| //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Nate Begeman and is distributed under the |
| // University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run |
| // both before and after the DAG is legalized. |
| // |
| // FIXME: Missing folds |
| // sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into |
| // a sequence of multiplies, shifts, and adds. This should be controlled by |
| // some kind of hint from the target that int div is expensive. |
| // various folds of mulh[s,u] by constants such as -1, powers of 2, etc. |
| // |
| // FIXME: select C, pow2, pow2 -> something smart |
| // FIXME: trunc(select X, Y, Z) -> select X, trunc(Y), trunc(Z) |
| // FIXME: Dead stores -> nuke |
| // FIXME: shr X, (and Y,31) -> shr X, Y (TRICKY!) |
| // FIXME: mul (x, const) -> shifts + adds |
| // FIXME: undef values |
| // FIXME: make truncate see through SIGN_EXTEND and AND |
| // FIXME: divide by zero is currently left unfolded. do we want to turn this |
| // into an undef? |
| // FIXME: select ne (select cc, 1, 0), 0, true, false -> select cc, true, false |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "dagcombine" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include <algorithm> |
| #include <cmath> |
| #include <iostream> |
| using namespace llvm; |
| |
| namespace { |
| Statistic<> NodesCombined ("dagcombiner", "Number of dag nodes combined"); |
| |
| class DAGCombiner { |
| SelectionDAG &DAG; |
| TargetLowering &TLI; |
| bool AfterLegalize; |
| |
| // Worklist of all of the nodes that need to be simplified. |
| std::vector<SDNode*> WorkList; |
| |
| /// AddUsersToWorkList - When an instruction is simplified, add all users of |
| /// the instruction to the work lists because they might get more simplified |
| /// now. |
| /// |
| void AddUsersToWorkList(SDNode *N) { |
| for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); |
| UI != UE; ++UI) |
| WorkList.push_back(*UI); |
| } |
| |
| /// removeFromWorkList - remove all instances of N from the worklist. |
| /// |
| void removeFromWorkList(SDNode *N) { |
| WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N), |
| WorkList.end()); |
| } |
| |
| public: |
| void AddToWorkList(SDNode *N) { |
| WorkList.push_back(N); |
| } |
| |
| SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To) { |
| ++NodesCombined; |
| DEBUG(std::cerr << "\nReplacing "; N->dump(); |
| std::cerr << "\nWith: "; To[0].Val->dump(); |
| std::cerr << " and " << To.size()-1 << " other values\n"); |
| std::vector<SDNode*> NowDead; |
| DAG.ReplaceAllUsesWith(N, To, &NowDead); |
| |
| // Push the new nodes and any users onto the worklist |
| for (unsigned i = 0, e = To.size(); i != e; ++i) { |
| WorkList.push_back(To[i].Val); |
| AddUsersToWorkList(To[i].Val); |
| } |
| |
| // Nodes can end up on the worklist more than once. Make sure we do |
| // not process a node that has been replaced. |
| removeFromWorkList(N); |
| for (unsigned i = 0, e = NowDead.size(); i != e; ++i) |
| removeFromWorkList(NowDead[i]); |
| |
| // Finally, since the node is now dead, remove it from the graph. |
| DAG.DeleteNode(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand CombineTo(SDNode *N, SDOperand Res) { |
| std::vector<SDOperand> To; |
| To.push_back(Res); |
| return CombineTo(N, To); |
| } |
| |
| SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) { |
| std::vector<SDOperand> To; |
| To.push_back(Res0); |
| To.push_back(Res1); |
| return CombineTo(N, To); |
| } |
| private: |
| |
| /// SimplifyDemandedBits - Check the specified integer node value to see if |
| /// it can be simplified or if things it uses can be simplified by bit |
| /// propagation. If so, return true. |
| bool SimplifyDemandedBits(SDOperand Op) { |
| TargetLowering::TargetLoweringOpt TLO(DAG); |
| uint64_t KnownZero, KnownOne; |
| uint64_t Demanded = MVT::getIntVTBitMask(Op.getValueType()); |
| if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) |
| return false; |
| |
| // Revisit the node. |
| WorkList.push_back(Op.Val); |
| |
| // Replace the old value with the new one. |
| ++NodesCombined; |
| DEBUG(std::cerr << "\nReplacing "; TLO.Old.Val->dump(); |
| std::cerr << "\nWith: "; TLO.New.Val->dump()); |
| |
| std::vector<SDNode*> NowDead; |
| DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, NowDead); |
| |
| // Push the new node and any (possibly new) users onto the worklist. |
| WorkList.push_back(TLO.New.Val); |
| AddUsersToWorkList(TLO.New.Val); |
| |
| // Nodes can end up on the worklist more than once. Make sure we do |
| // not process a node that has been replaced. |
| for (unsigned i = 0, e = NowDead.size(); i != e; ++i) |
| removeFromWorkList(NowDead[i]); |
| |
| // Finally, if the node is now dead, remove it from the graph. The node |
| // may not be dead if the replacement process recursively simplified to |
| // something else needing this node. |
| if (TLO.Old.Val->use_empty()) { |
| removeFromWorkList(TLO.Old.Val); |
| DAG.DeleteNode(TLO.Old.Val); |
| } |
| return true; |
| } |
| |
| /// visit - call the node-specific routine that knows how to fold each |
| /// particular type of node. |
| SDOperand visit(SDNode *N); |
| |
| // Visitation implementation - Implement dag node combining for different |
| // node types. The semantics are as follows: |
| // Return Value: |
| // SDOperand.Val == 0 - No change was made |
| // SDOperand.Val == N - N was replaced, is dead, and is already handled. |
| // otherwise - N should be replaced by the returned Operand. |
| // |
| SDOperand visitTokenFactor(SDNode *N); |
| SDOperand visitADD(SDNode *N); |
| SDOperand visitSUB(SDNode *N); |
| SDOperand visitMUL(SDNode *N); |
| SDOperand visitSDIV(SDNode *N); |
| SDOperand visitUDIV(SDNode *N); |
| SDOperand visitSREM(SDNode *N); |
| SDOperand visitUREM(SDNode *N); |
| SDOperand visitMULHU(SDNode *N); |
| SDOperand visitMULHS(SDNode *N); |
| SDOperand visitAND(SDNode *N); |
| SDOperand visitOR(SDNode *N); |
| SDOperand visitXOR(SDNode *N); |
| SDOperand visitVBinOp(SDNode *N, ISD::NodeType IntOp, ISD::NodeType FPOp); |
| SDOperand visitSHL(SDNode *N); |
| SDOperand visitSRA(SDNode *N); |
| SDOperand visitSRL(SDNode *N); |
| SDOperand visitCTLZ(SDNode *N); |
| SDOperand visitCTTZ(SDNode *N); |
| SDOperand visitCTPOP(SDNode *N); |
| SDOperand visitSELECT(SDNode *N); |
| SDOperand visitSELECT_CC(SDNode *N); |
| SDOperand visitSETCC(SDNode *N); |
| SDOperand visitSIGN_EXTEND(SDNode *N); |
| SDOperand visitZERO_EXTEND(SDNode *N); |
| SDOperand visitANY_EXTEND(SDNode *N); |
| SDOperand visitSIGN_EXTEND_INREG(SDNode *N); |
| SDOperand visitTRUNCATE(SDNode *N); |
| SDOperand visitBIT_CONVERT(SDNode *N); |
| SDOperand visitVBIT_CONVERT(SDNode *N); |
| SDOperand visitFADD(SDNode *N); |
| SDOperand visitFSUB(SDNode *N); |
| SDOperand visitFMUL(SDNode *N); |
| SDOperand visitFDIV(SDNode *N); |
| SDOperand visitFREM(SDNode *N); |
| SDOperand visitFCOPYSIGN(SDNode *N); |
| SDOperand visitSINT_TO_FP(SDNode *N); |
| SDOperand visitUINT_TO_FP(SDNode *N); |
| SDOperand visitFP_TO_SINT(SDNode *N); |
| SDOperand visitFP_TO_UINT(SDNode *N); |
| SDOperand visitFP_ROUND(SDNode *N); |
| SDOperand visitFP_ROUND_INREG(SDNode *N); |
| SDOperand visitFP_EXTEND(SDNode *N); |
| SDOperand visitFNEG(SDNode *N); |
| SDOperand visitFABS(SDNode *N); |
| SDOperand visitBRCOND(SDNode *N); |
| SDOperand visitBR_CC(SDNode *N); |
| SDOperand visitLOAD(SDNode *N); |
| SDOperand visitXEXTLOAD(SDNode *N); |
| SDOperand visitSTORE(SDNode *N); |
| SDOperand visitINSERT_VECTOR_ELT(SDNode *N); |
| SDOperand visitVINSERT_VECTOR_ELT(SDNode *N); |
| SDOperand visitVBUILD_VECTOR(SDNode *N); |
| SDOperand visitVECTOR_SHUFFLE(SDNode *N); |
| SDOperand visitVVECTOR_SHUFFLE(SDNode *N); |
| |
| SDOperand XformToShuffleWithZero(SDNode *N); |
| SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS); |
| |
| bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS); |
| SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N); |
| SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2); |
| SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2, |
| SDOperand N3, ISD::CondCode CC); |
| SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, |
| ISD::CondCode Cond, bool foldBooleans = true); |
| SDOperand ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *, MVT::ValueType); |
| SDOperand BuildSDIV(SDNode *N); |
| SDOperand BuildUDIV(SDNode *N); |
| public: |
| DAGCombiner(SelectionDAG &D) |
| : DAG(D), TLI(D.getTargetLoweringInfo()), AfterLegalize(false) {} |
| |
| /// Run - runs the dag combiner on all nodes in the work list |
| void Run(bool RunningAfterLegalize); |
| }; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TargetLowering::DAGCombinerInfo implementation |
| //===----------------------------------------------------------------------===// |
| |
| void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { |
| ((DAGCombiner*)DC)->AddToWorkList(N); |
| } |
| |
| SDOperand TargetLowering::DAGCombinerInfo:: |
| CombineTo(SDNode *N, const std::vector<SDOperand> &To) { |
| return ((DAGCombiner*)DC)->CombineTo(N, To); |
| } |
| |
| SDOperand TargetLowering::DAGCombinerInfo:: |
| CombineTo(SDNode *N, SDOperand Res) { |
| return ((DAGCombiner*)DC)->CombineTo(N, Res); |
| } |
| |
| |
| SDOperand TargetLowering::DAGCombinerInfo:: |
| CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) { |
| return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1); |
| } |
| |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| |
| |
| struct ms { |
| int64_t m; // magic number |
| int64_t s; // shift amount |
| }; |
| |
| struct mu { |
| uint64_t m; // magic number |
| int64_t a; // add indicator |
| int64_t s; // shift amount |
| }; |
| |
| /// magic - calculate the magic numbers required to codegen an integer sdiv as |
| /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, |
| /// or -1. |
| static ms magic32(int32_t d) { |
| int32_t p; |
| uint32_t ad, anc, delta, q1, r1, q2, r2, t; |
| const uint32_t two31 = 0x80000000U; |
| struct ms mag; |
| |
| ad = abs(d); |
| t = two31 + ((uint32_t)d >> 31); |
| anc = t - 1 - t%ad; // absolute value of nc |
| p = 31; // initialize p |
| q1 = two31/anc; // initialize q1 = 2p/abs(nc) |
| r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc)) |
| q2 = two31/ad; // initialize q2 = 2p/abs(d) |
| r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d)) |
| do { |
| p = p + 1; |
| q1 = 2*q1; // update q1 = 2p/abs(nc) |
| r1 = 2*r1; // update r1 = rem(2p/abs(nc)) |
| if (r1 >= anc) { // must be unsigned comparison |
| q1 = q1 + 1; |
| r1 = r1 - anc; |
| } |
| q2 = 2*q2; // update q2 = 2p/abs(d) |
| r2 = 2*r2; // update r2 = rem(2p/abs(d)) |
| if (r2 >= ad) { // must be unsigned comparison |
| q2 = q2 + 1; |
| r2 = r2 - ad; |
| } |
| delta = ad - r2; |
| } while (q1 < delta || (q1 == delta && r1 == 0)); |
| |
| mag.m = (int32_t)(q2 + 1); // make sure to sign extend |
| if (d < 0) mag.m = -mag.m; // resulting magic number |
| mag.s = p - 32; // resulting shift |
| return mag; |
| } |
| |
| /// magicu - calculate the magic numbers required to codegen an integer udiv as |
| /// a sequence of multiply, add and shifts. Requires that the divisor not be 0. |
| static mu magicu32(uint32_t d) { |
| int32_t p; |
| uint32_t nc, delta, q1, r1, q2, r2; |
| struct mu magu; |
| magu.a = 0; // initialize "add" indicator |
| nc = - 1 - (-d)%d; |
| p = 31; // initialize p |
| q1 = 0x80000000/nc; // initialize q1 = 2p/nc |
| r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc) |
| q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d |
| r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d) |
| do { |
| p = p + 1; |
| if (r1 >= nc - r1 ) { |
| q1 = 2*q1 + 1; // update q1 |
| r1 = 2*r1 - nc; // update r1 |
| } |
| else { |
| q1 = 2*q1; // update q1 |
| r1 = 2*r1; // update r1 |
| } |
| if (r2 + 1 >= d - r2) { |
| if (q2 >= 0x7FFFFFFF) magu.a = 1; |
| q2 = 2*q2 + 1; // update q2 |
| r2 = 2*r2 + 1 - d; // update r2 |
| } |
| else { |
| if (q2 >= 0x80000000) magu.a = 1; |
| q2 = 2*q2; // update q2 |
| r2 = 2*r2 + 1; // update r2 |
| } |
| delta = d - 1 - r2; |
| } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0))); |
| magu.m = q2 + 1; // resulting magic number |
| magu.s = p - 32; // resulting shift |
| return magu; |
| } |
| |
| /// magic - calculate the magic numbers required to codegen an integer sdiv as |
| /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, |
| /// or -1. |
| static ms magic64(int64_t d) { |
| int64_t p; |
| uint64_t ad, anc, delta, q1, r1, q2, r2, t; |
| const uint64_t two63 = 9223372036854775808ULL; // 2^63 |
| struct ms mag; |
| |
| ad = d >= 0 ? d : -d; |
| t = two63 + ((uint64_t)d >> 63); |
| anc = t - 1 - t%ad; // absolute value of nc |
| p = 63; // initialize p |
| q1 = two63/anc; // initialize q1 = 2p/abs(nc) |
| r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc)) |
| q2 = two63/ad; // initialize q2 = 2p/abs(d) |
| r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d)) |
| do { |
| p = p + 1; |
| q1 = 2*q1; // update q1 = 2p/abs(nc) |
| r1 = 2*r1; // update r1 = rem(2p/abs(nc)) |
| if (r1 >= anc) { // must be unsigned comparison |
| q1 = q1 + 1; |
| r1 = r1 - anc; |
| } |
| q2 = 2*q2; // update q2 = 2p/abs(d) |
| r2 = 2*r2; // update r2 = rem(2p/abs(d)) |
| if (r2 >= ad) { // must be unsigned comparison |
| q2 = q2 + 1; |
| r2 = r2 - ad; |
| } |
| delta = ad - r2; |
| } while (q1 < delta || (q1 == delta && r1 == 0)); |
| |
| mag.m = q2 + 1; |
| if (d < 0) mag.m = -mag.m; // resulting magic number |
| mag.s = p - 64; // resulting shift |
| return mag; |
| } |
| |
| /// magicu - calculate the magic numbers required to codegen an integer udiv as |
| /// a sequence of multiply, add and shifts. Requires that the divisor not be 0. |
| static mu magicu64(uint64_t d) |
| { |
| int64_t p; |
| uint64_t nc, delta, q1, r1, q2, r2; |
| struct mu magu; |
| magu.a = 0; // initialize "add" indicator |
| nc = - 1 - (-d)%d; |
| p = 63; // initialize p |
| q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc |
| r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc) |
| q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d |
| r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d) |
| do { |
| p = p + 1; |
| if (r1 >= nc - r1 ) { |
| q1 = 2*q1 + 1; // update q1 |
| r1 = 2*r1 - nc; // update r1 |
| } |
| else { |
| q1 = 2*q1; // update q1 |
| r1 = 2*r1; // update r1 |
| } |
| if (r2 + 1 >= d - r2) { |
| if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1; |
| q2 = 2*q2 + 1; // update q2 |
| r2 = 2*r2 + 1 - d; // update r2 |
| } |
| else { |
| if (q2 >= 0x8000000000000000ull) magu.a = 1; |
| q2 = 2*q2; // update q2 |
| r2 = 2*r2 + 1; // update r2 |
| } |
| delta = d - 1 - r2; |
| } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0))); |
| magu.m = q2 + 1; // resulting magic number |
| magu.s = p - 64; // resulting shift |
| return magu; |
| } |
| |
| // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc |
| // that selects between the values 1 and 0, making it equivalent to a setcc. |
| // Also, set the incoming LHS, RHS, and CC references to the appropriate |
| // nodes based on the type of node we are checking. This simplifies life a |
| // bit for the callers. |
| static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS, |
| SDOperand &CC) { |
| if (N.getOpcode() == ISD::SETCC) { |
| LHS = N.getOperand(0); |
| RHS = N.getOperand(1); |
| CC = N.getOperand(2); |
| return true; |
| } |
| if (N.getOpcode() == ISD::SELECT_CC && |
| N.getOperand(2).getOpcode() == ISD::Constant && |
| N.getOperand(3).getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 && |
| cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) { |
| LHS = N.getOperand(0); |
| RHS = N.getOperand(1); |
| CC = N.getOperand(4); |
| return true; |
| } |
| return false; |
| } |
| |
| // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only |
| // one use. If this is true, it allows the users to invert the operation for |
| // free when it is profitable to do so. |
| static bool isOneUseSetCC(SDOperand N) { |
| SDOperand N0, N1, N2; |
