlobalValue::ExternalWeakLinkage: return 7; |
| case GlobalValue::CommonLinkage: return 8; |
| } |
| } |
| |
| static unsigned getEncodedVisibility(const GlobalValue *GV) { |
| switch (GV->getVisibility()) { |
| default: assert(0 && "Invalid visibility!"); |
| case GlobalValue::DefaultVisibility: return 0; |
| case GlobalValue::HiddenVisibility: return 1; |
| case GlobalValue::ProtectedVisibility: return 2; |
| } |
| } |
| |
| // Emit top-level description of module, including target triple, inline asm, |
| // descriptors for global variables, and function prototype info. |
| static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| // Emit the list of dependent libraries for the Module. |
| for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) |
| WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); |
| |
| // Emit various pieces of data attached to a module. |
| if (!M->getTargetTriple().empty()) |
| WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), |
| 0/*TODO*/, Stream); |
| if (!M->getDataLayout().empty()) |
| WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), |
| 0/*TODO*/, Stream); |
| if (!M->getModuleInlineAsm().empty()) |
| WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), |
| 0/*TODO*/, Stream); |
| |
| // Emit information about sections and GC, computing how many there are. Also |
| // compute the maximum alignment value. |
| std::map<std::string, unsigned> SectionMap; |
| std::map<std::string, unsigned> GCMap; |
| unsigned MaxAlignment = 0; |
| unsigned MaxGlobalType = 0; |
| for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); |
| GV != E; ++GV) { |
| MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); |
| MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); |
| |
| if (!GV->hasSection()) continue; |
| // Give section names unique ID's. |
| unsigned &Entry = SectionMap[GV->getSection()]; |
| if (Entry != 0) continue; |
| WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), |
| 0/*TODO*/, Stream); |
| Entry = SectionMap.size(); |
| } |
| for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { |
| MaxAlignment = std::max(MaxAlignment, F->getAlignment()); |
| if (F->hasSection()) { |
| // Give section names unique ID's. |
| unsigned &Entry = SectionMap[F->getSection()]; |
| if (!Entry) { |
| WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), |
| 0/*TODO*/, Stream); |
| Entry = SectionMap.size(); |
| } |
| } |
| if (F->hasGC()) { |
| // Same for GC names. |
| unsigned &Entry = GCMap[F->getGC()]; |
| if (!Entry) { |
| WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), |
| 0/*TODO*/, Stream); |
| Entry = GCMap.size(); |
| } |
| } |
| } |
| |
| // Emit abbrev for globals, now that we know # sections and max alignment. |
| unsigned SimpleGVarAbbrev = 0; |
| if (!M->global_empty()) { |
| // Add an abbrev for common globals with no visibility or thread localness. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, |
| Log2_32_Ceil(MaxGlobalType+1))); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. |
| if (MaxAlignment == 0) // Alignment. |
| Abbv->Add(BitCodeAbbrevOp(0)); |
| else { |
| unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, |
| Log2_32_Ceil(MaxEncAlignment+1))); |
| } |
| if (SectionMap.empty()) // Section. |
| Abbv->Add(BitCodeAbbrevOp(0)); |
| else |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, |
| Log2_32_Ceil(SectionMap.size()+1))); |
| // Don't bother emitting vis + thread local. |
| SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); |
| } |
| |
| // Emit the global variable information. |
| SmallVector<unsigned, 64> Vals; |
| for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); |
| GV != E; ++GV) { |
| unsigned AbbrevToUse = 0; |
| |
| // GLOBALVAR: [type, isconst, initid, |
| // linkage, alignment, section, visibility, threadlocal] |
| Vals.push_back(VE.getTypeID(GV->getType())); |
| Vals.push_back(GV->isConstant()); |
| Vals.push_back(GV->isDeclaration() ? 0 : |
| (VE.getValueID(GV->getInitializer()) + 1)); |
| Vals.push_back(getEncodedLinkage(GV)); |
| Vals.push_back(Log2_32(GV->getAlignment())+1); |
| Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); |
| if (GV->isThreadLocal() || |
| GV->getVisibility() != GlobalValue::DefaultVisibility) { |
| Vals.push_back(getEncodedVisibility(GV)); |
| Vals.push_back(GV->isThreadLocal()); |
| } else { |
| AbbrevToUse = SimpleGVarAbbrev; |
| } |
| |
| Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); |
| Vals.clear(); |
| } |
| |
| // Emit the function proto information. |
| for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { |
| // FUNCTION: [type, callingconv, isproto, paramattr, |
