| //===- Local.cpp - Compute a local data structure graph for a function ----===// |
| // |
| // Compute the local version of the data structure graph for a function. The |
| // external interface to this file is the DSGraph constructor. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/DSGraph.h" |
| #include "llvm/Analysis/DataStructure.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/iPHINode.h" |
| #include "llvm/iOther.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "llvm/Target/TargetData.h" |
| #include "Support/Statistic.h" |
| |
| // FIXME: This should eventually be a FunctionPass that is automatically |
| // aggregated into a Pass. |
| // |
| #include "llvm/Module.h" |
| |
| using std::map; |
| using std::vector; |
| |
| static RegisterAnalysis<LocalDataStructures> |
| X("datastructure", "Local Data Structure Analysis"); |
| |
| using namespace DataStructureAnalysis; |
| |
| namespace DataStructureAnalysis { |
| // FIXME: Do something smarter with target data! |
| TargetData TD("temp-td"); |
| unsigned PointerSize(TD.getPointerSize()); |
| |
| // isPointerType - Return true if this type is big enough to hold a pointer. |
| bool isPointerType(const Type *Ty) { |
| if (isa<PointerType>(Ty)) |
| return true; |
| else if (Ty->isPrimitiveType() && Ty->isInteger()) |
| return Ty->getPrimitiveSize() >= PointerSize; |
| return false; |
| } |
| } |
| |
| |
| namespace { |
| //===--------------------------------------------------------------------===// |
| // GraphBuilder Class |
| //===--------------------------------------------------------------------===// |
| // |
| /// This class is the builder class that constructs the local data structure |
| /// graph by performing a single pass over the function in question. |
| /// |
| class GraphBuilder : InstVisitor<GraphBuilder> { |
| DSGraph &G; |
| vector<DSNode*> &Nodes; |
| DSNodeHandle &RetNode; // Node that gets returned... |
| map<Value*, DSNodeHandle> &ValueMap; |
| vector<DSCallSite> &FunctionCalls; |
| |
| public: |
| GraphBuilder(DSGraph &g, vector<DSNode*> &nodes, DSNodeHandle &retNode, |
| map<Value*, DSNodeHandle> &vm, |
| vector<DSCallSite> &fc) |
| : G(g), Nodes(nodes), RetNode(retNode), ValueMap(vm), FunctionCalls(fc) { |
| |
| // Create scalar nodes for all pointer arguments... |
| for (Function::aiterator I = G.getFunction().abegin(), |
| E = G.getFunction().aend(); I != E; ++I) |
| if (isPointerType(I->getType())) |
| getValueDest(*I); |
| |
| visit(G.getFunction()); // Single pass over the function |
| |
| // Not inlining, only eliminate trivially dead nodes. |
| G.removeTriviallyDeadNodes(); |
| } |
| |
| private: |
| // Visitor functions, used to handle each instruction type we encounter... |
| friend class InstVisitor<GraphBuilder>; |
| void visitMallocInst(MallocInst &MI) { handleAlloc(MI, DSNode::NewNode); } |
| void visitAllocaInst(AllocaInst &AI) { handleAlloc(AI, DSNode::AllocaNode);} |
| void handleAlloc(AllocationInst &AI, DSNode::NodeTy NT); |
| |
| void visitPHINode(PHINode &PN); |
| |
| void visitGetElementPtrInst(GetElementPtrInst &GEP); |
| void visitReturnInst(ReturnInst &RI); |
| void visitLoadInst(LoadInst &LI); |
| void visitStoreInst(StoreInst &SI); |
| void visitCallInst(CallInst &CI); |
| void visitSetCondInst(SetCondInst &SCI) {} // SetEQ & friends are ignored |
| void visitFreeInst(FreeInst &FI) {} // Ignore free instructions |
| void visitCastInst(CastInst &CI); |
| void visitInstruction(Instruction &I) {} |
| |
| private: |
| // Helper functions used to implement the visitation functions... |
| |
| /// createNode - Create a new DSNode, ensuring that it is properly added to |
| /// the graph. |
| /// |
| DSNode *createNode(DSNode::NodeTy NodeType, const Type *Ty); |
| |
