| //===-- ExternalMethods.cpp - Implement External Methods ------------------===// |
| // |
| // This file contains both code to deal with invoking "external" methods, but |
| // also contains code that implements "exported" external methods. |
| // |
| // External methods in LLI are implemented by dlopen'ing the lli executable and |
| // using dlsym to look op the methods that we want to invoke. If a method is |
| // found, then the arguments are mangled and passed in to the function call. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Interpreter.h" |
| #include "llvm/DerivedTypes.h" |
| #include <map> |
| #include <dlfcn.h> |
| #include <link.h> |
| |
| typedef GenericValue (*ExFunc)(MethodType *, const vector<GenericValue> &); |
| static map<const Method *, ExFunc> Functions; |
| |
| static Interpreter *TheInterpreter; |
| |
| // getCurrentExecutablePath() - Return the directory that the lli executable |
| // lives in. |
| // |
| string Interpreter::getCurrentExecutablePath() const { |
| Dl_info Info; |
| if (dladdr(&TheInterpreter, &Info) == 0) return ""; |
| |
| string LinkAddr(Info.dli_fname); |
| unsigned SlashPos = LinkAddr.rfind('/'); |
| if (SlashPos != string::npos) |
| LinkAddr.resize(SlashPos); // Trim the executable name off... |
| |
| return LinkAddr; |
| } |
| |
| |
| static char getTypeID(const Type *Ty) { |
| switch (Ty->getPrimitiveID()) { |
| case Type::VoidTyID: return 'V'; |
| case Type::BoolTyID: return 'o'; |
| case Type::UByteTyID: return 'B'; |
| case Type::SByteTyID: return 'b'; |
| case Type::UShortTyID: return 'S'; |
| case Type::ShortTyID: return 's'; |
| case Type::UIntTyID: return 'I'; |
| case Type::IntTyID: return 'i'; |
| case Type::ULongTyID: return 'L'; |
| case Type::LongTyID: return 'l'; |
| case Type::FloatTyID: return 'F'; |
| case Type::DoubleTyID: return 'D'; |
| case Type::PointerTyID: return 'P'; |
| case Type::MethodTyID: return 'M'; |
| case Type::StructTyID: return 'T'; |
| case Type::ArrayTyID: return 'A'; |
| case Type::OpaqueTyID: return 'O'; |
| default: return 'U'; |
| } |
| } |
| |
| static ExFunc lookupMethod(const Method *M) { |
| // Function not found, look it up... start by figuring out what the |
| // composite function name should be. |
| string ExtName = "lle_"; |
| const MethodType *MT = M->getMethodType(); |
| for (unsigned i = 0; const Type *Ty = MT->getContainedType(i); ++i) |
| ExtName += getTypeID(Ty); |
| ExtName += "_" + M->getName(); |
| |
| //cout << "Tried: '" << ExtName << "'\n"; |
| ExFunc FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ExtName.c_str()); |
| if (FnPtr == 0) // Try calling a generic function... if it exists... |
| FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ("lle_X_"+M->getName()).c_str()); |
| if (FnPtr != 0) |
| Functions.insert(make_pair(M, FnPtr)); // Cache for later |
| return FnPtr; |
| } |
| |
| void Interpreter::callExternalMethod(Method *M, |
| const vector<GenericValue> &ArgVals) { |
| TheInterpreter = this; |
| |
| // Do a lookup to see if the method is in our cache... this should just be a |
| // defered annotation! |
| map<const Method *, ExFunc>::iterator FI = Functions.find(M); |
| ExFunc Fn = (FI == Functions.end()) ? lookupMethod(M) : FI->second; |
| if (Fn == 0) { |
| cout << "Tried to execute an unknown external method: " |
| << M->getType()->getDescription() << " " << M->getName() << endl; |
| return; |
| } |
| |
| // TODO: FIXME when types are not const! |
| GenericValue Result = Fn(const_cast<MethodType*>(M->getMethodType()),ArgVals); |
| |
| // Copy the result back into the result variable if we are not returning void. |
| if (M->getReturnType() != Type::VoidTy) { |
| CallInst *Caller = ECStack.back().Caller; |
| if (Caller) { |
| |
| } else { |
| // print it. |
| } |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Methods "exported" to the running application... |
| // |
| extern "C" { // Don't add C++ manglings to llvm mangling :) |
| |
| // Implement void printstr([ubyte {x N}] *) |
| GenericValue lle_VP_printstr(MethodType *M, const vector<GenericValue> &ArgVal){ |
| assert(ArgVal.size() == 1 && "printstr only takes one argument!"); |
| cout << (char*)ArgVal[0].PointerVal; |
| return GenericValue(); |
| } |
| |
| // Implement 'void print(X)' for every type... |
| GenericValue lle_X_print(MethodType *M, const vector<GenericValue> &ArgVals) { |
| assert(ArgVals.size() == 1 && "generic print only takes one argument!"); |
| |
| Interpreter::print(M->getParamTypes()[0], ArgVals[0]); |
| return GenericValue(); |
| } |
| |
| // Implement 'void printVal(X)' for every type... |
| GenericValue lle_X_printVal(MethodType *M, const vector<GenericValue> &ArgVal) { |
| assert(ArgVal.size() == 1 && "generic print only takes one argument!"); |
| |
| // Specialize print([ubyte {x N} ] *) and print(sbyte *) |
| if (PointerType *PTy = dyn_cast<PointerType>(M->getParamTypes()[0].get())) |
| if (PTy->getValueType() == Type::SByteTy || |
| isa<ArrayType>(PTy->getValueType())) { |
| return lle_VP_printstr(M, ArgVal); |
| } |
| |
| Interpreter::printValue(M->getParamTypes()[0], ArgVal[0]); |
| return GenericValue(); |
| } |
| |
| // void "putchar"(sbyte) |
| GenericValue lle_Vb_putchar(MethodType *M, const vector<GenericValue> &Args) { |
| cout << Args[0].SByteVal; |
| return GenericValue(); |
| } |
| |
| // int "putchar"(int) |
| GenericValue lle_ii_putchar(MethodType *M, const vector<GenericValue> &Args) { |
| cout << ((char)Args[0].IntVal) << flush; |
| return Args[0]; |
| } |
| |
| // void "putchar"(ubyte) |
| GenericValue lle_VB_putchar(MethodType *M, const vector<GenericValue> &Args) { |
| cout << Args[0].SByteVal << flush; |
| return Args[0]; |
| } |
| |
| // void "__main"() |
| GenericValue lle_V___main(MethodType *M, const vector<GenericValue> &Args) { |
| return GenericValue(); |
| } |
| |
| // void "exit"(int) |
| GenericValue lle_Vi_exit(MethodType *M, const vector<GenericValue> &Args) { |
| TheInterpreter->exitCalled(Args[0]); |
| return GenericValue(); |
| } |
| |
| } // End extern "C" |