| if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse()) |
| return true; |
| return false; |
| } |
| |
| // FIXME: This should probably go in the ISD class rather than being duplicated |
| // in several files. |
| static bool isCommutativeBinOp(unsigned Opcode) { |
| switch (Opcode) { |
| case ISD::ADD: |
| case ISD::MUL: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: return true; |
| default: return false; // FIXME: Need commutative info for user ops! |
| } |
| } |
| |
| SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){ |
| MVT::ValueType VT = N0.getValueType(); |
| // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use |
| // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) |
| if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) { |
| if (isa<ConstantSDNode>(N1)) { |
| SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1); |
| AddToWorkList(OpNode.Val); |
| return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0)); |
| } else if (N0.hasOneUse()) { |
| SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1); |
| AddToWorkList(OpNode.Val); |
| return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1)); |
| } |
| } |
| // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use |
| // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) |
| if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) { |
| if (isa<ConstantSDNode>(N0)) { |
| SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0); |
| AddToWorkList(OpNode.Val); |
| return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0)); |
| } else if (N1.hasOneUse()) { |
| SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0); |
| AddToWorkList(OpNode.Val); |
| return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1)); |
| } |
| } |
| return SDOperand(); |
| } |
| |
| void DAGCombiner::Run(bool RunningAfterLegalize) { |
| // set the instance variable, so that the various visit routines may use it. |
| AfterLegalize = RunningAfterLegalize; |
| |
| // Add all the dag nodes to the worklist. |
| for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), |
| E = DAG.allnodes_end(); I != E; ++I) |
| WorkList.push_back(I); |
| |
| // Create a dummy node (which is not added to allnodes), that adds a reference |
| // to the root node, preventing it from being deleted, and tracking any |
| // changes of the root. |
| HandleSDNode Dummy(DAG.getRoot()); |
| |
| |
| /// DagCombineInfo - Expose the DAG combiner to the target combiner impls. |
| TargetLowering::DAGCombinerInfo |
| DagCombineInfo(DAG, !RunningAfterLegalize, this); |
| |
| // while the worklist isn't empty, inspect the node on the end of it and |
| // try and combine it. |
| while (!WorkList.empty()) { |
| SDNode *N = WorkList.back(); |
| WorkList.pop_back(); |
| |
| // If N has no uses, it is dead. Make sure to revisit all N's operands once |
| // N is deleted from the DAG, since they too may now be dead or may have a |
| // reduced number of uses, allowing other xforms. |
| if (N->use_empty() && N != &Dummy) { |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| WorkList.push_back(N->getOperand(i).Val); |
| |
| removeFromWorkList(N); |
| DAG.DeleteNode(N); |
| continue; |
| } |
| |
| SDOperand RV = visit(N); |
| |
| // If nothing happened, try a target-specific DAG combine. |
| if (RV.Val == 0) { |
| if (N->getOpcode() >= ISD::BUILTIN_OP_END || |
| TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) |
| RV = TLI.PerformDAGCombine(N, DagCombineInfo); |
| } |
| |
| if (RV.Val) { |
| ++NodesCombined; |
| // If we get back the same node we passed in, rather than a new node or |
| // zero, we know that the node must have defined multiple values and |
| // CombineTo was used. Since CombineTo takes care of the worklist |
| // mechanics for us, we have no work to do in this case. |
| if (RV.Val != N) { |
| DEBUG(std::cerr << "\nReplacing "; N->dump(); |
| std::cerr << "\nWith: "; RV.Val->dump(); |
| std::cerr << '\n'); |
| std::vector<SDNode*> NowDead; |
| DAG.ReplaceAllUsesWith(N, std::vector<SDOperand>(1, RV), &NowDead); |
| |
| // Push the new node and any users onto the worklist |
| WorkList.push_back(RV.Val); |
| AddUsersToWorkList(RV.Val); |
| |
| // Nodes can end up on the worklist more than once. Make sure we do |
| // not process a node that has been replaced. |
| removeFromWorkList(N); |
| for (unsigned i = 0, e = NowDead.size(); i != e; ++i) |
| removeFromWorkList(NowDead[i]); |
| |
| // Finally, since the node is now dead, remove it from the graph. |
| DAG.DeleteNode(N); |
| } |
| } |
| } |
| |
| // If the root changed (e.g. it was a dead load, update the root). |
| DAG.setRoot(Dummy.getValue()); |
| } |
| |
| SDOperand DAGCombiner::visit(SDNode *N) { |
| switch(N->getOpcode()) { |
| default: break; |
| case ISD::TokenFactor: return visitTokenFactor(N); |
| case ISD::ADD: return visitADD(N); |
| case ISD::SUB: return visitSUB(N); |
| case ISD::MUL: return visitMUL(N); |
| case ISD::SDIV: return visitSDIV(N); |
| case ISD::UDIV: return visitUDIV(N); |
| case ISD::SREM: return visitSREM(N); |
| case ISD::UREM: return visitUREM(N); |
| case ISD::MULHU: return visitMULHU(N); |
| case ISD::MULHS: return visitMULHS(N); |
| case ISD::AND: return visitAND(N); |
| case ISD::OR: return visitOR(N); |
| case ISD::XOR: return visitXOR(N); |
| case ISD::SHL: return visitSHL(N); |
| case ISD::SRA: return visitSRA(N); |
| case ISD::SRL: return visitSRL(N); |
| case ISD::CTLZ: return visitCTLZ(N); |
| case ISD::CTTZ: return visitCTTZ(N); |
| case ISD::CTPOP: return visitCTPOP(N); |
| case ISD::SELECT: return visitSELECT(N); |
| case ISD::SELECT_CC: return visitSELECT_CC(N); |
| case ISD::SETCC: return visitSETCC(N); |
| case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); |
| case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); |
| case ISD::ANY_EXTEND: return visitANY_EXTEND(N); |
| case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); |
| case ISD::TRUNCATE: return visitTRUNCATE(N); |
| case ISD::BIT_CONVERT: return visitBIT_CONVERT(N); |
| case ISD::VBIT_CONVERT: return visitVBIT_CONVERT(N); |
| case ISD::FADD: return visitFADD(N); |
| case ISD::FSUB: return visitFSUB(N); |
| case ISD::FMUL: return visitFMUL(N); |
| case ISD::FDIV: return visitFDIV(N); |
| case ISD::FREM: return visitFREM(N); |
| case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); |
| case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); |
| case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); |
| case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); |
| case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); |
| case ISD::FP_ROUND: return visitFP_ROUND(N); |
| case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); |
| case ISD::FP_EXTEND: return visitFP_EXTEND(N); |
| case ISD::FNEG: return visitFNEG(N); |
| case ISD::FABS: return visitFABS(N); |
| case ISD::BRCOND: return visitBRCOND(N); |
| case ISD::BR_CC: return visitBR_CC(N); |
| case ISD::LOAD: return visitLOAD(N); |
| case ISD::EXTLOAD: |
| case ISD::SEXTLOAD: |
| case ISD::ZEXTLOAD: return visitXEXTLOAD(N); |
| case ISD::STORE: return visitSTORE(N); |
| case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); |
| case ISD::VINSERT_VECTOR_ELT: return visitVINSERT_VECTOR_ELT(N); |
| case ISD::VBUILD_VECTOR: return visitVBUILD_VECTOR(N); |
| case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); |
| case ISD::VVECTOR_SHUFFLE: return visitVVECTOR_SHUFFLE(N); |
| case ISD::VADD: return visitVBinOp(N, ISD::ADD , ISD::FADD); |
| case ISD::VSUB: return visitVBinOp(N, ISD::SUB , ISD::FSUB); |
| case ISD::VMUL: return visitVBinOp(N, ISD::MUL , ISD::FMUL); |
| case ISD::VSDIV: return visitVBinOp(N, ISD::SDIV, ISD::FDIV); |
| case ISD::VUDIV: return visitVBinOp(N, ISD::UDIV, ISD::UDIV); |
| case ISD::VAND: return visitVBinOp(N, ISD::AND , ISD::AND); |
| case ISD::VOR: return visitVBinOp(N, ISD::OR , ISD::OR); |
| case ISD::VXOR: return visitVBinOp(N, ISD::XOR , ISD::XOR); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitTokenFactor(SDNode *N) { |
| std::vector<SDOperand> Ops; |
| bool Changed = false; |
| |
| // If the token factor has two operands and one is the entry token, replace |
| // the token factor with the other operand. |
| if (N->getNumOperands() == 2) { |
| if (N->getOperand(0).getOpcode() == ISD::EntryToken) |
| return N->getOperand(1); |
| if (N->getOperand(1).getOpcode() == ISD::EntryToken) |
| return N->getOperand(0); |
| } |
| |
| // fold (tokenfactor (tokenfactor)) -> tokenfactor |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| SDOperand Op = N->getOperand(i); |
| if (Op.getOpcode() == ISD::TokenFactor && Op.hasOneUse()) { |
| AddToWorkList(Op.Val); // Remove dead node. |
| Changed = true; |
| for (unsigned j = 0, e = Op.getNumOperands(); j != e; ++j) |
| Ops.push_back(Op.getOperand(j)); |
| } else { |
| Ops.push_back(Op); |
| } |
| } |
| if (Changed) |
| return DAG.getNode(ISD::TokenFactor, MVT::Other, Ops); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitADD(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| |
| // fold (add c1, c2) -> c1+c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::ADD, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::ADD, VT, N1, N0); |
| // fold (add x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // fold ((c1-A)+c2) -> (c1+c2)-A |
| if (N1C && N0.getOpcode() == ISD::SUB) |
| if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0))) |
| return DAG.getNode(ISD::SUB, VT, |
| DAG.getConstant(N1C->getValue()+N0C->getValue(), VT), |
| N0.getOperand(1)); |
| // reassociate add |
| SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1); |
| if (RADD.Val != 0) |
| return RADD; |
| // fold ((0-A) + B) -> B-A |
| if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) && |
| cast<ConstantSDNode>(N0.getOperand(0))->isNullValue()) |
| return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1)); |
| // fold (A + (0-B)) -> A-B |
| if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) && |
| cast<ConstantSDNode>(N1.getOperand(0))->isNullValue()) |
| return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1)); |
| // fold (A+(B-A)) -> B |
| if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) |
| return N1.getOperand(0); |
| |
| if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0))) |
| return SDOperand(N, 0); |
| |
| // fold (a+b) -> (a|b) iff a and b share no bits. |
| if (MVT::isInteger(VT) && !MVT::isVector(VT)) { |
| uint64_t LHSZero, LHSOne; |
| uint64_t RHSZero, RHSOne; |
| uint64_t Mask = MVT::getIntVTBitMask(VT); |
| TLI.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); |
| if (LHSZero) { |
| TLI.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); |
| |
| // If all possibly-set bits on the LHS are clear on the RHS, return an OR. |
| // If all possibly-set bits on the RHS are clear on the LHS, return an OR. |
| if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) || |
| (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask)) |
| return DAG.getNode(ISD::OR, VT, N0, N1); |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSUB(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); |
| MVT::ValueType VT = N0.getValueType(); |
| |
| // fold (sub x, x) -> 0 |
| if (N0 == N1) |
| return DAG.getConstant(0, N->getValueType(0)); |
| // fold (sub c1, c2) -> c1-c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::SUB, VT, N0, N1); |
| // fold (sub x, c) -> (add x, -c) |
| if (N1C) |
| return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT)); |
| // fold (A+B)-A -> B |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) |
| return N0.getOperand(1); |
| // fold (A+B)-B -> A |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) |
| return N0.getOperand(0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitMUL(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| |
| // fold (mul c1, c2) -> c1*c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::MUL, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::MUL, VT, N1, N0); |
| // fold (mul x, 0) -> 0 |
| if (N1C && N1C->isNullValue()) |
| return N1; |
| // fold (mul x, -1) -> 0-x |
| if (N1C && N1C->isAllOnesValue()) |
| return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0); |
| // fold (mul x, (1 << c)) -> x << c |
| if (N1C && isPowerOf2_64(N1C->getValue())) |
| return DAG.getNode(ISD::SHL, VT, N0, |
| DAG.getConstant(Log2_64(N1C->getValue()), |
| TLI.getShiftAmountTy())); |
| // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c |
| if (N1C && isPowerOf2_64(-N1C->getSignExtended())) { |
| // FIXME: If the input is something that is easily negated (e.g. a |
| // single-use add), we should put the negate there. |
| return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), |
| DAG.getNode(ISD::SHL, VT, N0, |
| DAG.getConstant(Log2_64(-N1C->getSignExtended()), |
| TLI.getShiftAmountTy()))); |
| } |
| |
| // (mul (shl X, c1), c2) -> (mul X, c2 << c1) |
| if (N1C && N0.getOpcode() == ISD::SHL && |
| isa<ConstantSDNode>(N0.getOperand(1))) { |
| SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1)); |
| AddToWorkList(C3.Val); |
| return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3); |
| } |
| |
| // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one |
| // use. |
| { |
| SDOperand Sh(0,0), Y(0,0); |
| // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). |
| if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) && |
| N0.Val->hasOneUse()) { |
| Sh = N0; Y = N1; |
| } else if (N1.getOpcode() == ISD::SHL && |
| isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) { |
| Sh = N1; Y = N0; |
| } |
| if (Sh.Val) { |
| SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y); |
| return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1)); |
| } |
| } |
| // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) |
| if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() && |
| isa<ConstantSDNode>(N0.getOperand(1))) { |
| return DAG.getNode(ISD::ADD, VT, |
| DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1), |
| DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1)); |
| } |
| |
| // reassociate mul |
| SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1); |
| if (RMUL.Val != 0) |
| return RMUL; |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSDIV(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (sdiv c1, c2) -> c1/c2 |
| if (N0C && N1C && !N1C->isNullValue()) |
| return DAG.getNode(ISD::SDIV, VT, N0, N1); |
| // fold (sdiv X, 1) -> X |
| if (N1C && N1C->getSignExtended() == 1LL) |
| return N0; |
| // fold (sdiv X, -1) -> 0-X |
| if (N1C && N1C->isAllOnesValue()) |
| return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0); |
| // If we know the sign bits of both operands are zero, strength reduce to a |
| // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 |
| uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1); |
| if (TLI.MaskedValueIsZero(N1, SignBit) && |
| TLI.MaskedValueIsZero(N0, SignBit)) |
| return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1); |
| // fold (sdiv X, pow2) -> simple ops after legalize |
| if (N1C && N1C->getValue() && !TLI.isIntDivCheap() && |
| (isPowerOf2_64(N1C->getSignExtended()) || |
| isPowerOf2_64(-N1C->getSignExtended()))) { |
| // If dividing by powers of two is cheap, then don't perform the following |
| // fold. |
| if (TLI.isPow2DivCheap()) |
| return SDOperand(); |
| int64_t pow2 = N1C->getSignExtended(); |
| int64_t abs2 = pow2 > 0 ? pow2 : -pow2; |
| unsigned lg2 = Log2_64(abs2); |
| // Splat the sign bit into the register |
| SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0, |
| DAG.getConstant(MVT::getSizeInBits(VT)-1, |
| TLI.getShiftAmountTy())); |
| AddToWorkList(SGN.Val); |
| // Add (N0 < 0) ? abs2 - 1 : 0; |
| SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN, |
| DAG.getConstant(MVT::getSizeInBits(VT)-lg2, |
| TLI.getShiftAmountTy())); |
| SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL); |
| AddToWorkList(SRL.Val); |
| AddToWorkList(ADD.Val); // Divide by pow2 |
| SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD, |