| /// getValueNode - Return a DSNode that corresponds the the specified LLVM |
| /// value. This either returns the already existing node, or creates a new |
| /// one and adds it to the graph, if none exists. |
| /// |
| DSNodeHandle getValueNode(Value &V); |
| |
| /// getValueDest - Return the DSNode that the actual value points to. This |
| /// is basically the same thing as: getLink(getValueNode(V), 0) |
| /// |
| DSNodeHandle &getValueDest(Value &V); |
| |
| /// getGlobalNode - Just like getValueNode, except the global node itself is |
| /// returned, not a scalar node pointing to a global. |
| /// |
| DSNodeHandle &getGlobalNode(GlobalValue &V); |
| |
| /// getLink - This method is used to return the specified link in the |
| /// specified node if one exists. If a link does not already exist (it's |
| /// null), then we create a new node, link it, then return it. We must |
| /// specify the type of the Node field we are accessing so that we know what |
| /// type should be linked to if we need to create a new node. |
| /// |
| DSNodeHandle &getLink(const DSNodeHandle &Node, unsigned Link, |
| const Type *FieldTy); |
| }; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DSGraph constructor - Simply use the GraphBuilder to construct the local |
| // graph. |
| DSGraph::DSGraph(Function &F) : Func(&F) { |
| // Use the graph builder to construct the local version of the graph |
| GraphBuilder B(*this, Nodes, RetNode, ValueMap, FunctionCalls); |
| markIncompleteNodes(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Helper method implementations... |
| // |
| |
| |
| // createNode - Create a new DSNode, ensuring that it is properly added to the |
| // graph. |
| // |
| DSNode *GraphBuilder::createNode(DSNode::NodeTy NodeType, const Type *Ty) { |
| DSNode *N = new DSNode(NodeType, Ty); |
| Nodes.push_back(N); |
| return N; |
| } |
| |
| |
| // getGlobalNode - Just like getValueNode, except the global node itself is |
| // returned, not a scalar node pointing to a global. |
| // |
| DSNodeHandle &GraphBuilder::getGlobalNode(GlobalValue &V) { |
| DSNodeHandle &NH = ValueMap[&V]; |
| if (NH.getNode()) return NH; // Already have a node? Just return it... |
| |
| // Create a new global node for this global variable... |
| DSNode *G = createNode(DSNode::GlobalNode, V.getType()->getElementType()); |
| G->addGlobal(&V); |
| |
| // If this node has outgoing edges, make sure to recycle the same node for |
| // each use. For functions and other global variables, this is unneccesary, |
| // so avoid excessive merging by cloning these nodes on demand. |
| // |
| NH.setNode(G); |
| return NH; |
| } |
| |
| |
| // getValueNode - Return a DSNode that corresponds the the specified LLVM value. |
| // This either returns the already existing node, or creates a new one and adds |
| // it to the graph, if none exists. |
| // |
| DSNodeHandle GraphBuilder::getValueNode(Value &V) { |
| assert(isPointerType(V.getType()) && "Should only use pointer scalars!"); |
| // Do not share the pointer value to globals... this would cause way too much |
| // false merging. |
| // |
| DSNodeHandle &NH = ValueMap[&V]; |
| if (!isa<GlobalValue>(V) && NH.getNode()) |
| return NH; // Already have a node? Just return it... |
| |
| // Otherwise we need to create a new scalar node... |
| DSNode *N = createNode(DSNode::ScalarNode, V.getType()); |
| |
| // If this is a global value, create the global pointed to. |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(&V)) { |
| N->addEdgeTo(0, getGlobalNode(*GV)); |
| return DSNodeHandle(N, 0); |
| } else { |
| NH.setOffset(0); |
| NH.setNode(N); |
| } |
| |
| return NH; |
| } |
| |
| /// getValueDest - Return the DSNode that the actual value points to. This |