| // linkage, alignment, section, visibility, gc] |
| Vals.push_back(VE.getTypeID(F->getType())); |
| Vals.push_back(F->getCallingConv()); |
| Vals.push_back(F->isDeclaration()); |
| Vals.push_back(getEncodedLinkage(F)); |
| Vals.push_back(VE.getAttributeID(F->getAttributes())); |
| Vals.push_back(Log2_32(F->getAlignment())+1); |
| Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); |
| Vals.push_back(getEncodedVisibility(F)); |
| Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); |
| |
| unsigned AbbrevToUse = 0; |
| Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); |
| Vals.clear(); |
| } |
| |
| |
| // Emit the alias information. |
| for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); |
| AI != E; ++AI) { |
| Vals.push_back(VE.getTypeID(AI->getType())); |
| Vals.push_back(VE.getValueID(AI->getAliasee())); |
| Vals.push_back(getEncodedLinkage(AI)); |
| Vals.push_back(getEncodedVisibility(AI)); |
| unsigned AbbrevToUse = 0; |
| Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); |
| Vals.clear(); |
| } |
| } |
| |
| |
| static void WriteConstants(unsigned FirstVal, unsigned LastVal, |
| const ValueEnumerator &VE, |
| BitstreamWriter &Stream, bool isGlobal) { |
| if (FirstVal == LastVal) return; |
| |
| Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); |
| |
| unsigned AggregateAbbrev = 0; |
| unsigned String8Abbrev = 0; |
| unsigned CString7Abbrev = 0; |
| unsigned CString6Abbrev = 0; |
| // If this is a constant pool for the module, emit module-specific abbrevs. |
| if (isGlobal) { |
| // Abbrev for CST_CODE_AGGREGATE. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); |
| AggregateAbbrev = Stream.EmitAbbrev(Abbv); |
| |
| // Abbrev for CST_CODE_STRING. |
| Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); |
| String8Abbrev = Stream.EmitAbbrev(Abbv); |
| // Abbrev for CST_CODE_CSTRING. |
| Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); |
| CString7Abbrev = Stream.EmitAbbrev(Abbv); |
| // Abbrev for CST_CODE_CSTRING. |
| Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); |
| CString6Abbrev = Stream.EmitAbbrev(Abbv); |
| } |
| |
| SmallVector<uint64_t, 64> Record; |
| |
| const ValueEnumerator::ValueList &Vals = VE.getValues(); |
| const Type *LastTy = 0; |
| for (unsigned i = FirstVal; i != LastVal; ++i) { |
| const Value *V = Vals[i].first; |
| // If we need to switch types, do so now. |
| if (V->getType() != LastTy) { |
| LastTy = V->getType(); |
| Record.push_back(VE.getTypeID(LastTy)); |
| Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, |
| CONSTANTS_SETTYPE_ABBREV); |
| Record.clear(); |
| } |
| |
| if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { |
| Record.push_back(unsigned(IA->hasSideEffects())); |
| |
| // Add the asm string. |
| const std::string &AsmStr = IA->getAsmString(); |
| Record.push_back(AsmStr.size()); |
| for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) |
| Record.push_back(AsmStr[i]); |
| |
| // Add the constraint string. |
| const std::string &ConstraintStr = IA->getConstraintString(); |
| Record.push_back(ConstraintStr.size()); |
| for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) |
| Record.push_back(ConstraintStr[i]); |
| Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); |
| Record.clear(); |
| continue; |
| } |
| const Constant *C = cast<Constant>(V); |
| unsigned Code = -1U; |
| unsigned AbbrevToUse = 0; |
| if (C->isNullValue()) { |
| Code = bitc::CST_CODE_NULL; |
| } else if (isa<UndefValue>(C)) { |
| Code = bitc::CST_CODE_UNDEF; |
| } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { |
| if (IV->getBitWidth() <= 64) { |
| int64_t V = IV->getSExtValue(); |
| if (V >= 0) |
| Record.push_back(V << 1); |
| else |
| Record.push_back((-V << 1) | 1); |
| Code = bitc::CST_CODE_INTEGER; |
| AbbrevToUse = CONSTANTS_INTEGER_ABBREV; |
| } else { // Wide integers, > 64 bits in size. |
| // We have an arbitrary precision integer value to write whose |
| // bit width is > 64. However, in canonical unsigned integer |
| // format it is likely that the high bits are going to be zero. |
| // So, we only write the number of active words. |
| unsigned NWords = IV->getValue().getActiveWords(); |
| const uint64_t *RawWords = IV->getValue().getRawData(); |
| for (unsigned i = 0; i != NWords; ++i) { |
| int64_t V = RawWords[i]; |
| if (V >= 0) |
| Record.push_back(V << 1); |
| else |
| Record.push_back((-V << 1) | 1); |
| } |
| Code = bitc::CST_CODE_WIDE_INTEGER; |
| } |
| } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { |
| Code = bitc::CST_CODE_FLOAT; |
| const Type *Ty = CFP->getType(); |
| if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { |
| Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); |
| } else if (Ty == Type::X86_FP80Ty) { |
| // api needed to prevent premature destruction |
| APInt api = CFP->getValueAPF().bitcastToAPInt(); |
| const uint64_t *p = api.getRawData(); |
| Record.push_back(p[0]); |
| Record.push_back((uint16_t)p[1]); |
| } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { |
| APInt api = CFP->getValueAPF().bitcastToAPInt(); |
| const uint64_t *p = api.getRawData(); |
| Record.push_back(p[0]); |
| Record.push_back(p[1]); |
| } else { |
| assert (0 && "Unknown FP type!"); |
| } |
| } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { |
| // Emit constant strings specially. |
| unsigned NumOps = C->getNumOperands(); |
| // If this is a null-terminated string, use the denser CSTRING encoding. |
| if (C->getOperand(NumOps-1)->isNullValue()) { |
| Code = bitc::CST_CODE_CSTRING; |
| --NumOps; // Don't encode the null, which isn't allowed by char6. |
| } else { |
| Code = bitc::CST_CODE_STRING; |
| AbbrevToUse = String8Abbrev; |
| } |
| bool isCStr7 = Code == bitc::CST_CODE_CSTRING; |
| bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); |
| Record.push_back(V); |
| isCStr7 &= (V & 128) == 0; |
| if (isCStrChar6) |
| isCStrChar6 = BitCodeAbbrevOp::isChar6(V); |
| } |
| |
| if (isCStrChar6) |
| AbbrevToUse = CString6Abbrev; |
| else if (isCStr7) |
| AbbrevToUse = CString7Abbrev; |
| } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || |
| isa<ConstantVector>(V)) { |
| Code = bitc::CST_CODE_AGGREGATE; |
| for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) |
| Record.push_back(VE.getValueID(C->getOperand(i))); |
| AbbrevToUse = AggregateAbbrev; |
| } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| switch (CE->getOpcode()) { |
| default: |
| if (Instruction::isCast(CE->getOpcode())) { |
| Code = bitc::CST_CODE_CE_CAST; |
| Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); |
| Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); |
| Record.push_back(VE.getValueID(C->getOperand(0))); |
| AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; |
| } else { |
| assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); |
| Code = bitc::CST_CODE_CE_BINOP; |
| Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); |
| Record.push_back(VE.getValueID(C->getOperand(0))); |
| Record.push_back(VE.getValueID(C->getOperand(1))); |
| } |
| break; |
| case Instruction::GetElementPtr: |
| Code = bitc::CST_CODE_CE_GEP; |
| for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { |
| Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); |
| Record.push_back(VE.getValueID(C->getOperand(i))); |
| } |
| break; |
| case Instruction::Select: |
| Code = bitc::CST_CODE_CE_SELECT; |
| Record.push_back(VE.getValueID(C->getOperand(0))); |
| Record.push_back(VE.getValueID(C->getOperand(1))); |
| Record.push_back(VE.getValueID(C->getOperand(2))); |
| break; |
| case Instruction::ExtractElement: |
| Code = bitc::CST_CODE_CE_EXTRACTELT; |
| Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); |
| Record.push_back(VE.getValueID(C->getOperand(0))); |
| Record.push_back(VE.getValueID(C->getOperand(1))); |
| break; |
| case Instruction::InsertElement: |
| Code = bitc::CST_CODE_CE_INSERTELT; |
| Record.push_back(VE.getValueID(C->getOperand(0))); |
| Record.push_back(VE.getValueID(C->getOperand(1))); |
| Record.push_back(VE.getValueID(C->getOperand(2))); |
| break; |
| case Instruction::ShuffleVector: |
| Code = bitc::CST_CODE_CE_SHUFFLEVEC; |
| Record.push_back(VE.getValueID(C->getOperand(0))); |
| Record.push_back(VE.getValueID(C->getOperand(1))); |
| Record.push_back(VE.getValueID(C->getOperand(2))); |
| break; |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| case Instruction::VICmp: |
| case Instruction::VFCmp: |
| if (isa<VectorType>(C->getOperand(0)->getType()) |
| && (CE->getOpcode() == Instruction::ICmp |
| || CE->getOpcode() == Instruction::FCmp)) { |
| // compare returning vector of Int1Ty |
| assert(0 && "Unsupported constant!"); |
| } else { |
| Code = bitc::CST_CODE_CE_CMP; |
| } |
| Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); |
| Record.push_back(VE.getValueID(C->getOperand(0))); |
| Record.push_back(VE.getValueID(C->getOperand(1))); |
| Record.push_back(CE->getPredicate()); |
| break; |
| } |
| } else { |
| assert(0 && "Unknown constant!"); |
| } |
| Stream.EmitRecord(Code, Record, AbbrevToUse); |
| Record.clear(); |
| } |
| |
| Stream.ExitBlock(); |
| } |
| |
| static void WriteModuleConstants(const ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| const ValueEnumerator::ValueList &Vals = VE.getValues(); |