| DAG.getConstant(lg2, TLI.getShiftAmountTy())); |
| // If we're dividing by a positive value, we're done. Otherwise, we must |
| // negate the result. |
| if (pow2 > 0) |
| return SRA; |
| AddToWorkList(SRA.Val); |
| return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA); |
| } |
| // if integer divide is expensive and we satisfy the requirements, emit an |
| // alternate sequence. |
| if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) && |
| !TLI.isIntDivCheap()) { |
| SDOperand Op = BuildSDIV(N); |
| if (Op.Val) return Op; |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitUDIV(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (udiv c1, c2) -> c1/c2 |
| if (N0C && N1C && !N1C->isNullValue()) |
| return DAG.getNode(ISD::UDIV, VT, N0, N1); |
| // fold (udiv x, (1 << c)) -> x >>u c |
| if (N1C && isPowerOf2_64(N1C->getValue())) |
| return DAG.getNode(ISD::SRL, VT, N0, |
| DAG.getConstant(Log2_64(N1C->getValue()), |
| TLI.getShiftAmountTy())); |
| // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 |
| if (N1.getOpcode() == ISD::SHL) { |
| if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) { |
| if (isPowerOf2_64(SHC->getValue())) { |
| MVT::ValueType ADDVT = N1.getOperand(1).getValueType(); |
| SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1), |
| DAG.getConstant(Log2_64(SHC->getValue()), |
| ADDVT)); |
| AddToWorkList(Add.Val); |
| return DAG.getNode(ISD::SRL, VT, N0, Add); |
| } |
| } |
| } |
| // fold (udiv x, c) -> alternate |
| if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) { |
| SDOperand Op = BuildUDIV(N); |
| if (Op.Val) return Op; |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSREM(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (srem c1, c2) -> c1%c2 |
| if (N0C && N1C && !N1C->isNullValue()) |
| return DAG.getNode(ISD::SREM, VT, N0, N1); |
| // If we know the sign bits of both operands are zero, strength reduce to a |
| // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 |
| uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1); |
| if (TLI.MaskedValueIsZero(N1, SignBit) && |
| TLI.MaskedValueIsZero(N0, SignBit)) |
| return DAG.getNode(ISD::UREM, VT, N0, N1); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitUREM(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (urem c1, c2) -> c1%c2 |
| if (N0C && N1C && !N1C->isNullValue()) |
| return DAG.getNode(ISD::UREM, VT, N0, N1); |
| // fold (urem x, pow2) -> (and x, pow2-1) |
| if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue())) |
| return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT)); |
| // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) |
| if (N1.getOpcode() == ISD::SHL) { |
| if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) { |
| if (isPowerOf2_64(SHC->getValue())) { |
| SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT)); |
| AddToWorkList(Add.Val); |
| return DAG.getNode(ISD::AND, VT, N0, Add); |
| } |
| } |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitMULHS(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| |
| // fold (mulhs x, 0) -> 0 |
| if (N1C && N1C->isNullValue()) |
| return N1; |
| // fold (mulhs x, 1) -> (sra x, size(x)-1) |
| if (N1C && N1C->getValue() == 1) |
| return DAG.getNode(ISD::SRA, N0.getValueType(), N0, |
| DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1, |
| TLI.getShiftAmountTy())); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitMULHU(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| |
| // fold (mulhu x, 0) -> 0 |
| if (N1C && N1C->isNullValue()) |
| return N1; |
| // fold (mulhu x, 1) -> 0 |
| if (N1C && N1C->getValue() == 1) |
| return DAG.getConstant(0, N0.getValueType()); |
| return SDOperand(); |
| } |
| |
| /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with |
| /// two operands of the same opcode, try to simplify it. |
| SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { |
| SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1); |
| MVT::ValueType VT = N0.getValueType(); |
| assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); |
| |
| // For each of OP in AND/OR/XOR: |
| // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) |
| // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) |
| // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) |
| // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) |
| if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND|| |
| N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) && |
| N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) { |
| SDOperand ORNode = DAG.getNode(N->getOpcode(), |
| N0.getOperand(0).getValueType(), |
| N0.getOperand(0), N1.getOperand(0)); |
| AddToWorkList(ORNode.Val); |
| return DAG.getNode(N0.getOpcode(), VT, ORNode); |
| } |
| |
| // For each of OP in SHL/SRL/SRA/AND... |
| // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) |
| // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z) |
| // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) |
| if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || |
| N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && |
| N0.getOperand(1) == N1.getOperand(1)) { |
| SDOperand ORNode = DAG.getNode(N->getOpcode(), |
| N0.getOperand(0).getValueType(), |
| N0.getOperand(0), N1.getOperand(0)); |
| AddToWorkList(ORNode.Val); |
| return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1)); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitAND(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand LL, LR, RL, RR, CC0, CC1; |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N1.getValueType(); |
| unsigned OpSizeInBits = MVT::getSizeInBits(VT); |
| |
| // fold (and c1, c2) -> c1&c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::AND, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::AND, VT, N1, N0); |
| // fold (and x, -1) -> x |
| if (N1C && N1C->isAllOnesValue()) |
| return N0; |
| // if (and x, c) is known to be zero, return 0 |
| if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT))) |
| return DAG.getConstant(0, VT); |
| // reassociate and |
| SDOperand RAND = ReassociateOps(ISD::AND, N0, N1); |
| if (RAND.Val != 0) |
| return RAND; |
| // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF |
| if (N1C && N0.getOpcode() == ISD::OR) |
| if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) |
| if ((ORI->getValue() & N1C->getValue()) == N1C->getValue()) |
| return N1; |
| // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. |
| if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { |
| unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType()); |
| if (TLI.MaskedValueIsZero(N0.getOperand(0), |
| ~N1C->getValue() & InMask)) { |
| SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(), |
| N0.getOperand(0)); |
| |
| // Replace uses of the AND with uses of the Zero extend node. |
| CombineTo(N, Zext); |
| |
| // We actually want to replace all uses of the any_extend with the |
| // zero_extend, to avoid duplicating things. This will later cause this |
| // AND to be folded. |
| CombineTo(N0.Val, Zext); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) |
| if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ |
| ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); |
| ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); |
| |
| if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && |
| MVT::isInteger(LL.getValueType())) { |
| // fold (X == 0) & (Y == 0) -> (X|Y == 0) |
| if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) { |
| SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); |
| AddToWorkList(ORNode.Val); |
| return DAG.getSetCC(VT, ORNode, LR, Op1); |
| } |
| // fold (X == -1) & (Y == -1) -> (X&Y == -1) |
| if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) { |
| SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL); |
| AddToWorkList(ANDNode.Val); |
| return DAG.getSetCC(VT, ANDNode, LR, Op1); |
| } |
| // fold (X > -1) & (Y > -1) -> (X|Y > -1) |
| if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) { |
| SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); |
| AddToWorkList(ORNode.Val); |
| return DAG.getSetCC(VT, ORNode, LR, Op1); |
| } |
| } |
| // canonicalize equivalent to ll == rl |
| if (LL == RR && LR == RL) { |
| Op1 = ISD::getSetCCSwappedOperands(Op1); |
| std::swap(RL, RR); |
| } |
| if (LL == RL && LR == RR) { |
| bool isInteger = MVT::isInteger(LL.getValueType()); |
| ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); |
| if (Result != ISD::SETCC_INVALID) |
| return DAG.getSetCC(N0.getValueType(), LL, LR, Result); |
| } |
| } |
| |
| // Simplify: and (op x...), (op y...) -> (op (and x, y)) |
| if (N0.getOpcode() == N1.getOpcode()) { |
| SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N); |
| if (Tmp.Val) return Tmp; |
| } |
| |
| // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) |
| // fold (and (sra)) -> (and (srl)) when possible. |
| if (!MVT::isVector(VT) && |
| SimplifyDemandedBits(SDOperand(N, 0))) |
| return SDOperand(N, 0); |
| // fold (zext_inreg (extload x)) -> (zextload x) |
| if (N0.getOpcode() == ISD::EXTLOAD) { |
| MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT(); |
| // If we zero all the possible extended bits, then we can turn this into |
| // a zextload if we are running before legalize or the operation is legal. |
| if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) && |
| (!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) { |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| EVT); |
| AddToWorkList(N); |
| CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use |
| if (N0.getOpcode() == ISD::SEXTLOAD && N0.hasOneUse()) { |
| MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT(); |
| // If we zero all the possible extended bits, then we can turn this into |
| // a zextload if we are running before legalize or the operation is legal. |
| if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) && |
| (!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) { |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| EVT); |
| AddToWorkList(N); |
| CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // fold (and (load x), 255) -> (zextload x, i8) |
| // fold (and (extload x, i16), 255) -> (zextload x, i8) |
| if (N1C && |
| (N0.getOpcode() == ISD::LOAD || N0.getOpcode() == ISD::EXTLOAD || |
| N0.getOpcode() == ISD::ZEXTLOAD) && |
| N0.hasOneUse()) { |
| MVT::ValueType EVT, LoadedVT; |
| if (N1C->getValue() == 255) |
| EVT = MVT::i8; |
| else if (N1C->getValue() == 65535) |
| EVT = MVT::i16; |
| else if (N1C->getValue() == ~0U) |
| EVT = MVT::i32; |
| else |
| EVT = MVT::Other; |
| |
| LoadedVT = N0.getOpcode() == ISD::LOAD ? VT : |
| cast<VTSDNode>(N0.getOperand(3))->getVT(); |
| if (EVT != MVT::Other && LoadedVT > EVT && |
| (!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) { |
| MVT::ValueType PtrType = N0.getOperand(1).getValueType(); |
| // For big endian targets, we need to add an offset to the pointer to load |
| // the correct bytes. For little endian systems, we merely need to read |
| // fewer bytes from the same pointer. |
| unsigned PtrOff = |
| (MVT::getSizeInBits(LoadedVT) - MVT::getSizeInBits(EVT)) / 8; |
| SDOperand NewPtr = N0.getOperand(1); |
| if (!TLI.isLittleEndian()) |
| NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr, |
| DAG.getConstant(PtrOff, PtrType)); |
| AddToWorkList(NewPtr.Val); |
| SDOperand Load = |
| DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0), NewPtr, |
| N0.getOperand(2), EVT); |
| AddToWorkList(N); |
| CombineTo(N0.Val, Load, Load.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitOR(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand LL, LR, RL, RR, CC0, CC1; |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N1.getValueType(); |
| unsigned OpSizeInBits = MVT::getSizeInBits(VT); |
| |
| // fold (or c1, c2) -> c1|c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::OR, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::OR, VT, N1, N0); |
| // fold (or x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // fold (or x, -1) -> -1 |
| if (N1C && N1C->isAllOnesValue()) |
| return N1; |
| // fold (or x, c) -> c iff (x & ~c) == 0 |
| if (N1C && |
| TLI.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits)))) |
| return N1; |
| // reassociate or |
| SDOperand ROR = ReassociateOps(ISD::OR, N0, N1); |
| if (ROR.Val != 0) |
| return ROR; |
| // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) |
| if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() && |
| isa<ConstantSDNode>(N0.getOperand(1))) { |
| ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1)); |
| return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0), |
| N1), |
| DAG.getConstant(N1C->getValue() | C1->getValue(), VT)); |
| } |
| // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) |
| if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ |
| ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); |
| ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); |
| |
| if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && |
| MVT::isInteger(LL.getValueType())) { |
| // fold (X != 0) | (Y != 0) -> (X|Y != 0) |
| // fold (X < 0) | (Y < 0) -> (X|Y < 0) |
| if (cast<ConstantSDNode>(LR)->getValue() == 0 && |
| (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { |
| SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); |
| AddToWorkList(ORNode.Val); |
| return DAG.getSetCC(VT, ORNode, LR, Op1); |
| } |
| // fold (X != -1) | (Y != -1) -> (X&Y != -1) |
| // fold (X > -1) | (Y > -1) -> (X&Y > -1) |
| if (cast<ConstantSDNode>(LR)->isAllOnesValue() && |
| (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { |
| SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL); |
| AddToWorkList(ANDNode.Val); |
| return DAG.getSetCC(VT, ANDNode, LR, Op1); |
| } |
| } |
| // canonicalize equivalent to ll == rl |
| if (LL == RR && LR == RL) { |
| Op1 = ISD::getSetCCSwappedOperands(Op1); |
| std::swap(RL, RR); |
| } |
| if (LL == RL && LR == RR) { |
| bool isInteger = MVT::isInteger(LL.getValueType()); |
| ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); |
| if (Result != ISD::SETCC_INVALID) |
| return DAG.getSetCC(N0.getValueType(), LL, LR, Result); |
| } |
| } |
| |
| // Simplify: or (op x...), (op y...) -> (op (or x, y)) |
| if (N0.getOpcode() == N1.getOpcode()) { |
| SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N); |
| if (Tmp.Val) return Tmp; |
| } |
| |
| // canonicalize shl to left side in a shl/srl pair, to match rotate |
| if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) |
| std::swap(N0, N1); |
| // check for rotl, rotr |
| if (N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SRL && |
| N0.getOperand(0) == N1.getOperand(0) && |
| TLI.isOperationLegal(ISD::ROTL, VT) && TLI.isTypeLegal(VT)) { |
| // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) |
| if (N0.getOperand(1).getOpcode() == ISD::Constant && |
| N1.getOperand(1).getOpcode() == ISD::Constant) { |
| uint64_t c1val = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); |
| uint64_t c2val = cast<ConstantSDNode>(N1.getOperand(1))->getValue(); |
| if ((c1val + c2val) == OpSizeInBits) |
| return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), N0.getOperand(1)); |
| } |
| // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y) |
| if (N1.getOperand(1).getOpcode() == ISD::SUB && |
| N0.getOperand(1) == N1.getOperand(1).getOperand(1)) |
| if (ConstantSDNode *SUBC = |
| dyn_cast<ConstantSDNode>(N1.getOperand(1).getOperand(0))) |
| if (SUBC->getValue() == OpSizeInBits) |
| return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), N0.getOperand(1)); |
| // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y) |
| if (N0.getOperand(1).getOpcode() == ISD::SUB && |
| N1.getOperand(1) == N0.getOperand(1).getOperand(1)) |
| if (ConstantSDNode *SUBC = |
| dyn_cast<ConstantSDNode>(N0.getOperand(1).getOperand(0))) |
| if (SUBC->getValue() == OpSizeInBits) { |
| if (TLI.isOperationLegal(ISD::ROTR, VT) && TLI.isTypeLegal(VT)) |
| return DAG.getNode(ISD::ROTR, VT, N0.getOperand(0), |
