| //===- TopDownClosure.cpp - Compute the top-down interprocedure closure ---===// |
| // |
| // This file implements the TDDataStructures class, which represents the |
| // Top-down Interprocedural closure of the data structure graph over the |
| // program. This is useful (but not strictly necessary?) for applications |
| // like pointer analysis. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/DataStructure.h" |
| #include "llvm/Analysis/DSGraph.h" |
| #include "llvm/Module.h" |
| #include "llvm/DerivedTypes.h" |
| #include "Support/Statistic.h" |
| using std::map; |
| using std::vector; |
| |
| static RegisterAnalysis<TDDataStructures> |
| Y("tddatastructure", "Top-down Data Structure Analysis Closure"); |
| |
| // releaseMemory - If the pass pipeline is done with this pass, we can release |
| // our memory... here... |
| // |
| void TDDataStructures::releaseMemory() { |
| for (map<const Function*, DSGraph*>::iterator I = DSInfo.begin(), |
| E = DSInfo.end(); I != E; ++I) |
| delete I->second; |
| |
| // Empty map so next time memory is released, data structures are not |
| // re-deleted. |
| DSInfo.clear(); |
| } |
| |
| // run - Calculate the top down data structure graphs for each function in the |
| // program. |
| // |
| bool TDDataStructures::run(Module &M) { |
| // Simply calculate the graphs for each function... |
| for (Module::reverse_iterator I = M.rbegin(), E = M.rend(); I != E; ++I) |
| if (!I->isExternal()) |
| calculateGraph(*I); |
| return false; |
| } |
| |
| /// ResolveCallSite - This method is used to link the actual arguments together |
| /// with the formal arguments for a function call in the top-down closure. This |
| /// method assumes that the call site arguments have been mapped into nodes |
| /// local to the specified graph. |
| /// |
| void TDDataStructures::ResolveCallSite(DSGraph &Graph, |
| const DSCallSite &CallSite) { |
| // Resolve all of the function formal arguments... |
| Function &F = Graph.getFunction(); |
| Function::aiterator AI = F.abegin(); |
| |
| for (unsigned i = 2, e = CallSite.size(); i != e; ++i, ++AI) { |
| // Advance the argument iterator to the first pointer argument... |
| while (!DataStructureAnalysis::isPointerType(AI->getType())) ++AI; |
| |
| // TD ...Merge the formal arg scalar with the actual arg node |
| DSNodeHandle &NodeForFormal = Graph.getNodeForValue(AI); |
| if (NodeForFormal.getNode()) |
| NodeForFormal.mergeWith(CallSite[i]); |
| } |
| |
| // Merge returned node in the caller with the "return" node in callee |
| if (CallSite.getReturnValueNode().getNode() && Graph.getRetNode().getNode()) |
| Graph.getRetNode().mergeWith(CallSite.getReturnValueNode()); |
| } |
| |
| DSGraph &TDDataStructures::calculateGraph(Function &F) { |
| // Make sure this graph has not already been calculated, or that we don't get |
| // into an infinite loop with mutually recursive functions. |
| // |
| DSGraph *&Graph = DSInfo[&F]; |
| if (Graph) return *Graph; |
| |
| BUDataStructures &BU = getAnalysis<BUDataStructures>(); |
| DSGraph &BUGraph = BU.getDSGraph(F); |
| Graph = new DSGraph(BUGraph); |
| |
| const vector<DSCallSite> *CallSitesP = BU.getCallSites(F); |
| if (CallSitesP == 0) { |
| DEBUG(std::cerr << " [TD] No callers for: " << F.getName() << "\n"); |
| return *Graph; // If no call sites, the graph is the same as the BU graph! |
| } |
| |
| // Loop over all call sites of this function, merging each one into this |
| // graph. |
| // |
| DEBUG(std::cerr << " [TD] Inlining callers for: " << F.getName() << "\n"); |
| const vector<DSCallSite> &CallSites = *CallSitesP; |
| for (unsigned c = 0, ce = CallSites.size(); c != ce; ++c) { |
| const DSCallSite &CallSite = CallSites[c]; // Copy |
| Function &Caller = CallSite.getCaller(); |
| assert(!Caller.isExternal() && "Externals function cannot 'call'!"); |
| |
| DEBUG(std::cerr << "\t [TD] Inlining caller #" << c << " '" |
| << Caller.getName() << "' into callee: " << F.getName() << "\n"); |
| |
| if (&Caller == &F) { |
| // Self-recursive call: this can happen after a cycle of calls is inlined. |
| ResolveCallSite(*Graph, CallSite); |
| } else { |
| // Recursively compute the graph for the Caller. That should |
| // be fully resolved except if there is mutual recursion... |
| // |
| DSGraph &CG = calculateGraph(Caller); // Graph to inline |
| |
| DEBUG(std::cerr << "\t\t[TD] Got graph for " << Caller.getName() |
| << " in: " << F.getName() << "\n"); |
| |
| // These two maps keep track of where scalars in the old graph _used_ |
| // to point to, and of new nodes matching nodes of the old graph. |
| std::map<Value*, DSNodeHandle> OldValMap; |
| std::map<const DSNode*, DSNode*> OldNodeMap; |
| |
| // Clone the Caller's graph into the current graph, keeping |
| // track of where scalars in the old graph _used_ to point... |
| // Do this here because it only needs to happens once for each Caller! |
| // Strip scalars but not allocas since they are alive in callee. |
| // |
| DSNodeHandle RetVal = Graph->cloneInto(CG, OldValMap, OldNodeMap, |
| /*StripScalars*/ true, |
| /*StripAllocas*/ false, |
| /*CopyCallers*/ true, |
| /*CopyOrigCalls*/false); |
| |
| // Make a temporary copy of the call site, and transform the argument node |
| // pointers. |
| DSCallSite TmpCallSite = CallSite; |
| for (unsigned i = 0, e = CallSite.size(); i != e; ++i) { |
| const DSNode *OldNode = TmpCallSite[i].getNode(); |
| TmpCallSite[i].setNode(OldNodeMap[OldNode]); |
| } |
| |
| ResolveCallSite(*Graph, CallSite); |
| } |
| } |
| |
| // Recompute the Incomplete markers and eliminate unreachable nodes. |
| Graph->maskIncompleteMarkers(); |
| Graph->markIncompleteNodes(/*markFormals*/ !F.hasInternalLinkage() |
| /*&& FIXME: NEED TO CHECK IF ALL CALLERS FOUND!*/); |
| Graph->removeDeadNodes(/*KeepAllGlobals*/ false, /*KeepCalls*/ false); |
| |
| DEBUG(std::cerr << " [TD] Done inlining callers for: " << F.getName() << " [" |
| << Graph->getGraphSize() << "+" << Graph->getFunctionCalls().size() |
| << "]\n"); |
| |
| return *Graph; |
| } |