| |
| // Find the first constant to emit, which is the first non-globalvalue value. |
| // We know globalvalues have been emitted by WriteModuleInfo. |
| for (unsigned i = 0, e = Vals.size(); i != e; ++i) { |
| if (!isa<GlobalValue>(Vals[i].first)) { |
| WriteConstants(i, Vals.size(), VE, Stream, true); |
| return; |
| } |
| } |
| } |
| |
| /// PushValueAndType - The file has to encode both the value and type id for |
| /// many values, because we need to know what type to create for forward |
| /// references. However, most operands are not forward references, so this type |
| /// field is not needed. |
| /// |
| /// This function adds V's value ID to Vals. If the value ID is higher than the |
| /// instruction ID, then it is a forward reference, and it also includes the |
| /// type ID. |
| static bool PushValueAndType(Value *V, unsigned InstID, |
| SmallVector<unsigned, 64> &Vals, |
| ValueEnumerator &VE) { |
| unsigned ValID = VE.getValueID(V); |
| Vals.push_back(ValID); |
| if (ValID >= InstID) { |
| Vals.push_back(VE.getTypeID(V->getType())); |
| return true; |
| } |
| return false; |
| } |
| |
| /// WriteInstruction - Emit an instruction to the specified stream. |
| static void WriteInstruction(const Instruction &I, unsigned InstID, |
| ValueEnumerator &VE, BitstreamWriter &Stream, |
| SmallVector<unsigned, 64> &Vals) { |
| unsigned Code = 0; |
| unsigned AbbrevToUse = 0; |
| switch (I.getOpcode()) { |
| default: |
| if (Instruction::isCast(I.getOpcode())) { |
| Code = bitc::FUNC_CODE_INST_CAST; |
| if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) |
| AbbrevToUse = FUNCTION_INST_CAST_ABBREV; |
| Vals.push_back(VE.getTypeID(I.getType())); |
| Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); |
| } else { |
| assert(isa<BinaryOperator>(I) && "Unknown instruction!"); |
| Code = bitc::FUNC_CODE_INST_BINOP; |
| if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) |
| AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; |
| Vals.push_back(VE.getValueID(I.getOperand(1))); |
| Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); |
| } |
| break; |
| |
| case Instruction::GetElementPtr: |
| Code = bitc::FUNC_CODE_INST_GEP; |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) |
| PushValueAndType(I.getOperand(i), InstID, Vals, VE); |
| break; |
| case Instruction::ExtractValue: { |
| Code = bitc::FUNC_CODE_INST_EXTRACTVAL; |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); |
| const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); |
| for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) |
| Vals.push_back(*i); |
| break; |
| } |
| case Instruction::InsertValue: { |
| Code = bitc::FUNC_CODE_INST_INSERTVAL; |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); |
| PushValueAndType(I.getOperand(1), InstID, Vals, VE); |
| const InsertValueInst *IVI = cast<InsertValueInst>(&I); |
| for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) |
| Vals.push_back(*i); |
| break; |
| } |
| case Instruction::Select: |
| Code = bitc::FUNC_CODE_INST_VSELECT; |
| PushValueAndType(I.getOperand(1), InstID, Vals, VE); |
| Vals.push_back(VE.getValueID(I.getOperand(2))); |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); |
| break; |
| case Instruction::ExtractElement: |
| Code = bitc::FUNC_CODE_INST_EXTRACTELT; |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); |
| Vals.push_back(VE.getValueID(I.getOperand(1))); |
| break; |
| case Instruction::InsertElement: |
| Code = bitc::FUNC_CODE_INST_INSERTELT; |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); |
| Vals.push_back(VE.getValueID(I.getOperand(1))); |
| Vals.push_back(VE.getValueID(I.getOperand(2))); |
| break; |
| case Instruction::ShuffleVector: |
| Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); |
| Vals.push_back(VE.getValueID(I.getOperand(1))); |
| Vals.push_back(VE.getValueID(I.getOperand(2))); |
| break; |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| case Instruction::VICmp: |
| case Instruction::VFCmp: |
| if (I.getOpcode() == Instruction::ICmp |
| || I.getOpcode() == Instruction::FCmp) { |
| // compare returning Int1Ty or vector of Int1Ty |
| Code = bitc::FUNC_CODE_INST_CMP2; |
| } else { |
| Code = bitc::FUNC_CODE_INST_CMP; |
| } |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); |
| Vals.push_back(VE.getValueID(I.getOperand(1))); |
| Vals.push_back(cast<CmpInst>(I).getPredicate()); |
| break; |
| |
| case Instruction::Ret: |
| { |
| Code = bitc::FUNC_CODE_INST_RET; |
| unsigned NumOperands = I.getNumOperands(); |
| if (NumOperands == 0) |
| AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; |