| N1.getOperand(1)); |
| else |
| return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), |
| N0.getOperand(1)); |
| } |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitXOR(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand LHS, RHS, CC; |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| |
| // fold (xor c1, c2) -> c1^c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::XOR, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::XOR, VT, N1, N0); |
| // fold (xor x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // reassociate xor |
| SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1); |
| if (RXOR.Val != 0) |
| return RXOR; |
| // fold !(x cc y) -> (x !cc y) |
| if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) { |
| bool isInt = MVT::isInteger(LHS.getValueType()); |
| ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), |
| isInt); |
| if (N0.getOpcode() == ISD::SETCC) |
| return DAG.getSetCC(VT, LHS, RHS, NotCC); |
| if (N0.getOpcode() == ISD::SELECT_CC) |
| return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC); |
| assert(0 && "Unhandled SetCC Equivalent!"); |
| abort(); |
| } |
| // fold !(x or y) -> (!x and !y) iff x or y are setcc |
| if (N1C && N1C->getValue() == 1 && |
| (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { |
| SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1); |
| if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { |
| unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; |
| LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS |
| RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS |
| AddToWorkList(LHS.Val); AddToWorkList(RHS.Val); |
| return DAG.getNode(NewOpcode, VT, LHS, RHS); |
| } |
| } |
| // fold !(x or y) -> (!x and !y) iff x or y are constants |
| if (N1C && N1C->isAllOnesValue() && |
| (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { |
| SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1); |
| if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { |
| unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; |
| LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS |
| RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS |
| AddToWorkList(LHS.Val); AddToWorkList(RHS.Val); |
| return DAG.getNode(NewOpcode, VT, LHS, RHS); |
| } |
| } |
| // fold (xor (xor x, c1), c2) -> (xor x, c1^c2) |
| if (N1C && N0.getOpcode() == ISD::XOR) { |
| ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0)); |
| ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (N00C) |
| return DAG.getNode(ISD::XOR, VT, N0.getOperand(1), |
| DAG.getConstant(N1C->getValue()^N00C->getValue(), VT)); |
| if (N01C) |
| return DAG.getNode(ISD::XOR, VT, N0.getOperand(0), |
| DAG.getConstant(N1C->getValue()^N01C->getValue(), VT)); |
| } |
| // fold (xor x, x) -> 0 |
| if (N0 == N1) { |
| if (!MVT::isVector(VT)) { |
| return DAG.getConstant(0, VT); |
| } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) { |
| // Produce a vector of zeros. |
| SDOperand El = DAG.getConstant(0, MVT::getVectorBaseType(VT)); |
| std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El); |
| return DAG.getNode(ISD::BUILD_VECTOR, VT, Ops); |
| } |
| } |
| |
| // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) |
| if (N0.getOpcode() == N1.getOpcode()) { |
| SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N); |
| if (Tmp.Val) return Tmp; |
| } |
| |
| // Simplify the expression using non-local knowledge. |
| if (!MVT::isVector(VT) && |
| SimplifyDemandedBits(SDOperand(N, 0))) |
| return SDOperand(N, 0); |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSHL(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| unsigned OpSizeInBits = MVT::getSizeInBits(VT); |
| |
| // fold (shl c1, c2) -> c1<<c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::SHL, VT, N0, N1); |
| // fold (shl 0, x) -> 0 |
| if (N0C && N0C->isNullValue()) |
| return N0; |
| // fold (shl x, c >= size(x)) -> undef |
| if (N1C && N1C->getValue() >= OpSizeInBits) |
| return DAG.getNode(ISD::UNDEF, VT); |
| // fold (shl x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // if (shl x, c) is known to be zero, return 0 |
| if (TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT))) |
| return DAG.getConstant(0, VT); |
| if (SimplifyDemandedBits(SDOperand(N, 0))) |
| return SDOperand(N, 0); |
| // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2) |
| if (N1C && N0.getOpcode() == ISD::SHL && |
| N0.getOperand(1).getOpcode() == ISD::Constant) { |
| uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); |
| uint64_t c2 = N1C->getValue(); |
| if (c1 + c2 > OpSizeInBits) |
| return DAG.getConstant(0, VT); |
| return DAG.getNode(ISD::SHL, VT, N0.getOperand(0), |
| DAG.getConstant(c1 + c2, N1.getValueType())); |
| } |
| // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or |
| // (srl (and x, -1 << c1), c1-c2) |
| if (N1C && N0.getOpcode() == ISD::SRL && |
| N0.getOperand(1).getOpcode() == ISD::Constant) { |
| uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); |
| uint64_t c2 = N1C->getValue(); |
| SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0), |
| DAG.getConstant(~0ULL << c1, VT)); |
| if (c2 > c1) |
| return DAG.getNode(ISD::SHL, VT, Mask, |
| DAG.getConstant(c2-c1, N1.getValueType())); |
| else |
| return DAG.getNode(ISD::SRL, VT, Mask, |
| DAG.getConstant(c1-c2, N1.getValueType())); |
| } |
| // fold (shl (sra x, c1), c1) -> (and x, -1 << c1) |
| if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) |
| return DAG.getNode(ISD::AND, VT, N0.getOperand(0), |
| DAG.getConstant(~0ULL << N1C->getValue(), VT)); |
| // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1<<c2) |
| if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() && |
| isa<ConstantSDNode>(N0.getOperand(1))) { |
| return DAG.getNode(ISD::ADD, VT, |
| DAG.getNode(ISD::SHL, VT, N0.getOperand(0), N1), |
| DAG.getNode(ISD::SHL, VT, N0.getOperand(1), N1)); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSRA(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| |
| // fold (sra c1, c2) -> c1>>c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::SRA, VT, N0, N1); |
| // fold (sra 0, x) -> 0 |
| if (N0C && N0C->isNullValue()) |
| return N0; |
| // fold (sra -1, x) -> -1 |
| if (N0C && N0C->isAllOnesValue()) |
| return N0; |
| // fold (sra x, c >= size(x)) -> undef |
| if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT)) |
| return DAG.getNode(ISD::UNDEF, VT); |
| // fold (sra x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports |
| // sext_inreg. |
| if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { |
| unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue(); |
| MVT::ValueType EVT; |
| switch (LowBits) { |
| default: EVT = MVT::Other; break; |
| case 1: EVT = MVT::i1; break; |
| case 8: EVT = MVT::i8; break; |
| case 16: EVT = MVT::i16; break; |
| case 32: EVT = MVT::i32; break; |
| } |
| if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT)) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), |
| DAG.getValueType(EVT)); |
| } |
| |
| // fold (sra (sra x, c1), c2) -> (sra x, c1+c2) |
| if (N1C && N0.getOpcode() == ISD::SRA) { |
| if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| unsigned Sum = N1C->getValue() + C1->getValue(); |
| if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1; |
| return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), |
| DAG.getConstant(Sum, N1C->getValueType(0))); |
| } |
| } |
| |
| // If the sign bit is known to be zero, switch this to a SRL. |
| if (TLI.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT))) |
| return DAG.getNode(ISD::SRL, VT, N0, N1); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSRL(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| unsigned OpSizeInBits = MVT::getSizeInBits(VT); |
| |
| // fold (srl c1, c2) -> c1 >>u c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::SRL, VT, N0, N1); |
| // fold (srl 0, x) -> 0 |
| if (N0C && N0C->isNullValue()) |
| return N0; |
| // fold (srl x, c >= size(x)) -> undef |
| if (N1C && N1C->getValue() >= OpSizeInBits) |
| return DAG.getNode(ISD::UNDEF, VT); |
| // fold (srl x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // if (srl x, c) is known to be zero, return 0 |
| if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits))) |
| return DAG.getConstant(0, VT); |
| // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2) |
| if (N1C && N0.getOpcode() == ISD::SRL && |
| N0.getOperand(1).getOpcode() == ISD::Constant) { |
| uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); |
| uint64_t c2 = N1C->getValue(); |
| if (c1 + c2 > OpSizeInBits) |
| return DAG.getConstant(0, VT); |
| return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), |
| DAG.getConstant(c1 + c2, N1.getValueType())); |
| } |
| |
| // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). |
| if (N1C && N0.getOpcode() == ISD::CTLZ && |
| N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) { |
| uint64_t KnownZero, KnownOne, Mask = MVT::getIntVTBitMask(VT); |
| TLI.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne); |
| |
| // If any of the input bits are KnownOne, then the input couldn't be all |
| // zeros, thus the result of the srl will always be zero. |
| if (KnownOne) return DAG.getConstant(0, VT); |
| |
| // If all of the bits input the to ctlz node are known to be zero, then |
| // the result of the ctlz is "32" and the result of the shift is one. |
| uint64_t UnknownBits = ~KnownZero & Mask; |
| if (UnknownBits == 0) return DAG.getConstant(1, VT); |
| |
| // Otherwise, check to see if there is exactly one bit input to the ctlz. |
| if ((UnknownBits & (UnknownBits-1)) == 0) { |
| // Okay, we know that only that the single bit specified by UnknownBits |
| // could be set on input to the CTLZ node. If this bit is set, the SRL |
| // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair |
| // to an SRL,XOR pair, which is likely to simplify more. |
| unsigned ShAmt = CountTrailingZeros_64(UnknownBits); |
| SDOperand Op = N0.getOperand(0); |
| if (ShAmt) { |
| Op = DAG.getNode(ISD::SRL, VT, Op, |
| DAG.getConstant(ShAmt, TLI.getShiftAmountTy())); |
| AddToWorkList(Op.Val); |
| } |
| return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT)); |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitCTLZ(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (ctlz c1) -> c2 |
| if (N0C) |
| return DAG.getNode(ISD::CTLZ, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitCTTZ(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (cttz c1) -> c2 |
| if (N0C) |
| return DAG.getNode(ISD::CTTZ, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitCTPOP(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (ctpop c1) -> c2 |
| if (N0C) |
| return DAG.getNode(ISD::CTPOP, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSELECT(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand N2 = N->getOperand(2); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold select C, X, X -> X |
| if (N1 == N2) |
| return N1; |
| // fold select true, X, Y -> X |
| if (N0C && !N0C->isNullValue()) |
| return N1; |
| // fold select false, X, Y -> Y |
| if (N0C && N0C->isNullValue()) |
| return N2; |
| // fold select C, 1, X -> C | X |
| if (MVT::i1 == VT && N1C && N1C->getValue() == 1) |
| return DAG.getNode(ISD::OR, VT, N0, N2); |
| // fold select C, 0, X -> ~C & X |
| // FIXME: this should check for C type == X type, not i1? |
| if (MVT::i1 == VT && N1C && N1C->isNullValue()) { |
| SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT)); |
| AddToWorkList(XORNode.Val); |
| return DAG.getNode(ISD::AND, VT, XORNode, N2); |
| } |
| // fold select C, X, 1 -> ~C | X |
| if (MVT::i1 == VT && N2C && N2C->getValue() == 1) { |
| SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT)); |
| AddToWorkList(XORNode.Val); |
| return DAG.getNode(ISD::OR, VT, XORNode, N1); |
| } |
| // fold select C, X, 0 -> C & X |
| // FIXME: this should check for C type == X type, not i1? |
| if (MVT::i1 == VT && N2C && N2C->isNullValue()) |
| return DAG.getNode(ISD::AND, VT, N0, N1); |
| // fold X ? X : Y --> X ? 1 : Y --> X | Y |
| if (MVT::i1 == VT && N0 == N1) |
| return DAG.getNode(ISD::OR, VT, N0, N2); |
| // fold X ? Y : X --> X ? Y : 0 --> X & Y |
| if (MVT::i1 == VT && N0 == N2) |
| return DAG.getNode(ISD::AND, VT, N0, N1); |
| // If we can fold this based on the true/false value, do so. |
| if (SimplifySelectOps(N, N1, N2)) |
| return SDOperand(); |
| // fold selects based on a setcc into other things, such as min/max/abs |
| if (N0.getOpcode() == ISD::SETCC) |
| // FIXME: |
| // Check against MVT::Other for SELECT_CC, which is a workaround for targets |
| // having to say they don't support SELECT_CC on every type the DAG knows |
| // about, since there is no way to mark an opcode illegal at all value types |
| if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other)) |
| return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1), |
| N1, N2, N0.getOperand(2)); |
| else |
| return SimplifySelect(N0, N1, N2); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand N2 = N->getOperand(2); |
| SDOperand N3 = N->getOperand(3); |
| SDOperand N4 = N->getOperand(4); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); |
| |
| // Determine if the condition we're dealing with is constant |
| SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false); |
| ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val); |
| |
| // fold select_cc lhs, rhs, x, x, cc -> x |
| if (N2 == N3) |
| return N2; |
| |
| // If we can fold this based on the true/false value, do so. |
| if (SimplifySelectOps(N, N2, N3)) |
| return SDOperand(); |
| |
| // fold select_cc into other things, such as min/max/abs |
| return SimplifySelectCC(N0, N1, N2, N3, CC); |
| } |
| |
| SDOperand DAGCombiner::visitSETCC(SDNode *N) { |
| return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), |
| cast<CondCodeSDNode>(N->getOperand(2))->get()); |
| } |
| |
| SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (sext c1) -> c1 |
| if (N0C) |
| return DAG.getNode(ISD::SIGN_EXTEND, VT, N0); |
| // fold (sext (sext x)) -> (sext x) |
| if (N0.getOpcode() == ISD::SIGN_EXTEND) |
| return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0)); |
| // fold (sext (truncate x)) -> (sextinreg x) iff x size == sext size. |
| if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT&& |
| (!AfterLegalize || |
| TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, N0.getValueType()))) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), |
| DAG.getValueType(N0.getValueType())); |
| // fold (sext (load x)) -> (sext (truncate (sextload x))) |
| if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() && |
| (!AfterLegalize||TLI.isOperationLegal(ISD::SEXTLOAD, N0.getValueType()))){ |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| N0.getValueType()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), |
| ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // fold (sext (sextload x)) -> (sext (truncate (sextload x))) |
| // fold (sext ( extload x)) -> (sext (truncate (sextload x))) |
| if ((N0.getOpcode() == ISD::SEXTLOAD || N0.getOpcode() == ISD::EXTLOAD) && |
| N0.hasOneUse()) { |
| SDOperand ExtLoad = DAG.getNode(ISD::SEXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| N0.getOperand(3)); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), |
| ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (zext c1) -> c1 |
| if (N0C) |
| return DAG.getNode(ISD::ZERO_EXTEND, VT, N0); |
| // fold (zext (zext x)) -> (zext x) |
| if (N0.getOpcode() == ISD::ZERO_EXTEND) |
| return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0)); |
| // fold (zext (truncate x)) -> (zextinreg x) iff x size == zext size. |
| if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT&& |
| (!AfterLegalize || TLI.isOperationLegal(ISD::AND, N0.getValueType()))) |
| return DAG.getZeroExtendInReg(N0.getOperand(0), N0.getValueType()); |
| // fold (zext (load x)) -> (zext (truncate (zextload x))) |
| if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() && |