| /// is basically the same thing as: getLink(getValueNode(V), 0) |
| /// |
| DSNodeHandle &GraphBuilder::getValueDest(Value &V) { |
| return getLink(getValueNode(V), 0, V.getType()); |
| } |
| |
| |
| |
| /// getLink - This method is used to return the specified link in the |
| /// specified node if one exists. If a link does not already exist (it's |
| /// null), then we create a new node, link it, then return it. We must |
| /// specify the type of the Node field we are accessing so that we know what |
| /// type should be linked to if we need to create a new node. |
| /// |
| DSNodeHandle &GraphBuilder::getLink(const DSNodeHandle &node, |
| unsigned LinkNo, const Type *FieldTy) { |
| DSNodeHandle &Node = const_cast<DSNodeHandle&>(node); |
| |
| DSNodeHandle *Link = Node.getLink(LinkNo); |
| if (Link) return *Link; |
| |
| // If the link hasn't been created yet, make and return a new shadow node of |
| // the appropriate type for FieldTy... |
| // |
| |
| // If we are indexing with a typed pointer, then the thing we are pointing |
| // to is of the pointed type. If we are pointing to it with an integer |
| // (because of cast to an integer), we represent it with a void type. |
| // |
| const Type *ReqTy; |
| if (const PointerType *Ptr = dyn_cast<PointerType>(FieldTy)) |
| ReqTy = Ptr->getElementType(); |
| else |
| ReqTy = Type::VoidTy; |
| |
| DSNode *N = createNode(DSNode::ShadowNode, ReqTy); |
| Node.setLink(LinkNo, N); |
| return *Node.getLink(LinkNo); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Specific instruction type handler implementations... |
| // |
| |
| /// Alloca & Malloc instruction implementation - Simply create a new memory |
| /// object, pointing the scalar to it. |
| /// |
| void GraphBuilder::handleAlloc(AllocationInst &AI, DSNode::NodeTy NodeType) { |
| DSNode *New = createNode(NodeType, AI.getAllocatedType()); |
| |
| // Make the scalar point to the new node... |
| getValueNode(AI).addEdgeTo(New); |
| } |
| |
| // PHINode - Make the scalar for the PHI node point to all of the things the |
| // incoming values point to... which effectively causes them to be merged. |
| // |
| void GraphBuilder::visitPHINode(PHINode &PN) { |
| if (!isPointerType(PN.getType())) return; // Only pointer PHIs |
| |
| DSNodeHandle &ScalarDest = getValueDest(PN); |
| for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) |
| if (!isa<ConstantPointerNull>(PN.getIncomingValue(i))) |
| ScalarDest.mergeWith(getValueDest(*PN.getIncomingValue(i))); |
| } |
| |
| void GraphBuilder::visitGetElementPtrInst(GetElementPtrInst &GEP) { |
| DSNodeHandle Value = getValueDest(*GEP.getOperand(0)); |
| |
| unsigned Offset = 0; |
| const Type *CurTy = GEP.getOperand(0)->getType(); |
| |
| for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i) |
| if (GEP.getOperand(i)->getType() == Type::LongTy) { |
| // Get the type indexing into... |
| const SequentialType *STy = cast<SequentialType>(CurTy); |
| CurTy = STy->getElementType(); |
| if (ConstantSInt *CS = dyn_cast<ConstantSInt>(GEP.getOperand(i))) { |
| if (isa<PointerType>(STy)) |
| std::cerr << "Pointer indexing not handled yet!\n"; |
| else |
| Offset += CS->getValue()*TD.getTypeSize(CurTy); |
| } else { |
| // Variable index into a node. We must merge all of the elements of the |
| // sequential type here. |
| if (isa<PointerType>(STy)) |
| std::cerr << "Pointer indexing not handled yet!\n"; |
| else { |
| const ArrayType *ATy = cast<ArrayType>(STy); |
| unsigned ElSize = TD.getTypeSize(CurTy); |
| DSNode *N = Value.getNode(); |
| assert(N && "Value must have a node!"); |
| unsigned RawOffset = Offset+Value.getOffset(); |
| |
| // Loop over all of the elements of the array, merging them into the |
| // zero'th element. |
