libbcc

Change-Id: Ieaa3ebd5a38f370752495549f8870b534eeedfc5
diff --git a/lib/CodeGen/MachineCSE.cpp b/lib/CodeGen/MachineCSE.cpp
new file mode 100644
index 0000000..b376e3d
--- /dev/null
+++ b/lib/CodeGen/MachineCSE.cpp
@@ -0,0 +1,268 @@
+//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass performs global common subexpression elimination on machine
+// instructions using a scoped hash table based value numbering scheme. It
+// must be run while the machine function is still in SSA form.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "machine-cse"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/ADT/ScopedHashTable.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Debug.h"
+
+using namespace llvm;
+
+STATISTIC(NumCoalesces, "Number of copies coalesced");
+STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
+
+namespace {
+  class MachineCSE : public MachineFunctionPass {
+    const TargetInstrInfo *TII;
+    const TargetRegisterInfo *TRI;
+    MachineRegisterInfo  *MRI;
+    MachineDominatorTree *DT;
+    AliasAnalysis *AA;
+  public:
+    static char ID; // Pass identification
+    MachineCSE() : MachineFunctionPass(&ID), CurrVN(0) {}
+
+    virtual bool runOnMachineFunction(MachineFunction &MF);
+    
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.setPreservesCFG();
+      MachineFunctionPass::getAnalysisUsage(AU);
+      AU.addRequired<AliasAnalysis>();
+      AU.addRequired<MachineDominatorTree>();
+      AU.addPreserved<MachineDominatorTree>();
+    }
+
+  private:
+    unsigned CurrVN;
+    ScopedHashTable<MachineInstr*, unsigned, MachineInstrExpressionTrait> VNT;
+    SmallVector<MachineInstr*, 64> Exps;
+
+    bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
+    bool isPhysDefTriviallyDead(unsigned Reg,
+                                MachineBasicBlock::const_iterator I,
+                                MachineBasicBlock::const_iterator E);
+    bool hasLivePhysRegDefUse(MachineInstr *MI, MachineBasicBlock *MBB);
+    bool isCSECandidate(MachineInstr *MI);
+    bool ProcessBlock(MachineDomTreeNode *Node);
+  };
+} // end anonymous namespace
+
+char MachineCSE::ID = 0;
+static RegisterPass<MachineCSE>
+X("machine-cse", "Machine Common Subexpression Elimination");
+
+FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); }
+
+bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
+                                          MachineBasicBlock *MBB) {
+  bool Changed = false;
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg() || !MO.isUse())
+      continue;
+    unsigned Reg = MO.getReg();
+    if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
+      continue;
+    if (!MRI->hasOneUse(Reg))
+      // Only coalesce single use copies. This ensure the copy will be
+      // deleted.
+      continue;
+    MachineInstr *DefMI = MRI->getVRegDef(Reg);
+    if (DefMI->getParent() != MBB)
+      continue;
+    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+    if (TII->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
+        TargetRegisterInfo::isVirtualRegister(SrcReg) &&
+        !SrcSubIdx && !DstSubIdx) {
+      MO.setReg(SrcReg);
+      DefMI->eraseFromParent();
+      ++NumCoalesces;
+      Changed = true;
+    }
+  }
+
+  return Changed;
+}
+
+bool MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
+                                        MachineBasicBlock::const_iterator I,
+                                        MachineBasicBlock::const_iterator E) {
+  unsigned LookAheadLeft = 5;
+  while (LookAheadLeft--) {
+    if (I == E)
+      // Reached end of block, register is obviously dead.
+      return true;
+
+    if (I->isDebugValue())
+      continue;
+    bool SeenDef = false;
+    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+      const MachineOperand &MO = I->getOperand(i);
+      if (!MO.isReg() || !MO.getReg())
+        continue;
+      if (!TRI->regsOverlap(MO.getReg(), Reg))
+        continue;
+      if (MO.isUse())
+        return false;
+      SeenDef = true;
+    }
+    if (SeenDef)
+      // See a def of Reg (or an alias) before encountering any use, it's 
+      // trivially dead.
+      return true;
+    ++I;
+  }
+  return false;
+}
+
+bool MachineCSE::hasLivePhysRegDefUse(MachineInstr *MI, MachineBasicBlock *MBB){
+  unsigned PhysDef = 0;
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg())
+      continue;
+    unsigned Reg = MO.getReg();
+    if (!Reg)
+      continue;
+    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+      if (MO.isUse())
+        // Can't touch anything to read a physical register.