| else if (NumOperands == 1) { |
| if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) |
| AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; |
| } else { |
| for (unsigned i = 0, e = NumOperands; i != e; ++i) |
| PushValueAndType(I.getOperand(i), InstID, Vals, VE); |
| } |
| } |
| break; |
| case Instruction::Br: |
| Code = bitc::FUNC_CODE_INST_BR; |
| Vals.push_back(VE.getValueID(I.getOperand(0))); |
| if (cast<BranchInst>(I).isConditional()) { |
| Vals.push_back(VE.getValueID(I.getOperand(1))); |
| Vals.push_back(VE.getValueID(I.getOperand(2))); |
| } |
| break; |
| case Instruction::Switch: |
| Code = bitc::FUNC_CODE_INST_SWITCH; |
| Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) |
| Vals.push_back(VE.getValueID(I.getOperand(i))); |
| break; |
| case Instruction::Invoke: { |
| const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); |
| const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| Code = bitc::FUNC_CODE_INST_INVOKE; |
| |
| const InvokeInst *II = cast<InvokeInst>(&I); |
| Vals.push_back(VE.getAttributeID(II->getAttributes())); |
| Vals.push_back(II->getCallingConv()); |
| Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest |
| Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee |
| |
| // Emit value #'s for the fixed parameters. |
| for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) |
| Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. |
| |
| // Emit type/value pairs for varargs params. |
| if (FTy->isVarArg()) { |
| for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); |
| i != e; ++i) |
| PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg |
| } |
| break; |
| } |
| case Instruction::Unwind: |
| Code = bitc::FUNC_CODE_INST_UNWIND; |
| break; |
| case Instruction::Unreachable: |
| Code = bitc::FUNC_CODE_INST_UNREACHABLE; |
| AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; |
| break; |
| |
| case Instruction::PHI: |
| Code = bitc::FUNC_CODE_INST_PHI; |
| Vals.push_back(VE.getTypeID(I.getType())); |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) |
| Vals.push_back(VE.getValueID(I.getOperand(i))); |
| break; |
| |
| case Instruction::Malloc: |
| Code = bitc::FUNC_CODE_INST_MALLOC; |
| Vals.push_back(VE.getTypeID(I.getType())); |
| Vals.push_back(VE.getValueID(I.getOperand(0))); // size. |
| Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); |
| break; |
| |
| case Instruction::Free: |
| Code = bitc::FUNC_CODE_INST_FREE; |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); |
| break; |
| |
| case Instruction::Alloca: |
| Code = bitc::FUNC_CODE_INST_ALLOCA; |
| Vals.push_back(VE.getTypeID(I.getType())); |
| Vals.push_back(VE.getValueID(I.getOperand(0))); // size. |
| Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); |
| break; |
| |
| case Instruction::Load: |
| Code = bitc::FUNC_CODE_INST_LOAD; |
| if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr |
| AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; |
| |
| Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); |
| Vals.push_back(cast<LoadInst>(I).isVolatile()); |
| break; |
| case Instruction::Store: |
| Code = bitc::FUNC_CODE_INST_STORE2; |
| PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr |
| Vals.push_back(VE.getValueID(I.getOperand(0))); // val. |
| Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); |
| Vals.push_back(cast<StoreInst>(I).isVolatile()); |
| break; |
| case Instruction::Call: { |
| const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); |
| const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| |
| Code = bitc::FUNC_CODE_INST_CALL; |
| |
| const CallInst *CI = cast<CallInst>(&I); |
| Vals.push_back(VE.getAttributeID(CI->getAttributes())); |
| Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); |
| PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee |
| |
| // Emit value #'s for the fixed parameters. |
| for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) |
| Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. |
| |
| // Emit type/value pairs for varargs params. |
| if (FTy->isVarArg()) { |
| unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); |
| for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); |
| i != e; ++i) |
| PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs |
| } |
| break; |
| } |
| case Instruction::VAArg: |
| Code = bitc::FUNC_CODE_INST_VAARG; |
| Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty |
| Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. |
| Vals.push_back(VE.getTypeID(I.getType())); // restype. |
| break; |
| } |
| |
| Stream.EmitRecord(Code, Vals, AbbrevToUse); |
| Vals.clear(); |
| } |
| |