| for (unsigned i = 1, e = ATy->getNumElements(); i != e; ++i) |
| // Merge all of the byte components of this array element |
| for (unsigned j = 0; j != ElSize; ++j) |
| N->mergeIndexes(RawOffset+j, RawOffset+i*ElSize+j); |
| } |
| } |
| } else if (GEP.getOperand(i)->getType() == Type::UByteTy) { |
| unsigned FieldNo = cast<ConstantUInt>(GEP.getOperand(i))->getValue(); |
| const StructType *STy = cast<StructType>(CurTy); |
| Offset += TD.getStructLayout(STy)->MemberOffsets[FieldNo]; |
| CurTy = STy->getContainedType(FieldNo); |
| } |
| |
| // Add in the offset calculated... |
| Value.setOffset(Value.getOffset()+Offset); |
| |
| // Value is now the pointer we want to GEP to be... |
| getValueNode(GEP).addEdgeTo(Value); |
| } |
| |
| void GraphBuilder::visitLoadInst(LoadInst &LI) { |
| DSNodeHandle &Ptr = getValueDest(*LI.getOperand(0)); |
| Ptr.getNode()->NodeType |= DSNode::Read; |
| |
| if (isPointerType(LI.getType())) |
| getValueNode(LI).addEdgeTo(getLink(Ptr, 0, LI.getType())); |
| } |
| |
| void GraphBuilder::visitStoreInst(StoreInst &SI) { |
| DSNodeHandle &Dest = getValueDest(*SI.getOperand(1)); |
| Dest.getNode()->NodeType |= DSNode::Modified; |
| |
| // Avoid adding edges from null, or processing non-"pointer" stores |
| if (isPointerType(SI.getOperand(0)->getType()) && |
| !isa<ConstantPointerNull>(SI.getOperand(0))) { |
| Dest.addEdgeTo(getValueDest(*SI.getOperand(0))); |
| } |
| } |
| |
| void GraphBuilder::visitReturnInst(ReturnInst &RI) { |
| if (RI.getNumOperands() && isPointerType(RI.getOperand(0)->getType()) && |
| !isa<ConstantPointerNull>(RI.getOperand(0))) { |
| DSNodeHandle &Value = getValueDest(*RI.getOperand(0)); |
| Value.mergeWith(RetNode); |
| RetNode = Value; |
| } |
| } |
| |
| void GraphBuilder::visitCallInst(CallInst &CI) { |
| // Add a new function call entry... |
| FunctionCalls.push_back(DSCallSite(G.getFunction(), CI)); |
| DSCallSite &Args = FunctionCalls.back(); |
| |
| // Set up the return value... |
| if (isPointerType(CI.getType())) |
| Args.push_back(getLink(getValueNode(CI), 0, CI.getType())); |
| else |
| Args.push_back(DSNodeHandle()); |
| |
| unsigned Start = 0; |
| // Special case for a direct call, avoid creating spurious scalar node... |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(CI.getOperand(0))) { |
| Args.push_back(getGlobalNode(*GV)); |
| Start = 1; |
| } |
| |
| // Pass the arguments in... |
| for (unsigned i = Start, e = CI.getNumOperands(); i != e; ++i) |
| if (isPointerType(CI.getOperand(i)->getType())) |
| Args.push_back(getLink(getValueNode(*CI.getOperand(i)), 0, |
| CI.getOperand(i)->getType())); |
| } |
| |
| /// Handle casts... |
| void GraphBuilder::visitCastInst(CastInst &CI) { |
| if (isPointerType(CI.getType()) && isPointerType(CI.getOperand(0)->getType())) |
| getValueNode(CI).addEdgeTo(getLink(getValueNode(*CI.getOperand(0)), 0, |
| CI.getOperand(0)->getType())); |
| } |
| |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // LocalDataStructures Implementation |
| //===----------------------------------------------------------------------===// |
| |
| // releaseMemory - If the pass pipeline is done with this pass, we can release |
| // our memory... here... |
| // |
| void LocalDataStructures::releaseMemory() { |
| for (std::map<const Function*, DSGraph*>::iterator I = DSInfo.begin(), |
| E = DSInfo.end(); I != E; ++I) |
| delete I->second; |
| |
| // Empty map so next time memory is released, data structures are not |
| // re-deleted. |
| DSInfo.clear(); |
| } |
| |
| bool LocalDataStructures::run(Module &M) { |
| // Calculate all of the graphs... |
| for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) |
| if (!I->isExternal()) |
| DSInfo.insert(std::make_pair(I, new DSGraph(*I))); |
| return false; |
| } |