+        return true;
+      if (MO.isDead())
+        // If the def is dead, it's ok.
+        continue;
+      // Ok, this is a physical register def that's not marked "dead". That's
+      // common since this pass is run before livevariables. We can scan
+      // forward a few instructions and check if it is obviously dead.
+      if (PhysDef)
+        // Multiple physical register defs. These are rare, forget about it.
+        return true;
+      PhysDef = Reg;
+    }
+  }
+
+  if (PhysDef) {
+    MachineBasicBlock::iterator I = MI; I = llvm::next(I);
+    if (!isPhysDefTriviallyDead(PhysDef, I, MBB->end()))
+      return true;
+  }
+  return false;
+}
+
+bool MachineCSE::isCSECandidate(MachineInstr *MI) {
+  // Ignore copies or instructions that read / write physical registers
+  // (except for dead defs of physical registers).
+  unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+  if (TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) ||
+      MI->isExtractSubreg() || MI->isInsertSubreg() || MI->isSubregToReg())
+    return false;
+
+  // Ignore stuff that we obviously can't move.
+  const TargetInstrDesc &TID = MI->getDesc();  
+  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
+      TID.hasUnmodeledSideEffects())
+    return false;
+
+  if (TID.mayLoad()) {
+    // Okay, this instruction does a load. As a refinement, we allow the target
+    // to decide whether the loaded value is actually a constant. If so, we can
+    // actually use it as a load.
+    if (!MI->isInvariantLoad(AA))
+      // FIXME: we should be able to hoist loads with no other side effects if
+      // there are no other instructions which can change memory in this loop.
+      // This is a trivial form of alias analysis.
+      return false;
+  }
+  return true;
+}
+
+bool MachineCSE::ProcessBlock(MachineDomTreeNode *Node) {
+  bool Changed = false;
+
+  ScopedHashTableScope<MachineInstr*, unsigned,
+    MachineInstrExpressionTrait> VNTS(VNT);
+  MachineBasicBlock *MBB = Node->getBlock();
+  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
+    MachineInstr *MI = &*I;
+    ++I;
+
+    if (!isCSECandidate(MI))
+      continue;
+
+    bool FoundCSE = VNT.count(MI);
+    if (!FoundCSE) {
+      // Look for trivial copy coalescing opportunities.
+      if (PerformTrivialCoalescing(MI, MBB))
+        FoundCSE = VNT.count(MI);
+    }
+    // FIXME: commute commutable instructions?
+
+    // If the instruction defines a physical register and the value *may* be
+    // used, then it's not safe to replace it with a common subexpression.
+    if (FoundCSE && hasLivePhysRegDefUse(MI, MBB))
+      FoundCSE = false;
+
+    if (!FoundCSE) {
+      VNT.insert(MI, CurrVN++);
+      Exps.push_back(MI);
+      continue;
+    }
+
+    // Found a common subexpression, eliminate it.
+    unsigned CSVN = VNT.lookup(MI);
+    MachineInstr *CSMI = Exps[CSVN];
+    DEBUG(dbgs() << "Examining: " << *MI);
+    DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
+    unsigned NumDefs = MI->getDesc().getNumDefs();
+    for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
+      MachineOperand &MO = MI->getOperand(i);
+      if (!MO.isReg() || !MO.isDef())
+        continue;
+      unsigned OldReg = MO.getReg();
+      unsigned NewReg = CSMI->getOperand(i).getReg();
+      if (OldReg == NewReg)
+        continue;
+      assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
+             TargetRegisterInfo::isVirtualRegister(NewReg) &&
+             "Do not CSE physical register defs!");
+      MRI->replaceRegWith(OldReg, NewReg);
+      --NumDefs;
+    }
+    MI->eraseFromParent();
+    ++NumCSEs;
+  }
+
+  // Recursively call ProcessBlock with childred.
+  const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
+  for (unsigned i = 0, e = Children.size(); i != e; ++i)
+    Changed |= ProcessBlock(Children[i]);
+
+  return Changed;
+}
+
+bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
+  TII = MF.getTarget().getInstrInfo();
+  TRI = MF.getTarget().getRegisterInfo();
+  MRI = &MF.getRegInfo();
+  DT = &getAnalysis<MachineDominatorTree>();
+  AA = &getAnalysis<AliasAnalysis>();
+  return ProcessBlock(DT->getRootNode());
+}