| (!AfterLegalize||TLI.isOperationLegal(ISD::ZEXTLOAD, N0.getValueType()))){ |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| N0.getValueType()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), |
| ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // fold (zext (zextload x)) -> (zext (truncate (zextload x))) |
| // fold (zext ( extload x)) -> (zext (truncate (zextload x))) |
| if ((N0.getOpcode() == ISD::ZEXTLOAD || N0.getOpcode() == ISD::EXTLOAD) && |
| N0.hasOneUse()) { |
| SDOperand ExtLoad = DAG.getNode(ISD::ZEXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| N0.getOperand(3)); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), |
| ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (aext c1) -> c1 |
| if (N0C) |
| return DAG.getNode(ISD::ANY_EXTEND, VT, N0); |
| // fold (aext (aext x)) -> (aext x) |
| // fold (aext (zext x)) -> (zext x) |
| // fold (aext (sext x)) -> (sext x) |
| if (N0.getOpcode() == ISD::ANY_EXTEND || |
| N0.getOpcode() == ISD::ZERO_EXTEND || |
| N0.getOpcode() == ISD::SIGN_EXTEND) |
| return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0)); |
| |
| // fold (aext (truncate x)) -> x iff x size == zext size. |
| if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT) |
| return N0.getOperand(0); |
| // fold (aext (load x)) -> (aext (truncate (extload x))) |
| if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() && |
| (!AfterLegalize||TLI.isOperationLegal(ISD::EXTLOAD, N0.getValueType()))) { |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| N0.getValueType()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), |
| ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // fold (aext (zextload x)) -> (aext (truncate (zextload x))) |
| // fold (aext (sextload x)) -> (aext (truncate (sextload x))) |
| // fold (aext ( extload x)) -> (aext (truncate (extload x))) |
| if ((N0.getOpcode() == ISD::ZEXTLOAD || N0.getOpcode() == ISD::EXTLOAD || |
| N0.getOpcode() == ISD::SEXTLOAD) && |
| N0.hasOneUse()) { |
| SDOperand ExtLoad = DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| N0.getOperand(3)); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), |
| ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| return SDOperand(); |
| } |
| |
| |
| SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT(); |
| unsigned EVTBits = MVT::getSizeInBits(EVT); |
| |
| // fold (sext_in_reg c1) -> c1 |
| if (N0C) { |
| SDOperand Truncate = DAG.getConstant(N0C->getValue(), EVT); |
| return DAG.getNode(ISD::SIGN_EXTEND, VT, Truncate); |
| } |
| // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt1 |
| if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| cast<VTSDNode>(N0.getOperand(1))->getVT() <= EVT) { |
| return N0; |
| } |
| // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 |
| if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) { |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1); |
| } |
| // fold (sext_in_reg (assert_sext x)) -> (assert_sext x) |
| if (N0.getOpcode() == ISD::AssertSext && |
| cast<VTSDNode>(N0.getOperand(1))->getVT() <= EVT) { |
| return N0; |
| } |
| // fold (sext_in_reg (sextload x)) -> (sextload x) |
| if (N0.getOpcode() == ISD::SEXTLOAD && |
| cast<VTSDNode>(N0.getOperand(3))->getVT() <= EVT) { |
| return N0; |
| } |
| // fold (sext_in_reg (setcc x)) -> setcc x iff (setcc x) == 0 or -1 |
| if (N0.getOpcode() == ISD::SETCC && |
| TLI.getSetCCResultContents() == |
| TargetLowering::ZeroOrNegativeOneSetCCResult) |
| return N0; |
| // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is zero |
| if (TLI.MaskedValueIsZero(N0, 1ULL << (EVTBits-1))) |
| return DAG.getZeroExtendInReg(N0, EVT); |
| // fold (sext_inreg (extload x)) -> (sextload x) |
| if (N0.getOpcode() == ISD::EXTLOAD && |
| EVT == cast<VTSDNode>(N0.getOperand(3))->getVT() && |
| (!AfterLegalize || TLI.isOperationLegal(ISD::SEXTLOAD, EVT))) { |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| EVT); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use |
| if (N0.getOpcode() == ISD::ZEXTLOAD && N0.hasOneUse() && |
| EVT == cast<VTSDNode>(N0.getOperand(3))->getVT() && |
| (!AfterLegalize || TLI.isOperationLegal(ISD::SEXTLOAD, EVT))) { |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| EVT); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // noop truncate |
| if (N0.getValueType() == N->getValueType(0)) |
| return N0; |
| // fold (truncate c1) -> c1 |
| if (N0C) |
| return DAG.getNode(ISD::TRUNCATE, VT, N0); |
| // fold (truncate (truncate x)) -> (truncate x) |
| if (N0.getOpcode() == ISD::TRUNCATE) |
| return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0)); |
| // fold (truncate (ext x)) -> (ext x) or (truncate x) or x |
| if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND){ |
| if (N0.getValueType() < VT) |
| // if the source is smaller than the dest, we still need an extend |
| return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0)); |
| else if (N0.getValueType() > VT) |
| // if the source is larger than the dest, than we just need the truncate |
| return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0)); |
| else |
| // if the source and dest are the same type, we can drop both the extend |
| // and the truncate |
| return N0.getOperand(0); |
| } |
| // fold (truncate (load x)) -> (smaller load x) |
| if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse()) { |
| assert(MVT::getSizeInBits(N0.getValueType()) > MVT::getSizeInBits(VT) && |
| "Cannot truncate to larger type!"); |
| MVT::ValueType PtrType = N0.getOperand(1).getValueType(); |
| // For big endian targets, we need to add an offset to the pointer to load |
| // the correct bytes. For little endian systems, we merely need to read |
| // fewer bytes from the same pointer. |
| uint64_t PtrOff = |
| (MVT::getSizeInBits(N0.getValueType()) - MVT::getSizeInBits(VT)) / 8; |
| SDOperand NewPtr = TLI.isLittleEndian() ? N0.getOperand(1) : |
| DAG.getNode(ISD::ADD, PtrType, N0.getOperand(1), |
| DAG.getConstant(PtrOff, PtrType)); |
| AddToWorkList(NewPtr.Val); |
| SDOperand Load = DAG.getLoad(VT, N0.getOperand(0), NewPtr,N0.getOperand(2)); |
| AddToWorkList(N); |
| CombineTo(N0.Val, Load, Load.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // If the input is a constant, let getNode() fold it. |
| if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { |
| SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0); |
| if (Res.Val != N) return Res; |
| } |
| |
| if (N0.getOpcode() == ISD::BIT_CONVERT) // conv(conv(x,t1),t2) -> conv(x,t2) |
| return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0)); |
| |
| // fold (conv (load x)) -> (load (conv*)x) |
| // FIXME: These xforms need to know that the resultant load doesn't need a |
| // higher alignment than the original! |
| if (0 && N0.getOpcode() == ISD::LOAD && N0.hasOneUse()) { |
| SDOperand Load = DAG.getLoad(VT, N0.getOperand(0), N0.getOperand(1), |
| N0.getOperand(2)); |
| AddToWorkList(N); |
| CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load), |
| Load.getValue(1)); |
| return Load; |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitVBIT_CONVERT(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // If the input is a VBUILD_VECTOR with all constant elements, fold this now. |
| // First check to see if this is all constant. |
| if (N0.getOpcode() == ISD::VBUILD_VECTOR && N0.Val->hasOneUse() && |
| VT == MVT::Vector) { |
| bool isSimple = true; |
| for (unsigned i = 0, e = N0.getNumOperands()-2; i != e; ++i) |
| if (N0.getOperand(i).getOpcode() != ISD::UNDEF && |
| N0.getOperand(i).getOpcode() != ISD::Constant && |
| N0.getOperand(i).getOpcode() != ISD::ConstantFP) { |
| isSimple = false; |
| break; |
| } |
| |
| MVT::ValueType DestEltVT = cast<VTSDNode>(N->getOperand(2))->getVT(); |
| if (isSimple && !MVT::isVector(DestEltVT)) { |
| return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(N0.Val, DestEltVT); |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| /// ConstantFoldVBIT_CONVERTofVBUILD_VECTOR - We know that BV is a vbuild_vector |
| /// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the |
| /// destination element value type. |
| SDOperand DAGCombiner:: |
| ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) { |
| MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType(); |
| |
| // If this is already the right type, we're done. |
| if (SrcEltVT == DstEltVT) return SDOperand(BV, 0); |
| |
| unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT); |
| unsigned DstBitSize = MVT::getSizeInBits(DstEltVT); |
| |
| // If this is a conversion of N elements of one type to N elements of another |
| // type, convert each element. This handles FP<->INT cases. |
| if (SrcBitSize == DstBitSize) { |
| std::vector<SDOperand> Ops; |
| for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i) { |
| Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i))); |
| AddToWorkList(Ops.back().Val); |
| } |
| Ops.push_back(*(BV->op_end()-2)); // Add num elements. |
| Ops.push_back(DAG.getValueType(DstEltVT)); |
| return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops); |
| } |
| |
| // Otherwise, we're growing or shrinking the elements. To avoid having to |
| // handle annoying details of growing/shrinking FP values, we convert them to |
| // int first. |
| if (MVT::isFloatingPoint(SrcEltVT)) { |
| // Convert the input float vector to a int vector where the elements are the |
| // same sizes. |
| assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!"); |
| MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64; |
| BV = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, IntVT).Val; |
| SrcEltVT = IntVT; |
| } |
| |
| // Now we know the input is an integer vector. If the output is a FP type, |
| // convert to integer first, then to FP of the right size. |
| if (MVT::isFloatingPoint(DstEltVT)) { |
| assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!"); |
| MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64; |
| SDNode *Tmp = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, TmpVT).Val; |
| |
| // Next, convert to FP elements of the same size. |
| return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(Tmp, DstEltVT); |
| } |
| |
| // Okay, we know the src/dst types are both integers of differing types. |
| // Handling growing first. |
| assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT)); |
| if (SrcBitSize < DstBitSize) { |
| unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; |
| |
| std::vector<SDOperand> Ops; |
| for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; |
| i += NumInputsPerOutput) { |
| bool isLE = TLI.isLittleEndian(); |
| uint64_t NewBits = 0; |
| bool EltIsUndef = true; |
| for (unsigned j = 0; j != NumInputsPerOutput; ++j) { |
| // Shift the previously computed bits over. |
| NewBits <<= SrcBitSize; |
| SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); |
| if (Op.getOpcode() == ISD::UNDEF) continue; |
| EltIsUndef = false; |
| |
| NewBits |= cast<ConstantSDNode>(Op)->getValue(); |
| } |
| |
| if (EltIsUndef) |
| Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT)); |
| else |
| Ops.push_back(DAG.getConstant(NewBits, DstEltVT)); |
| } |
| |
| Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements. |
| Ops.push_back(DAG.getValueType(DstEltVT)); // Add element size. |
| return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops); |
| } |
| |
| // Finally, this must be the case where we are shrinking elements: each input |
| // turns into multiple outputs. |
| unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; |
| std::vector<SDOperand> Ops; |
| for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i) { |
| if (BV->getOperand(i).getOpcode() == ISD::UNDEF) { |
| for (unsigned j = 0; j != NumOutputsPerInput; ++j) |
| Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT)); |
| continue; |
| } |
| uint64_t OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getValue(); |
| |
| for (unsigned j = 0; j != NumOutputsPerInput; ++j) { |
| unsigned ThisVal = OpVal & ((1ULL << DstBitSize)-1); |
| OpVal >>= DstBitSize; |
| Ops.push_back(DAG.getConstant(ThisVal, DstEltVT)); |
| } |
| |
| // For big endian targets, swap the order of the pieces of each element. |
| if (!TLI.isLittleEndian()) |
| std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); |
| } |
| Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements. |
| Ops.push_back(DAG.getValueType(DstEltVT)); // Add element size. |
| return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops); |
| } |
| |
| |
| |
| SDOperand DAGCombiner::visitFADD(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fadd c1, c2) -> c1+c2 |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FADD, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0CFP && !N1CFP) |
| return DAG.getNode(ISD::FADD, VT, N1, N0); |
| // fold (A + (-B)) -> A-B |
| if (N1.getOpcode() == ISD::FNEG) |
| return DAG.getNode(ISD::FSUB, VT, N0, N1.getOperand(0)); |
| // fold ((-A) + B) -> B-A |
| if (N0.getOpcode() == ISD::FNEG) |
| return DAG.getNode(ISD::FSUB, VT, N1, N0.getOperand(0)); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFSUB(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fsub c1, c2) -> c1-c2 |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FSUB, VT, N0, N1); |
| // fold (A-(-B)) -> A+B |
| if (N1.getOpcode() == ISD::FNEG) |
| return DAG.getNode(ISD::FADD, VT, N0, N1.getOperand(0)); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFMUL(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fmul c1, c2) -> c1*c2 |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FMUL, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0CFP && !N1CFP) |
| return DAG.getNode(ISD::FMUL, VT, N1, N0); |
| // fold (fmul X, 2.0) -> (fadd X, X) |
| if (N1CFP && N1CFP->isExactlyValue(+2.0)) |
| return DAG.getNode(ISD::FADD, VT, N0, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFDIV(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fdiv c1, c2) -> c1/c2 |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FDIV, VT, N0, N1); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFREM(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (frem c1, c2) -> fmod(c1,c2) |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FREM, VT, N0, N1); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| if (N0CFP && N1CFP) // Constant fold |
| return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1); |
| |
| if (N1CFP) { |
| // copysign(x, c1) -> fabs(x) iff ispos(c1) |
| // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) |
| union { |
| double d; |
| int64_t i; |
| } u; |
| u.d = N1CFP->getValue(); |
| if (u.i >= 0) |
| return DAG.getNode(ISD::FABS, VT, N0); |
| else |
| return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0)); |
| } |
| |
| // copysign(fabs(x), y) -> copysign(x, y) |
| // copysign(fneg(x), y) -> copysign(x, y) |
| // copysign(copysign(x,z), y) -> copysign(x, y) |
| if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || |
| N0.getOpcode() == ISD::FCOPYSIGN) |
| return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1); |
| |
| // copysign(x, abs(y)) -> abs(x) |
| if (N1.getOpcode() == ISD::FABS) |
| return DAG.getNode(ISD::FABS, VT, N0); |
| |
| // copysign(x, copysign(y,z)) -> copysign(x, z) |
| if (N1.getOpcode() == ISD::FCOPYSIGN) |
| return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1)); |
| |
| // copysign(x, fp_extend(y)) -> copysign(x, y) |
| // copysign(x, fp_round(y)) -> copysign(x, y) |
| if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND) |
| return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0)); |
| |
| return SDOperand(); |
| } |
| |
| |
| |
| SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (sint_to_fp c1) -> c1fp |
| if (N0C) |
| return DAG.getNode(ISD::SINT_TO_FP, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (uint_to_fp c1) -> c1fp |
| if (N0C) |
| return DAG.getNode(ISD::UINT_TO_FP, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fp_to_sint c1fp) -> c1 |
| if (N0CFP) |