| // Emit names for globals/functions etc. |
| static void WriteValueSymbolTable(const ValueSymbolTable &VST, |
| const ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| if (VST.empty()) return; |
| Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); |
| |
| // FIXME: Set up the abbrev, we know how many values there are! |
| // FIXME: We know if the type names can use 7-bit ascii. |
| SmallVector<unsigned, 64> NameVals; |
| |
| for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); |
| SI != SE; ++SI) { |
| |
| const ValueName &Name = *SI; |
| |
| // Figure out the encoding to use for the name. |
| bool is7Bit = true; |
| bool isChar6 = true; |
| for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); |
| C != E; ++C) { |
| if (isChar6) |
| isChar6 = BitCodeAbbrevOp::isChar6(*C); |
| if ((unsigned char)*C & 128) { |
| is7Bit = false; |
| break; // don't bother scanning the rest. |
| } |
| } |
| |
| unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; |
| |
| // VST_ENTRY: [valueid, namechar x N] |
| // VST_BBENTRY: [bbid, namechar x N] |
| unsigned Code; |
| if (isa<BasicBlock>(SI->getValue())) { |
| Code = bitc::VST_CODE_BBENTRY; |
| if (isChar6) |
| AbbrevToUse = VST_BBENTRY_6_ABBREV; |
| } else { |
| Code = bitc::VST_CODE_ENTRY; |
| if (isChar6) |
| AbbrevToUse = VST_ENTRY_6_ABBREV; |
| else if (is7Bit) |
| AbbrevToUse = VST_ENTRY_7_ABBREV; |
| } |
| |
| NameVals.push_back(VE.getValueID(SI->getValue())); |
| for (const char *P = Name.getKeyData(), |
| *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) |
| NameVals.push_back((unsigned char)*P); |
| |
| // Emit the finished record. |
| Stream.EmitRecord(Code, NameVals, AbbrevToUse); |
| NameVals.clear(); |
| } |
| Stream.ExitBlock(); |
| } |
| |
| /// WriteFunction - Emit a function body to the module stream. |
| static void WriteFunction(const Function &F, ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); |
| VE.incorporateFunction(F); |
| |
| SmallVector<unsigned, 64> Vals; |
| |
| // Emit the number of basic blocks, so the reader can create them ahead of |
| // time. |
| Vals.push_back(VE.getBasicBlocks().size()); |
| Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); |
| Vals.clear(); |
| |
| // If there are function-local constants, emit them now. |
| unsigned CstStart, CstEnd; |
| VE.getFunctionConstantRange(CstStart, CstEnd); |
| WriteConstants(CstStart, CstEnd, VE, Stream, false); |
| |
| // Keep a running idea of what the instruction ID is. |
| unsigned InstID = CstEnd; |
| |
| // Finally, emit all the instructions, in order. |
| for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); |
| I != E; ++I) { |
| WriteInstruction(*I, InstID, VE, Stream, Vals); |
| if (I->getType() != Type::VoidTy) |
| ++InstID; |
| } |
| |
| // Emit names for all the instructions etc. |
| WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); |
| |
| VE.purgeFunction(); |
| Stream.ExitBlock(); |
| } |
| |
| /// WriteTypeSymbolTable - Emit a block for the specified type symtab. |
| static void WriteTypeSymbolTable(const TypeSymbolTable &TST, |
| const ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| if (TST.empty()) return; |
| |
| Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); |
| |
| // 7-bit fixed width VST_CODE_ENTRY strings. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, |
| Log2_32_Ceil(VE.getTypes().size()+1))); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); |
| unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); |
| |
| SmallVector<unsigned, 64> NameVals; |
| |
| for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); |
| TI != TE; ++TI) { |
| // TST_ENTRY: [typeid, namechar x N] |
| NameVals.push_back(VE.getTypeID(TI->second)); |
| |
| const std::string &Str = TI->first; |
| bool is7Bit = true; |
| for (unsigned i = 0, e = Str.size(); i != e; ++i) { |
| NameVals.push_back((unsigned char)Str[i]); |
| if (Str[i] & 128) |
| is7Bit = false; |
| } |
| |
| // Emit the finished record. |
| Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); |
| NameVals.clear(); |
| } |
| |
| Stream.ExitBlock(); |
| } |
| |
| // Emit blockinfo, which defines the standard abbreviations etc. |
| static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { |
| // We only want to emit block info records for blocks that have multiple |
| // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other |
| // blocks can defined their abbrevs inline. |
| Stream.EnterBlockInfoBlock(2); |
| |
| { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); |
| if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, |
| Abbv) != VST_ENTRY_8_ABBREV) |