| return DAG.getNode(ISD::FP_TO_SINT, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fp_to_uint c1fp) -> c1 |
| if (N0CFP) |
| return DAG.getNode(ISD::FP_TO_UINT, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fp_round c1fp) -> c1fp |
| if (N0CFP) |
| return DAG.getNode(ISD::FP_ROUND, VT, N0); |
| |
| // fold (fp_round (fp_extend x)) -> x |
| if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) |
| return N0.getOperand(0); |
| |
| // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) |
| if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) { |
| SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0)); |
| AddToWorkList(Tmp.Val); |
| return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1)); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| MVT::ValueType VT = N->getValueType(0); |
| MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| |
| // fold (fp_round_inreg c1fp) -> c1fp |
| if (N0CFP) { |
| SDOperand Round = DAG.getConstantFP(N0CFP->getValue(), EVT); |
| return DAG.getNode(ISD::FP_EXTEND, VT, Round); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fp_extend c1fp) -> c1fp |
| if (N0CFP) |
| return DAG.getNode(ISD::FP_EXTEND, VT, N0); |
| |
| // fold (fpext (load x)) -> (fpext (fpround (extload x))) |
| if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() && |
| (!AfterLegalize||TLI.isOperationLegal(ISD::EXTLOAD, N0.getValueType()))) { |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| N0.getValueType()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad), |
| ExtLoad.getValue(1)); |
| return SDOperand(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFNEG(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fneg c1) -> -c1 |
| if (N0CFP) |
| return DAG.getNode(ISD::FNEG, VT, N0); |
| // fold (fneg (sub x, y)) -> (sub y, x) |
| if (N0.getOpcode() == ISD::SUB) |
| return DAG.getNode(ISD::SUB, VT, N0.getOperand(1), N0.getOperand(0)); |
| // fold (fneg (fneg x)) -> x |
| if (N0.getOpcode() == ISD::FNEG) |
| return N0.getOperand(0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFABS(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fabs c1) -> fabs(c1) |
| if (N0CFP) |
| return DAG.getNode(ISD::FABS, VT, N0); |
| // fold (fabs (fabs x)) -> (fabs x) |
| if (N0.getOpcode() == ISD::FABS) |
| return N->getOperand(0); |
| // fold (fabs (fneg x)) -> (fabs x) |
| // fold (fabs (fcopysign x, y)) -> (fabs x) |
| if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) |
| return DAG.getNode(ISD::FABS, VT, N0.getOperand(0)); |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitBRCOND(SDNode *N) { |
| SDOperand Chain = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand N2 = N->getOperand(2); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| |
| // never taken branch, fold to chain |
| if (N1C && N1C->isNullValue()) |
| return Chain; |
| // unconditional branch |
| if (N1C && N1C->getValue() == 1) |
| return DAG.getNode(ISD::BR, MVT::Other, Chain, N2); |
| // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal |
| // on the target. |
| if (N1.getOpcode() == ISD::SETCC && |
| TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) { |
| return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2), |
| N1.getOperand(0), N1.getOperand(1), N2); |
| } |
| return SDOperand(); |
| } |
| |
| // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. |
| // |
| SDOperand DAGCombiner::visitBR_CC(SDNode *N) { |
| CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); |
| SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); |
| |
| // Use SimplifySetCC to simplify SETCC's. |
| SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false); |
| ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val); |
| |
| // fold br_cc true, dest -> br dest (unconditional branch) |
| if (SCCC && SCCC->getValue()) |
| return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0), |
| N->getOperand(4)); |
| // fold br_cc false, dest -> unconditional fall through |
| if (SCCC && SCCC->isNullValue()) |
| return N->getOperand(0); |
| // fold to a simpler setcc |
| if (Simp.Val && Simp.getOpcode() == ISD::SETCC) |
| return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0), |
| Simp.getOperand(2), Simp.getOperand(0), |
| Simp.getOperand(1), N->getOperand(4)); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitLOAD(SDNode *N) { |
| SDOperand Chain = N->getOperand(0); |
| SDOperand Ptr = N->getOperand(1); |
| SDOperand SrcValue = N->getOperand(2); |
| |
| // If there are no uses of the loaded value, change uses of the chain value |
| // into uses of the chain input (i.e. delete the dead load). |
| if (N->hasNUsesOfValue(0, 0)) |
| return CombineTo(N, DAG.getNode(ISD::UNDEF, N->getValueType(0)), Chain); |
| |
| // If this load is directly stored, replace the load value with the stored |
| // value. |
| // TODO: Handle store large -> read small portion. |
| // TODO: Handle TRUNCSTORE/EXTLOAD |
| if (Chain.getOpcode() == ISD::STORE && Chain.getOperand(2) == Ptr && |
| Chain.getOperand(1).getValueType() == N->getValueType(0)) |
| return CombineTo(N, Chain.getOperand(1), Chain); |
| |
| return SDOperand(); |
| } |
| |
| /// visitXEXTLOAD - Handle EXTLOAD/ZEXTLOAD/SEXTLOAD. |
| SDOperand DAGCombiner::visitXEXTLOAD(SDNode *N) { |
| SDOperand Chain = N->getOperand(0); |
| SDOperand Ptr = N->getOperand(1); |
| SDOperand SrcValue = N->getOperand(2); |
| SDOperand EVT = N->getOperand(3); |
| |
| // If there are no uses of the loaded value, change uses of the chain value |
| // into uses of the chain input (i.e. delete the dead load). |
| if (N->hasNUsesOfValue(0, 0)) |
| return CombineTo(N, DAG.getNode(ISD::UNDEF, N->getValueType(0)), Chain); |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSTORE(SDNode *N) { |
| SDOperand Chain = N->getOperand(0); |
| SDOperand Value = N->getOperand(1); |
| SDOperand Ptr = N->getOperand(2); |
| SDOperand SrcValue = N->getOperand(3); |
| |
| // If this is a store that kills a previous store, remove the previous store. |
| if (Chain.getOpcode() == ISD::STORE && Chain.getOperand(2) == Ptr && |
| Chain.Val->hasOneUse() /* Avoid introducing DAG cycles */ && |
| // Make sure that these stores are the same value type: |
| // FIXME: we really care that the second store is >= size of the first. |
| Value.getValueType() == Chain.getOperand(1).getValueType()) { |
| // Create a new store of Value that replaces both stores. |
| SDNode *PrevStore = Chain.Val; |
| if (PrevStore->getOperand(1) == Value) // Same value multiply stored. |
| return Chain; |
| SDOperand NewStore = DAG.getNode(ISD::STORE, MVT::Other, |
| PrevStore->getOperand(0), Value, Ptr, |
| SrcValue); |
| CombineTo(N, NewStore); // Nuke this store. |
| CombineTo(PrevStore, NewStore); // Nuke the previous store. |
| return SDOperand(N, 0); |
| } |
| |
| // If this is a store of a bit convert, store the input value. |
| // FIXME: This needs to know that the resultant store does not need a |
| // higher alignment than the original. |
| if (0 && Value.getOpcode() == ISD::BIT_CONVERT) |
| return DAG.getNode(ISD::STORE, MVT::Other, Chain, Value.getOperand(0), |
| Ptr, SrcValue); |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { |
| SDOperand InVec = N->getOperand(0); |
| SDOperand InVal = N->getOperand(1); |
| SDOperand EltNo = N->getOperand(2); |
| |
| // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new |
| // vector with the inserted element. |
| if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) { |
| unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue(); |
| std::vector<SDOperand> Ops(InVec.Val->op_begin(), InVec.Val->op_end()); |
| if (Elt < Ops.size()) |
| Ops[Elt] = InVal; |
| return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(), Ops); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitVINSERT_VECTOR_ELT(SDNode *N) { |
| SDOperand InVec = N->getOperand(0); |
| SDOperand InVal = N->getOperand(1); |
| SDOperand EltNo = N->getOperand(2); |
| SDOperand NumElts = N->getOperand(3); |
| SDOperand EltType = N->getOperand(4); |
| |
| // If the invec is a VBUILD_VECTOR and if EltNo is a constant, build a new |
| // vector with the inserted element. |
| if (InVec.getOpcode() == ISD::VBUILD_VECTOR && isa<ConstantSDNode>(EltNo)) { |
| unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue(); |
| std::vector<SDOperand> Ops(InVec.Val->op_begin(), InVec.Val->op_end()); |
| if (Elt < Ops.size()-2) |
| Ops[Elt] = InVal; |
| return DAG.getNode(ISD::VBUILD_VECTOR, InVec.getValueType(), Ops); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitVBUILD_VECTOR(SDNode *N) { |
| unsigned NumInScalars = N->getNumOperands()-2; |
| SDOperand NumElts = N->getOperand(NumInScalars); |
| SDOperand EltType = N->getOperand(NumInScalars+1); |
| |
| // Check to see if this is a VBUILD_VECTOR of a bunch of VEXTRACT_VECTOR_ELT |
| // operations. If so, and if the EXTRACT_ELT vector inputs come from at most |
| // two distinct vectors, turn this into a shuffle node. |
| SDOperand VecIn1, VecIn2; |
| for (unsigned i = 0; i != NumInScalars; ++i) { |
| // Ignore undef inputs. |
| if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; |
| |
| // If this input is something other than a VEXTRACT_VECTOR_ELT with a |
| // constant index, bail out. |
| if (N->getOperand(i).getOpcode() != ISD::VEXTRACT_VECTOR_ELT || |
| !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) { |
| VecIn1 = VecIn2 = SDOperand(0, 0); |
| break; |
| } |
| |
| // If the input vector type disagrees with the result of the vbuild_vector, |
| // we can't make a shuffle. |
| SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0); |
| if (*(ExtractedFromVec.Val->op_end()-2) != NumElts || |
| *(ExtractedFromVec.Val->op_end()-1) != EltType) { |
| VecIn1 = VecIn2 = SDOperand(0, 0); |
| break; |
| } |
| |
| // Otherwise, remember this. We allow up to two distinct input vectors. |
| if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2) |
| continue; |
| |
| if (VecIn1.Val == 0) { |
| VecIn1 = ExtractedFromVec; |
| } else if (VecIn2.Val == 0) { |
| VecIn2 = ExtractedFromVec; |
| } else { |
| // Too many inputs. |
| VecIn1 = VecIn2 = SDOperand(0, 0); |
| break; |
| } |
| } |
| |
| // If everything is good, we can make a shuffle operation. |
| if (VecIn1.Val) { |
| std::vector<SDOperand> BuildVecIndices; |
| for (unsigned i = 0; i != NumInScalars; ++i) { |
| if (N->getOperand(i).getOpcode() == ISD::UNDEF) { |
| BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); |
| continue; |
| } |
| |
| SDOperand Extract = N->getOperand(i); |
| |
| // If extracting from the first vector, just use the index directly. |
| if (Extract.getOperand(0) == VecIn1) { |
| BuildVecIndices.push_back(Extract.getOperand(1)); |
| continue; |
| } |
| |
| // Otherwise, use InIdx + VecSize |
| unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue(); |
| BuildVecIndices.push_back(DAG.getConstant(Idx+NumInScalars, MVT::i32)); |
| } |
| |
| // Add count and size info. |
| BuildVecIndices.push_back(NumElts); |
| BuildVecIndices.push_back(DAG.getValueType(MVT::i32)); |
| |
| // Return the new VVECTOR_SHUFFLE node. |
| std::vector<SDOperand> Ops; |
| Ops.push_back(VecIn1); |
| if (VecIn2.Val) { |
| Ops.push_back(VecIn2); |
| } else { |
| // Use an undef vbuild_vector as input for the second operand. |
| std::vector<SDOperand> UnOps(NumInScalars, |
| DAG.getNode(ISD::UNDEF, |
| cast<VTSDNode>(EltType)->getVT())); |
| UnOps.push_back(NumElts); |
| UnOps.push_back(EltType); |
| Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, UnOps)); |
| AddToWorkList(Ops.back().Val); |
| } |
| Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR,MVT::Vector, BuildVecIndices)); |
| Ops.push_back(NumElts); |
| Ops.push_back(EltType); |
| return DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector, Ops); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { |
| SDOperand ShufMask = N->getOperand(2); |
| unsigned NumElts = ShufMask.getNumOperands(); |
| |
| // If the shuffle mask is an identity operation on the LHS, return the LHS. |
| bool isIdentity = true; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF && |
| cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) { |
| isIdentity = false; |
| break; |
| } |
| } |
| if (isIdentity) return N->getOperand(0); |
| |
| // If the shuffle mask is an identity operation on the RHS, return the RHS. |
| isIdentity = true; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF && |
| cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) { |
| isIdentity = false; |
| break; |
| } |
| } |
| if (isIdentity) return N->getOperand(1); |
| |
| // If the LHS and the RHS are the same node, turn the RHS into an undef. |
| if (N->getOperand(0) == N->getOperand(1)) { |
| if (N->getOperand(0).getOpcode() == ISD::UNDEF) |
| return DAG.getNode(ISD::UNDEF, N->getValueType(0)); |
| // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the |
| // first operand. |
| std::vector<SDOperand> MappedOps; |
| for (unsigned i = 0, e = ShufMask.getNumOperands(); i != e; ++i) { |
| if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF || |
| cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) { |
| MappedOps.push_back(ShufMask.getOperand(i)); |
| } else { |
| unsigned NewIdx = |
| cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts; |
| MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32)); |
| } |
| } |
| ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(), |
| MappedOps); |
| AddToWorkList(ShufMask.Val); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0), |
| N->getOperand(0), |
| DAG.getNode(ISD::UNDEF, N->getValueType(0)), |
| ShufMask); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitVVECTOR_SHUFFLE(SDNode *N) { |
| SDOperand ShufMask = N->getOperand(2); |
| unsigned NumElts = ShufMask.getNumOperands()-2; |
| |
| // If the shuffle mask is an identity operation on the LHS, return the LHS. |
| bool isIdentity = true; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF && |
| cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) { |
| isIdentity = false; |
| break; |
| } |
| } |
| if (isIdentity) return N->getOperand(0); |
| |
| // If the shuffle mask is an identity operation on the RHS, return the RHS. |
| isIdentity = true; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF && |
| cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) { |
| isIdentity = false; |
| break; |
| } |
| } |
| if (isIdentity) return N->getOperand(1); |
| |
| // If the LHS and the RHS are the same node, turn the RHS into an undef. |
| if (N->getOperand(0) == N->getOperand(1)) { |
| // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the |
| // first operand. |
| std::vector<SDOperand> MappedOps; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF || |
| cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) { |
| MappedOps.push_back(ShufMask.getOperand(i)); |
| } else { |
| unsigned NewIdx = |
| cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts; |
| MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32)); |
| } |
| } |
| // Add the type/#elts values. |
| MappedOps.push_back(ShufMask.getOperand(NumElts)); |
| MappedOps.push_back(ShufMask.getOperand(NumElts+1)); |
| |
| ShufMask = DAG.getNode(ISD::VBUILD_VECTOR, ShufMask.getValueType(), |
| MappedOps); |
| AddToWorkList(ShufMask.Val); |
| |
| // Build the undef vector. |
| SDOperand UDVal = DAG.getNode(ISD::UNDEF, MappedOps[0].getValueType()); |
| for (unsigned i = 0; i != NumElts; ++i) |
| MappedOps[i] = UDVal; |
| MappedOps[NumElts ] = *(N->getOperand(0).Val->op_end()-2); |
| MappedOps[NumElts+1] = *(N->getOperand(0).Val->op_end()-1); |
| UDVal = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, MappedOps); |
| |
| return DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector, |
| N->getOperand(0), UDVal, ShufMask, |
| MappedOps[NumElts], MappedOps[NumElts+1]); |
| } |
| |
| return SDOperand(); |
| } |
| |
| /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform |
| /// a VAND to a vector_shuffle with the destination vector and a zero vector. |
| /// e.g. VAND V, <0xffffffff, 0, 0xffffffff, 0>. ==> |
| /// vector_shuffle V, Zero, <0, 4, 2, 4> |
| SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) { |
| SDOperand LHS = N->getOperand(0); |
| SDOperand RHS = N->getOperand(1); |
| if (N->getOpcode() == ISD::VAND) { |
| SDOperand DstVecSize = *(LHS.Val->op_end()-2); |
| SDOperand DstVecEVT = *(LHS.Val->op_end()-1); |
| if (RHS.getOpcode() == ISD::VBIT_CONVERT) |
| RHS = RHS.getOperand(0); |
| if (RHS.getOpcode() == ISD::VBUILD_VECTOR) { |
| std::vector<SDOperand> IdxOps; |
| unsigned NumOps = RHS.getNumOperands(); |
| unsigned NumElts = NumOps-2; |
| MVT::ValueType EVT = cast<VTSDNode>(RHS.getOperand(NumOps-1))->getVT(); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| SDOperand Elt = RHS.getOperand(i); |
| if (!isa<ConstantSDNode>(Elt)) |
| return SDOperand(); |
| else if (cast<ConstantSDNode>(Elt)->isAllOnesValue()) |
| IdxOps.push_back(DAG.getConstant(i, EVT)); |
| else if (cast<ConstantSDNode>(Elt)->isNullValue()) |
| IdxOps.push_back(DAG.getConstant(NumElts, EVT)); |
| else |
| return SDOperand(); |
| } |
| |
| // Let's see if the target supports this vector_shuffle. |
| if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG)) |
| return SDOperand(); |
| |
| // Return the new VVECTOR_SHUFFLE node. |
| SDOperand NumEltsNode = DAG.getConstant(NumElts, MVT::i32); |
| SDOperand EVTNode = DAG.getValueType(EVT); |
| std::vector<SDOperand> Ops; |
| LHS = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, LHS, NumEltsNode, EVTNode); |
| Ops.push_back(LHS); |
| AddToWorkList(LHS.Val); |
| std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT)); |
| ZeroOps.push_back(NumEltsNode); |
| ZeroOps.push_back(EVTNode); |
| Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, ZeroOps)); |
| IdxOps.push_back(NumEltsNode); |
| IdxOps.push_back(EVTNode); |
| Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, IdxOps)); |
| Ops.push_back(NumEltsNode); |
| Ops.push_back(EVTNode); |
| SDOperand Result = DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector, Ops); |
| if (NumEltsNode != DstVecSize || EVTNode != DstVecEVT) { |
| Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result, |
| DstVecSize, DstVecEVT); |
| } |
| return Result; |
| } |
| } |
| return SDOperand(); |
| } |
| |
| /// visitVBinOp - Visit a binary vector operation, like VADD. IntOp indicates |
| /// the scalar operation of the vop if it is operating on an integer vector |
| /// (e.g. ADD) and FPOp indicates the FP version (e.g. FADD). |
| SDOperand DAGCombiner::visitVBinOp(SDNode *N, ISD::NodeType IntOp, |
| ISD::NodeType FPOp) { |
| MVT::ValueType EltType = cast<VTSDNode>(*(N->op_end()-1))->getVT(); |
| ISD::NodeType ScalarOp = MVT::isInteger(EltType) ? IntOp : FPOp; |
| SDOperand LHS = N->getOperand(0); |
| SDOperand RHS = N->getOperand(1); |
| SDOperand Shuffle = XformToShuffleWithZero(N); |
| if (Shuffle.Val) return Shuffle; |
| |
| // If the LHS and RHS are VBUILD_VECTOR nodes, see if we can constant fold |
| // this operation. |
| if (LHS.getOpcode() == ISD::VBUILD_VECTOR && |
| RHS.getOpcode() == ISD::VBUILD_VECTOR) { |
| std::vector<SDOperand> Ops; |
| for (unsigned i = 0, e = LHS.getNumOperands()-2; i != e; ++i) { |
| SDOperand LHSOp = LHS.getOperand(i); |
| SDOperand RHSOp = RHS.getOperand(i); |
| // If these two elements can't be folded, bail out. |
| if ((LHSOp.getOpcode() != ISD::UNDEF && |
| LHSOp.getOpcode() != ISD::Constant && |
| LHSOp.getOpcode() != ISD::ConstantFP) || |
| (RHSOp.getOpcode() != ISD::UNDEF && |
| RHSOp.getOpcode() != ISD::Constant && |
| RHSOp.getOpcode() != ISD::ConstantFP)) |
| break; |
| Ops.push_back(DAG.getNode(ScalarOp, EltType, LHSOp, RHSOp)); |
| AddToWorkList(Ops.back().Val); |
| assert((Ops.back().getOpcode() == ISD::UNDEF || |
| Ops.back().getOpcode() == ISD::Constant || |
| Ops.back().getOpcode() == ISD::ConstantFP) && |
| "Scalar binop didn't fold!"); |
| } |
| |
| if (Ops.size() == LHS.getNumOperands()-2) { |
| Ops.push_back(*(LHS.Val->op_end()-2)); |
| Ops.push_back(*(LHS.Val->op_end()-1)); |
| return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops); |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){ |
| assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); |
| |
| SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2, |
| cast<CondCodeSDNode>(N0.getOperand(2))->get()); |
| // If we got a simplified select_cc node back from SimplifySelectCC, then |
| // break it down into a new SETCC node, and a new SELECT node, and then return |
| // the SELECT node, since we were called with a SELECT node. |
| if (SCC.Val) { |
| // Check to see if we got a select_cc back (to turn into setcc/select). |
| // Otherwise, just return whatever node we got back, like fabs. |
| if (SCC.getOpcode() == ISD::SELECT_CC) { |
| SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(), |
| SCC.getOperand(0), SCC.getOperand(1), |
| SCC.getOperand(4)); |
| AddToWorkList(SETCC.Val); |
| return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2), |
| SCC.getOperand(3), SETCC); |
| } |
| return SCC; |
| } |
| return SDOperand(); |
| } |
| |
| /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS |
| /// are the two values being selected between, see if we can simplify the |
| /// select. |
| /// |
| bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS, |
| SDOperand RHS) { |
| |
| // If this is a select from two identical things, try to pull the operation |
| // through the select. |
| if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){ |
| #if 0 |
| std::cerr << "SELECT: ["; LHS.Val->dump(); |
| std::cerr << "] ["; RHS.Val->dump(); |
| std::cerr << "]\n"; |
| #endif |
| |
| // If this is a load and the token chain is identical, replace the select |
| // of two loads with a load through a select of the address to load from. |
| // This triggers in things like "select bool X, 10.0, 123.0" after the FP |
| // constants have been dropped into the constant pool. |
| if ((LHS.getOpcode() == ISD::LOAD || |
| LHS.getOpcode() == ISD::EXTLOAD || |
| LHS.getOpcode() == ISD::ZEXTLOAD || |
| LHS.getOpcode() == ISD::SEXTLOAD) && |
| // Token chains must be identical. |
| LHS.getOperand(0) == RHS.getOperand(0) && |
| // If this is an EXTLOAD, the VT's must match. |
| (LHS.getOpcode() == ISD::LOAD || |
| LHS.getOperand(3) == RHS.getOperand(3))) { |
| // FIXME: this conflates two src values, discarding one. This is not |
| // the right thing to do, but nothing uses srcvalues now. When they do, |
| // turn SrcValue into a list of locations. |
| SDOperand Addr; |
| if (TheSelect->getOpcode() == ISD::SELECT) |
| Addr = DAG.getNode(ISD::SELECT, LHS.getOperand(1).getValueType(), |
| TheSelect->getOperand(0), LHS.getOperand(1), |
| RHS.getOperand(1)); |
| else |
| Addr = DAG.getNode(ISD::SELECT_CC, LHS.getOperand(1).getValueType(), |
| TheSelect->getOperand(0), |
| TheSelect->getOperand(1), |
| LHS.getOperand(1), RHS.getOperand(1), |
| TheSelect->getOperand(4)); |
| |
| SDOperand Load; |
| if (LHS.getOpcode() == ISD::LOAD) |
| Load = DAG.getLoad(TheSelect->getValueType(0), LHS.getOperand(0), |
| Addr, LHS.getOperand(2)); |
| else |
| Load = DAG.getExtLoad(LHS.getOpcode(), TheSelect->getValueType(0), |
| LHS.getOperand(0), Addr, LHS.getOperand(2), |
| cast<VTSDNode>(LHS.getOperand(3))->getVT()); |
| // Users of the select now use the result of the load. |
| CombineTo(TheSelect, Load); |
| |
| // Users of the old loads now use the new load's chain. We know the |
| // old-load value is dead now. |
| CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1)); |
| CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1)); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1, |
| SDOperand N2, SDOperand N3, |
| ISD::CondCode CC) { |
| |
| MVT::ValueType VT = N2.getValueType(); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val); |
| ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val); |
| |
| // Determine if the condition we're dealing with is constant |
| SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false); |
| ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val); |
| |
| // fold select_cc true, x, y -> x |
| if (SCCC && SCCC->getValue()) |
| return N2; |
| // fold select_cc false, x, y -> y |
| if (SCCC && SCCC->getValue() == 0) |
| return N3; |
| |
| // Check to see if we can simplify the select into an fabs node |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) { |
| // Allow either -0.0 or 0.0 |
| if (CFP->getValue() == 0.0) { |
| // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs |
| if ((CC == ISD::SETGE || CC == ISD::SETGT) && |
| N0 == N2 && N3.getOpcode() == ISD::FNEG && |
| N2 == N3.getOperand(0)) |
| return DAG.getNode(ISD::FABS, VT, N0); |
| |
| // select (setl[te] X, +/-0.0), fneg(X), X -> fabs |
| if ((CC == ISD::SETLT || CC == ISD::SETLE) && |
| N0 == N3 && N2.getOpcode() == ISD::FNEG && |
| N2.getOperand(0) == N3) |
| return DAG.getNode(ISD::FABS, VT, N3); |
| } |
| } |
| |
| // Check to see if we can perform the "gzip trick", transforming |
| // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A |
| if (N1C && N1C->isNullValue() && N3C && N3C->isNullValue() && |
| MVT::isInteger(N0.getValueType()) && |
| MVT::isInteger(N2.getValueType()) && CC == ISD::SETLT) { |
| MVT::ValueType XType = N0.getValueType(); |
| MVT::ValueType AType = N2.getValueType(); |
| if (XType >= AType) { |
| // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a |
| // single-bit constant. |
| if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) { |
| unsigned ShCtV = Log2_64(N2C->getValue()); |
| ShCtV = MVT::getSizeInBits(XType)-ShCtV-1; |
| SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy()); |
| SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt); |
| AddToWorkList(Shift.Val); |
| if (XType > AType) { |
| Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift); |
| AddToWorkList(Shift.Val); |
| } |
| return DAG.getNode(ISD::AND, AType, Shift, N2); |
| } |
| SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0, |
| DAG.getConstant(MVT::getSizeInBits(XType)-1, |
| TLI.getShiftAmountTy())); |
| AddToWorkList(Shift.Val); |
| if (XType > AType) { |
| Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift); |
| AddToWorkList(Shift.Val); |
| } |
| return DAG.getNode(ISD::AND, AType, Shift, N2); |
| } |
| } |
| |
| // fold select C, 16, 0 -> shl C, 4 |
| if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) && |
| TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) { |
| // Get a SetCC of the condition |
| // FIXME: Should probably make sure that setcc is legal if we ever have a |
| // target where it isn't. |
| SDOperand Temp, SCC; |
| // cast from setcc result type to select result type |
| if (AfterLegalize) { |
| SCC = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC); |
| Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType()); |
| } else { |
| SCC = DAG.getSetCC(MVT::i1, N0, N1, CC); |
| Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC); |
| } |
| AddToWorkList(SCC.Val); |
| AddToWorkList(Temp.Val); |
| // shl setcc result by log2 n2c |
| return DAG.getNode(ISD::SHL, N2.getValueType(), Temp, |
| DAG.getConstant(Log2_64(N2C->getValue()), |
| TLI.getShiftAmountTy())); |
| } |
| |
| // Check to see if this is the equivalent of setcc |
| // FIXME: Turn all of these into setcc if setcc if setcc is legal |
| // otherwise, go ahead with the folds. |
| if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) { |
| MVT::ValueType XType = N0.getValueType(); |
| if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) { |
| SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC); |
| if (Res.getValueType() != VT) |
| Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res); |
| return Res; |
| } |
| |
| // seteq X, 0 -> srl (ctlz X, log2(size(X))) |
| if (N1C && N1C->isNullValue() && CC == ISD::SETEQ && |
| TLI.isOperationLegal(ISD::CTLZ, XType)) { |
| SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0); |
| return DAG.getNode(ISD::SRL, XType, Ctlz, |
| DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)), |
| TLI.getShiftAmountTy())); |
| } |
| // setgt X, 0 -> srl (and (-X, ~X), size(X)-1) |
| if (N1C && N1C->isNullValue() && CC == ISD::SETGT) { |
| SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType), |
| N0); |
| SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0, |
| DAG.getConstant(~0ULL, XType)); |
| return DAG.getNode(ISD::SRL, XType, |
| DAG.getNode(ISD::AND, XType, NegN0, NotN0), |
| DAG.getConstant(MVT::getSizeInBits(XType)-1, |
| TLI.getShiftAmountTy())); |
| } |
| // setgt X, -1 -> xor (srl (X, size(X)-1), 1) |
| if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) { |
| SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0, |
| DAG.getConstant(MVT::getSizeInBits(XType)-1, |
| TLI.getShiftAmountTy())); |
| return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType)); |
| } |
| } |
| |
| // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X -> |
| // Y = sra (X, size(X)-1); xor (add (X, Y), Y) |
| if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) && |
| N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) { |
| if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0))) { |
| MVT::ValueType XType = N0.getValueType(); |
| if (SubC->isNullValue() && MVT::isInteger(XType)) { |
| SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0, |
| DAG.getConstant(MVT::getSizeInBits(XType)-1, |
| TLI.getShiftAmountTy())); |
| SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift); |
| AddToWorkList(Shift.Val); |
| AddToWorkList(Add.Val); |
| return DAG.getNode(ISD::XOR, XType, Add, Shift); |
| } |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0, |
| SDOperand N1, ISD::CondCode Cond, |
| bool foldBooleans) { |
| // These setcc operations always fold. |
| switch (Cond) { |
| default: break; |
| case ISD::SETFALSE: |
| case ISD::SETFALSE2: return DAG.getConstant(0, VT); |
| case ISD::SETTRUE: |
| case ISD::SETTRUE2: return DAG.getConstant(1, VT); |
| } |
| |
| if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) { |
| uint64_t C1 = N1C->getValue(); |
| if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val)) { |
| uint64_t C0 = N0C->getValue(); |
| |
| // Sign extend the operands if required |
| if (ISD::isSignedIntSetCC(Cond)) { |
| C0 = N0C->getSignExtended(); |
| C1 = N1C->getSignExtended(); |
| } |
| |
| switch (Cond) { |
| default: assert(0 && "Unknown integer setcc!"); |
| case ISD::SETEQ: return DAG.getConstant(C0 == C1, VT); |
| case ISD::SETNE: return DAG.getConstant(C0 != C1, VT); |
| case ISD::SETULT: return DAG.getConstant(C0 < C1, VT); |
| case ISD::SETUGT: return DAG.getConstant(C0 > C1, VT); |
| case ISD::SETULE: return DAG.getConstant(C0 <= C1, VT); |
| case ISD::SETUGE: return DAG.getConstant(C0 >= C1, VT); |
| case ISD::SETLT: return DAG.getConstant((int64_t)C0 < (int64_t)C1, VT); |
| case ISD::SETGT: return DAG.getConstant((int64_t)C0 > (int64_t)C1, VT); |
| case ISD::SETLE: return DAG.getConstant((int64_t)C0 <= (int64_t)C1, VT); |
| case ISD::SETGE: return DAG.getConstant((int64_t)C0 >= (int64_t)C1, VT); |
| } |
| } else { |
| // If the LHS is a ZERO_EXTEND, perform the comparison on the input. |
| if (N0.getOpcode() == ISD::ZERO_EXTEND) { |
| unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType()); |
| |
| // If the comparison constant has bits in the upper part, the |
| // zero-extended value could never match. |
| if (C1 & (~0ULL << InSize)) { |
| unsigned VSize = MVT::getSizeInBits(N0.getValueType()); |
| switch (Cond) { |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| case ISD::SETEQ: return DAG.getConstant(0, VT); |
| case ISD::SETULT: |
| case ISD::SETULE: |
| case ISD::SETNE: return DAG.getConstant(1, VT); |
| case ISD::SETGT: |
| case ISD::SETGE: |
| // True if the sign bit of C1 is set. |
| return DAG.getConstant((C1 & (1ULL << VSize)) != 0, VT); |
| case ISD::SETLT: |
| case ISD::SETLE: |
| // True if the sign bit of C1 isn't set. |
| return DAG.getConstant((C1 & (1ULL << VSize)) == 0, VT); |
| default: |
| break; |
| } |
| } |
| |
| // Otherwise, we can perform the comparison with the low bits. |
| switch (Cond) { |
| case ISD::SETEQ: |