| assert(0 && "Unexpected abbrev ordering!"); |
| } |
| |
| { // 7-bit fixed width VST_ENTRY strings. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); |
| if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, |
| Abbv) != VST_ENTRY_7_ABBREV) |
| assert(0 && "Unexpected abbrev ordering!"); |
| } |
| { // 6-bit char6 VST_ENTRY strings. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); |
| if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, |
| Abbv) != VST_ENTRY_6_ABBREV) |
| assert(0 && "Unexpected abbrev ordering!"); |
| } |
| { // 6-bit char6 VST_BBENTRY strings. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); |
| if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, |
| Abbv) != VST_BBENTRY_6_ABBREV) |
| assert(0 && "Unexpected abbrev ordering!"); |
| } |
| |
| |
| |
| { // SETTYPE abbrev for CONSTANTS_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, |
| Log2_32_Ceil(VE.getTypes().size()+1))); |
| if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, |
| Abbv) != CONSTANTS_SETTYPE_ABBREV) |
| assert(0 && "Unexpected abbrev ordering!"); |
| } |
| |
| { // INTEGER abbrev for CONSTANTS_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, |
| Abbv) != CONSTANTS_INTEGER_ABBREV) |
| assert(0 && "Unexpected abbrev ordering!"); |
| } |
| |
| { // CE_CAST abbrev for CONSTANTS_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid |
| Log2_32_Ceil(VE.getTypes().size()+1))); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id |
| |
| if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, |
| Abbv) != CONSTANTS_CE_CAST_Abbrev) |
| assert(0 && "Unexpected abbrev ordering!"); |
| } |
| { // NULL abbrev for CONSTANTS_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); |
| if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, |
| Abbv) != CONSTANTS_NULL_Abbrev) |
| assert(0 && "Unexpected abbrev ordering!"); |
| } |
| |
| // FIXME: This should only use space for first class types! |
| |
| { // INST_LOAD abbrev for FUNCTION_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile |
| if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, |
| Abbv) != FUNCTION_INST_LOAD_ABBREV) |
| assert(0 && "Unexpected abbrev ordering!"); |
| } |
| { // INST_BINOP abbrev for FUNCTION_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc |
| if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, |
| Abbv) != FUNCTION_INST_BINOP_ABBREV) |
| assert(0 && "Unexpected abbrev ordering!"); |
| } |
| { // INST_CAST abbrev for FUNCTION_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty |
| Log2_32_Ceil(VE.getTypes().size()+1))); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc |
| if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, |
| Abbv) != FUNCTION_INST_CAST_ABBREV) |
| assert(0 && "Unexpected abbrev ordering!"); |
| } |
| |
| { // INST_RET abbrev for FUNCTION_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); |
| if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, |
| Abbv) != FUNCTION_INST_RET_VOID_ABBREV) |
| assert(0 && "Unexpected abbrev ordering!"); |
| } |
| { // INST_RET abbrev for FUNCTION_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID |
| if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, |
| Abbv) != FUNCTION_INST_RET_VAL_ABBREV) |
| assert(0 && "Unexpected abbrev ordering!"); |
| } |
| { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); |
| if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, |
| Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) |
| assert(0 && "Unexpected abbrev ordering!"); |
| } |
| |
| Stream.ExitBlock(); |
| } |
| |
| |
| /// WriteModule - Emit the specified module to the bitstream. |
| static void WriteModule(const Module *M, BitstreamWriter &Stream) { |
| Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); |
| |
| // Emit the version number if it is non-zero. |
| if (CurVersion) { |
| SmallVector<unsigned, 1> Vals; |
| Vals.push_back(CurVersion); |
| Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); |
| } |
| |
| // Analyze the module, enumerating globals, functions, etc. |
| ValueEnumerator VE(M); |
| |
| // Emit blockinfo, which defines the standard abbreviations etc. |
| WriteBlockInfo(VE, Stream); |
| |
| // Emit information about parameter attributes. |
| WriteAttributeTable(VE, Stream); |
| |
| // Emit information describing all of the types in the module. |
| WriteTypeTable(VE, Stream); |
| |
| // Emit top-level description of module, including target triple, inline asm, |
| // descriptors for global variables, and function prototype info. |
| WriteModuleInfo(M, VE, Stream); |
| |
| // Emit constants. |
| WriteModuleConstants(VE, Stream); |
| |
| // If we have any aggregate values in the value table, purge them - these can |
| // only be used to initialize global variables. Doing so makes the value |
| // namespace smaller for code in functions. |
| int NumNonAggregates = VE.PurgeAggregateValues(); |
| if (NumNonAggregates != -1) { |
| SmallVector<unsigned, 1> Vals; |
| Vals.push_back(NumNonAggregates); |
| Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); |
| } |
| |
| // Emit function bodies. |
| for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) |
| if (!I->isDeclaration()) |
| WriteFunction(*I, VE, Stream); |
| |
| // Emit the type symbol table information. |
| WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); |
| |
| // Emit names for globals/functions etc. |
| WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); |
| |
| Stream.ExitBlock(); |
| } |
| |
| /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a |
| /// header and trailer to make it compatible with the system archiver. To do |
| /// this we emit the following header, and then emit a trailer that pads the |
| /// file out to be a multiple of 16 bytes. |
| /// |
| /// struct bc_header { |
| /// uint32_t Magic; // 0x0B17C0DE |
| /// uint32_t Version; // Version, currently always 0. |
| /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. |
| /// uint32_t BitcodeSize; // Size of traditional bitcode file. |
| /// uint32_t CPUType; // CPU specifier. |
| /// ... potentially more later ... |
| /// }; |
| enum { |
| DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. |
| DarwinBCHeaderSize = 5*4 |
| }; |
| |
| static void EmitDarwinBCHeader(BitstreamWriter &Stream, |
| const std::string &TT) { |
| unsigned CPUType = ~0U; |
| |
| // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a |
| // magic number from /usr/include/mach/machine.h. It is ok to reproduce the |
| // specific constants here because they are implicitly part of the Darwin ABI. |
| enum { |
| DARWIN_CPU_ARCH_ABI64 = 0x01000000, |
| DARWIN_CPU_TYPE_X86 = 7, |
| DARWIN_CPU_TYPE_POWERPC = 18 |
| }; |
| |
| if (TT.find("x86_64-") == 0) |
| CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; |
| else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && |
| TT[4] == '-' && TT[1] - '3' < 6) |
| CPUType = DARWIN_CPU_TYPE_X86; |
| else if (TT.find("powerpc-") == 0) |
| CPUType = DARWIN_CPU_TYPE_POWERPC; |
| else if (TT.find("powerpc64-") == 0) |
| CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; |
| |
| // Traditional Bitcode starts after header. |
| unsigned BCOffset = DarwinBCHeaderSize; |
| |
| Stream.Emit(0x0B17C0DE, 32); |
| Stream.Emit(0 , 32); // Version. |
| Stream.Emit(BCOffset , 32); |
| Stream.Emit(0 , 32); // Filled in later. |
| Stream.Emit(CPUType , 32); |
| } |
| |
| /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and |
| /// finalize the header. |
| static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { |
| // Update the size field in the header. |
| Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); |
| |
| // If the file is not a multiple of 16 bytes, insert dummy padding. |
| while (BufferSize & 15) { |
| Stream.Emit(0, 8); |
| ++BufferSize; |
| } |
| } |
| |
| |
| /// WriteBitcodeToFile - Write the specified module to the specified output |
| /// stream. |
| void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { |
| raw_os_ostream RawOut(Out); |
| // If writing to stdout, set binary mode. |
| if (llvm::cout == Out) |
| sys::Program::ChangeStdoutToBinary(); |
| WriteBitcodeToFile(M, RawOut); |
| } |
| |
| /// WriteBitcodeToFile - Write the specified module to the specified output |
| /// stream. |
| void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { |
| std::vector<unsigned char> Buffer; |
| BitstreamWriter Stream(Buffer); |
| |
| Buffer.reserve(256*1024); |
| |
| // If this is darwin, emit a file header and trailer if needed. |
| bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; |
| if (isDarwin) |
| EmitDarwinBCHeader(Stream, M->getTargetTriple()); |
| |
| // Emit the file header. |
| Stream.Emit((unsigned)'B', 8); |
| Stream.Emit((unsigned)'C', 8); |
| Stream.Emit(0x0, 4); |
| Stream.Emit(0xC, 4); |
| Stream.Emit(0xE, 4); |
| Stream.Emit(0xD, 4); |
| |
| // Emit the module. |
| WriteModule(M, Stream); |
| |
| if (isDarwin) |
| EmitDarwinBCTrailer(Stream, Buffer.size()); |
| |
| |
| // If writing to stdout, set binary mode. |
| if (&llvm::outs() == &Out) |
| sys::Program::ChangeStdoutToBinary(); |
| |
| // Write the generated bitstream to "Out". |
| Out.write((char*)&Buffer.front(), Buffer.size()); |
| |
| // Make sure it hits disk now. |
| Out.flush(); |
| } |