| case ISD::SETNE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| case ISD::SETULT: |
| case ISD::SETULE: |
| return DAG.getSetCC(VT, N0.getOperand(0), |
| DAG.getConstant(C1, N0.getOperand(0).getValueType()), |
| Cond); |
| default: |
| break; // todo, be more careful with signed comparisons |
| } |
| } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { |
| MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); |
| unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy); |
| MVT::ValueType ExtDstTy = N0.getValueType(); |
| unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy); |
| |
| // If the extended part has any inconsistent bits, it cannot ever |
| // compare equal. In other words, they have to be all ones or all |
| // zeros. |
| uint64_t ExtBits = |
| (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1)); |
| if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits) |
| return DAG.getConstant(Cond == ISD::SETNE, VT); |
| |
| SDOperand ZextOp; |
| MVT::ValueType Op0Ty = N0.getOperand(0).getValueType(); |
| if (Op0Ty == ExtSrcTy) { |
| ZextOp = N0.getOperand(0); |
| } else { |
| int64_t Imm = ~0ULL >> (64-ExtSrcTyBits); |
| ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0), |
| DAG.getConstant(Imm, Op0Ty)); |
| } |
| AddToWorkList(ZextOp.Val); |
| // Otherwise, make this a use of a zext. |
| return DAG.getSetCC(VT, ZextOp, |
| DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)), |
| ExtDstTy), |
| Cond); |
| } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) && |
| (Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| (N0.getOpcode() == ISD::XOR || |
| (N0.getOpcode() == ISD::AND && |
| N0.getOperand(0).getOpcode() == ISD::XOR && |
| N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && |
| isa<ConstantSDNode>(N0.getOperand(1)) && |
| cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) { |
| // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We can |
| // only do this if the top bits are known zero. |
| if (TLI.MaskedValueIsZero(N1, |
| MVT::getIntVTBitMask(N0.getValueType())-1)) { |
| // Okay, get the un-inverted input value. |
| SDOperand Val; |
| if (N0.getOpcode() == ISD::XOR) |
| Val = N0.getOperand(0); |
| else { |
| assert(N0.getOpcode() == ISD::AND && |
| N0.getOperand(0).getOpcode() == ISD::XOR); |
| // ((X^1)&1)^1 -> X & 1 |
| Val = DAG.getNode(ISD::AND, N0.getValueType(), |
| N0.getOperand(0).getOperand(0), N0.getOperand(1)); |
| } |
| return DAG.getSetCC(VT, Val, N1, |
| Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
| } |
| } |
| |
| uint64_t MinVal, MaxVal; |
| unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0)); |
| if (ISD::isSignedIntSetCC(Cond)) { |
| MinVal = 1ULL << (OperandBitSize-1); |
| if (OperandBitSize != 1) // Avoid X >> 64, which is undefined. |
| MaxVal = ~0ULL >> (65-OperandBitSize); |
| else |
| MaxVal = 0; |
| } else { |
| MinVal = 0; |
| MaxVal = ~0ULL >> (64-OperandBitSize); |
| } |
| |
| // Canonicalize GE/LE comparisons to use GT/LT comparisons. |
| if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { |
| if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true |
| --C1; // X >= C0 --> X > (C0-1) |
| return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()), |
| (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); |
| } |
| |
| if (Cond == ISD::SETLE || Cond == ISD::SETULE) { |
| if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true |
| ++C1; // X <= C0 --> X < (C0+1) |
| return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()), |
| (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); |
| } |
| |
| if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) |
| return DAG.getConstant(0, VT); // X < MIN --> false |
| |
| // Canonicalize setgt X, Min --> setne X, Min |
| if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) |
| return DAG.getSetCC(VT, N0, N1, ISD::SETNE); |
| // Canonicalize setlt X, Max --> setne X, Max |
| if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) |
| return DAG.getSetCC(VT, N0, N1, ISD::SETNE); |
| |
| // If we have setult X, 1, turn it into seteq X, 0 |
| if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) |
| return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()), |
| ISD::SETEQ); |
| // If we have setugt X, Max-1, turn it into seteq X, Max |
| else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) |
| return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()), |
| ISD::SETEQ); |
| |
| // If we have "setcc X, C0", check to see if we can shrink the immediate |
| // by changing cc. |
| |
| // SETUGT X, SINTMAX -> SETLT X, 0 |
| if (Cond == ISD::SETUGT && OperandBitSize != 1 && |
| C1 == (~0ULL >> (65-OperandBitSize))) |
| return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()), |
| ISD::SETLT); |
| |
| // FIXME: Implement the rest of these. |
| |
| // Fold bit comparisons when we can. |
| if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| VT == N0.getValueType() && N0.getOpcode() == ISD::AND) |
| if (ConstantSDNode *AndRHS = |
| dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 |
| // Perform the xform if the AND RHS is a single bit. |
| if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) { |
| return DAG.getNode(ISD::SRL, VT, N0, |
| DAG.getConstant(Log2_64(AndRHS->getValue()), |
| TLI.getShiftAmountTy())); |
| } |
| } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) { |
| // (X & 8) == 8 --> (X & 8) >> 3 |
| // Perform the xform if C1 is a single bit. |
| if ((C1 & (C1-1)) == 0) { |
| return DAG.getNode(ISD::SRL, VT, N0, |
| DAG.getConstant(Log2_64(C1),TLI.getShiftAmountTy())); |
| } |
| } |
| } |
| } |
| } else if (isa<ConstantSDNode>(N0.Val)) { |
| // Ensure that the constant occurs on the RHS. |
| return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond)); |
| } |
| |
| if (ConstantFPSDNode *N0C = dyn_cast<ConstantFPSDNode>(N0.Val)) |
| if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) { |
| double C0 = N0C->getValue(), C1 = N1C->getValue(); |
| |
| switch (Cond) { |
| default: break; // FIXME: Implement the rest of these! |
| case ISD::SETEQ: return DAG.getConstant(C0 == C1, VT); |
| case ISD::SETNE: return DAG.getConstant(C0 != C1, VT); |
| case ISD::SETLT: return DAG.getConstant(C0 < C1, VT); |
| case ISD::SETGT: return DAG.getConstant(C0 > C1, VT); |
| case ISD::SETLE: return DAG.getConstant(C0 <= C1, VT); |
| case ISD::SETGE: return DAG.getConstant(C0 >= C1, VT); |
| } |
| } else { |
| // Ensure that the constant occurs on the RHS. |
| return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond)); |
| } |
| |
| if (N0 == N1) { |
| // We can always fold X == Y for integer setcc's. |
| if (MVT::isInteger(N0.getValueType())) |
| return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); |
| unsigned UOF = ISD::getUnorderedFlavor(Cond); |
| if (UOF == 2) // FP operators that are undefined on NaNs. |
| return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); |
| if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) |
| return DAG.getConstant(UOF, VT); |
| // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO |
| // if it is not already. |
| ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; |
| if (NewCond != Cond) |
| return DAG.getSetCC(VT, N0, N1, NewCond); |
| } |
| |
| if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| MVT::isInteger(N0.getValueType())) { |
| if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || |
| N0.getOpcode() == ISD::XOR) { |
| // Simplify (X+Y) == (X+Z) --> Y == Z |
| if (N0.getOpcode() == N1.getOpcode()) { |
| if (N0.getOperand(0) == N1.getOperand(0)) |
| return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond); |
| if (N0.getOperand(1) == N1.getOperand(1)) |
| return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond); |
| if (isCommutativeBinOp(N0.getOpcode())) { |
| // If X op Y == Y op X, try other combinations. |
| if (N0.getOperand(0) == N1.getOperand(1)) |
| return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond); |
| if (N0.getOperand(1) == N1.getOperand(0)) |
| return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond); |
| } |
| } |
| |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { |
| if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| // Turn (X+C1) == C2 --> X == C2-C1 |
| if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) { |
| return DAG.getSetCC(VT, N0.getOperand(0), |
| DAG.getConstant(RHSC->getValue()-LHSR->getValue(), |
| N0.getValueType()), Cond); |
| } |
| |
| // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. |
| if (N0.getOpcode() == ISD::XOR) |
| // If we know that all of the inverted bits are zero, don't bother |
| // performing the inversion. |
| if (TLI.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue())) |
| return DAG.getSetCC(VT, N0.getOperand(0), |
| DAG.getConstant(LHSR->getValue()^RHSC->getValue(), |
| N0.getValueType()), Cond); |
| } |
| |
| // Turn (C1-X) == C2 --> X == C1-C2 |
| if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { |
| if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) { |
| return DAG.getSetCC(VT, N0.getOperand(1), |
| DAG.getConstant(SUBC->getValue()-RHSC->getValue(), |
| N0.getValueType()), Cond); |
| } |
| } |
| } |
| |
| // Simplify (X+Z) == X --> Z == 0 |
| if (N0.getOperand(0) == N1) |
| return DAG.getSetCC(VT, N0.getOperand(1), |
| DAG.getConstant(0, N0.getValueType()), Cond); |
| if (N0.getOperand(1) == N1) { |
| if (isCommutativeBinOp(N0.getOpcode())) |
| return DAG.getSetCC(VT, N0.getOperand(0), |
| DAG.getConstant(0, N0.getValueType()), Cond); |
| else { |
| assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); |
| // (Z-X) == X --> Z == X<<1 |
| SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), |
| N1, |
| DAG.getConstant(1,TLI.getShiftAmountTy())); |
| AddToWorkList(SH.Val); |
| return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond); |
| } |
| } |
| } |
| |
| if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || |
| N1.getOpcode() == ISD::XOR) { |
| // Simplify X == (X+Z) --> Z == 0 |
| if (N1.getOperand(0) == N0) { |
| return DAG.getSetCC(VT, N1.getOperand(1), |
| DAG.getConstant(0, N1.getValueType()), Cond); |
| } else if (N1.getOperand(1) == N0) { |
| if (isCommutativeBinOp(N1.getOpcode())) { |
| return DAG.getSetCC(VT, N1.getOperand(0), |
| DAG.getConstant(0, N1.getValueType()), Cond); |
| } else { |
| assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); |
| // X == (Z-X) --> X<<1 == Z |
| SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0, |
| DAG.getConstant(1,TLI.getShiftAmountTy())); |
| AddToWorkList(SH.Val); |
| return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond); |
| } |
| } |
| } |
| } |
| |
| // Fold away ALL boolean setcc's. |
| SDOperand Temp; |
| if (N0.getValueType() == MVT::i1 && foldBooleans) { |
| switch (Cond) { |
| default: assert(0 && "Unknown integer setcc!"); |
| case ISD::SETEQ: // X == Y -> (X^Y)^1 |
| Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1); |
| N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1)); |
| AddToWorkList(Temp.Val); |
| break; |
| case ISD::SETNE: // X != Y --> (X^Y) |
| N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1); |
| break; |
| case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y |
| case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> X^1 & Y |
| Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1)); |
| N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp); |
| AddToWorkList(Temp.Val); |
| break; |
| case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> Y^1 & X |
| case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X |
| Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1)); |
| N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp); |
| AddToWorkList(Temp.Val); |
| break; |
| case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y |
| case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y |
| Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1)); |
| N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp); |
| AddToWorkList(Temp.Val); |
| break; |
| case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X |
| case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X |
| Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1)); |
| N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp); |
| break; |
| } |
| if (VT != MVT::i1) { |
| AddToWorkList(N0.Val); |
| // FIXME: If running after legalize, we probably can't do this. |
| N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0); |
| } |
| return N0; |
| } |
| |
| // Could not fold it. |
| return SDOperand(); |
| } |
| |
| /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, |
| /// return a DAG expression to select that will generate the same value by |
| /// multiplying by a magic number. See: |
| /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> |
| SDOperand DAGCombiner::BuildSDIV(SDNode *N) { |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // Check to see if we can do this. |
| if (!TLI.isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) |
| return SDOperand(); // BuildSDIV only operates on i32 or i64 |
| if (!TLI.isOperationLegal(ISD::MULHS, VT)) |
| return SDOperand(); // Make sure the target supports MULHS. |
| |
| int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended(); |
| ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d); |
| |
| // Multiply the numerator (operand 0) by the magic value |
| SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0), |
| DAG.getConstant(magics.m, VT)); |
| // If d > 0 and m < 0, add the numerator |
| if (d > 0 && magics.m < 0) { |
| Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0)); |
| AddToWorkList(Q.Val); |
| } |
| // If d < 0 and m > 0, subtract the numerator. |
| if (d < 0 && magics.m > 0) { |
| Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0)); |
| AddToWorkList(Q.Val); |
| } |
| // Shift right algebraic if shift value is nonzero |
| if (magics.s > 0) { |
| Q = DAG.getNode(ISD::SRA, VT, Q, |
| DAG.getConstant(magics.s, TLI.getShiftAmountTy())); |
| AddToWorkList(Q.Val); |
| } |
| // Extract the sign bit and add it to the quotient |
| SDOperand T = |
| DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1, |
| TLI.getShiftAmountTy())); |
| AddToWorkList(T.Val); |
| return DAG.getNode(ISD::ADD, VT, Q, T); |
| } |
| |
| /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, |
| /// return a DAG expression to select that will generate the same value by |
| /// multiplying by a magic number. See: |
| /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> |
| SDOperand DAGCombiner::BuildUDIV(SDNode *N) { |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // Check to see if we can do this. |
| if (!TLI.isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) |
| return SDOperand(); // BuildUDIV only operates on i32 or i64 |
| if (!TLI.isOperationLegal(ISD::MULHU, VT)) |
| return SDOperand(); // Make sure the target supports MULHU. |
| |
| uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue(); |
| mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d); |
| |
| // Multiply the numerator (operand 0) by the magic value |
| SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0), |
| DAG.getConstant(magics.m, VT)); |
| AddToWorkList(Q.Val); |
| |
| if (magics.a == 0) { |
| return DAG.getNode(ISD::SRL, VT, Q, |
| DAG.getConstant(magics.s, TLI.getShiftAmountTy())); |
| } else { |
| SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q); |
| AddToWorkList(NPQ.Val); |
| NPQ = DAG.getNode(ISD::SRL, VT, NPQ, |
| DAG.getConstant(1, TLI.getShiftAmountTy())); |
| AddToWorkList(NPQ.Val); |
| NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q); |
| AddToWorkList(NPQ.Val); |
| return DAG.getNode(ISD::SRL, VT, NPQ, |
| DAG.getConstant(magics.s-1, TLI.getShiftAmountTy())); |
| } |
| } |
| |
| // SelectionDAG::Combine - This is the entry point for the file. |
| // |
| void SelectionDAG::Combine(bool RunningAfterLegalize) { |
| /// run - This is the main entry point to this class. |
| /// |
| DAGCombiner(*this).Run(RunningAfterLegalize); |
| } |