Split the machine code emitter completely out of the printer
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4882 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/X86/X86CodeEmitter.cpp b/lib/Target/X86/X86CodeEmitter.cpp
index a9b0c60..7b0f1bf 100644
--- a/lib/Target/X86/X86CodeEmitter.cpp
+++ b/lib/Target/X86/X86CodeEmitter.cpp
@@ -6,24 +6,35 @@
//===----------------------------------------------------------------------===//
#include "X86TargetMachine.h"
+#include "X86.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
namespace {
- struct Emitter : public FunctionPass {
+ class Emitter : public FunctionPass {
X86TargetMachine &TM;
const X86InstrInfo ⅈ
MachineCodeEmitter &MCE;
+ public:
Emitter(X86TargetMachine &tm, MachineCodeEmitter &mce)
: TM(tm), II(TM.getInstrInfo()), MCE(mce) {}
bool runOnFunction(Function &F);
+ private:
void emitBasicBlock(MachineBasicBlock &MBB);
void emitInstruction(MachineInstr &MI);
+
+ void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
+ void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
+ void emitConstant(unsigned Val, unsigned Size);
+
+ void emitMemModRMByte(const MachineInstr &MI,
+ unsigned Op, unsigned RegOpcodeField);
+
};
}
@@ -56,6 +67,141 @@
emitInstruction(**I);
}
+
+namespace N86 { // Native X86 Register numbers...
+ enum {
+ EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
+ };
+}
+
+
+// getX86RegNum - This function maps LLVM register identifiers to their X86
+// specific numbering, which is used in various places encoding instructions.
+//
+static unsigned getX86RegNum(unsigned RegNo) {
+ switch(RegNo) {
+ case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
+ case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
+ case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
+ case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
+ case X86::ESP: case X86::SP: case X86::AH: return N86::ESP;
+ case X86::EBP: case X86::BP: case X86::CH: return N86::EBP;
+ case X86::ESI: case X86::SI: case X86::DH: return N86::ESI;
+ case X86::EDI: case X86::DI: case X86::BH: return N86::EDI;
+ default:
+ assert(RegNo >= MRegisterInfo::FirstVirtualRegister &&
+ "Unknown physical register!");
+ assert(0 && "Register allocator hasn't allocated reg correctly yet!");
+ return 0;
+ }
+}
+
+inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
+ unsigned RM) {
+ assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
+ return RM | (RegOpcode << 3) | (Mod << 6);
+}
+
+void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){
+ MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
+}
+
+void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) {
+ // SIB byte is in the same format as the ModRMByte...
+ MCE.emitByte(ModRMByte(SS, Index, Base));
+}
+
+void Emitter::emitConstant(unsigned Val, unsigned Size) {
+ // Output the constant in little endian byte order...
+ for (unsigned i = 0; i != Size; ++i) {
+ MCE.emitByte(Val & 255);
+ Val >>= 8;
+ }
+}
+
+static bool isDisp8(int Value) {
+ return Value == (signed char)Value;
+}
+
+void Emitter::emitMemModRMByte(const MachineInstr &MI,
+ unsigned Op, unsigned RegOpcodeField) {
+ const MachineOperand &BaseReg = MI.getOperand(Op);
+ const MachineOperand &Scale = MI.getOperand(Op+1);
+ const MachineOperand &IndexReg = MI.getOperand(Op+2);
+ const MachineOperand &Disp = MI.getOperand(Op+3);
+
+ // Is a SIB byte needed?
+ if (IndexReg.getReg() == 0 && BaseReg.getReg() != X86::ESP) {
+ if (BaseReg.getReg() == 0) { // Just a displacement?
+ // Emit special case [disp32] encoding
+ MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
+ emitConstant(Disp.getImmedValue(), 4);
+ } else {
+ unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
+ if (Disp.getImmedValue() == 0 && BaseRegNo != N86::EBP) {
+ // Emit simple indirect register encoding... [EAX] f.e.
+ MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
+ } else if (isDisp8(Disp.getImmedValue())) {
+ // Emit the disp8 encoding... [REG+disp8]
+ MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
+ emitConstant(Disp.getImmedValue(), 1);
+ } else {
+ // Emit the most general non-SIB encoding: [REG+disp32]
+ MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
+ emitConstant(Disp.getImmedValue(), 4);
+ }
+ }
+
+ } else { // We need a SIB byte, so start by outputting the ModR/M byte first
+ assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!");
+
+ bool ForceDisp32 = false;
+ if (BaseReg.getReg() == 0) {
+ // If there is no base register, we emit the special case SIB byte with
+ // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
+ MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
+ ForceDisp32 = true;
+ } else if (Disp.getImmedValue() == 0) {
+ // Emit no displacement ModR/M byte
+ MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
+ } else if (isDisp8(Disp.getImmedValue())) {
+ // Emit the disp8 encoding...
+ MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
+ } else {
+ // Emit the normal disp32 encoding...
+ MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
+ }
+
+ // Calculate what the SS field value should be...
+ static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
+ unsigned SS = SSTable[Scale.getImmedValue()];
+
+ if (BaseReg.getReg() == 0) {
+ // Handle the SIB byte for the case where there is no base. The
+ // displacement has already been output.
+ assert(IndexReg.getReg() && "Index register must be specified!");
+ emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5);
+ } else {
+ unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
+ unsigned IndexRegNo = getX86RegNum(IndexReg.getReg());
+ emitSIBByte(SS, IndexRegNo, BaseRegNo);
+ }
+
+ // Do we need to output a displacement?
+ if (Disp.getImmedValue() != 0 || ForceDisp32) {
+ if (!ForceDisp32 && isDisp8(Disp.getImmedValue()))
+ emitConstant(Disp.getImmedValue(), 1);
+ else
+ emitConstant(Disp.getImmedValue(), 4);
+ }
+ }
+}
+
+static bool isImmediate(const MachineOperand &MO) {
+ return MO.getType() == MachineOperand::MO_SignExtendedImmed ||
+ MO.getType() == MachineOperand::MO_UnextendedImmed;
+}
+
void Emitter::emitInstruction(MachineInstr &MI) {
unsigned Opcode = MI.getOpcode();
const MachineInstrDescriptor &Desc = II.get(Opcode);
@@ -64,15 +210,57 @@
if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);// Operand size...
if (Desc.TSFlags & X86II::TB) MCE.emitByte(0x0F);// Two-byte opcode prefix
+ unsigned char BaseOpcode = II.getBaseOpcodeFor(Opcode);
switch (Desc.TSFlags & X86II::FormMask) {
case X86II::RawFrm:
- MCE.emitByte(II.getBaseOpcodeFor(Opcode));
+ MCE.emitByte(BaseOpcode);
if (MI.getNumOperands() == 1) {
assert(MI.getOperand(0).getType() == MachineOperand::MO_PCRelativeDisp);
MCE.emitPCRelativeDisp(MI.getOperand(0).getVRegValue());
}
-
break;
+ case X86II::AddRegFrm:
+ MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg()));
+ if (MI.getNumOperands() == 2) {
+ unsigned Size = 4;
+ emitConstant(MI.getOperand(1).getImmedValue(), Size);
+ }
+ break;
+ case X86II::MRMDestReg:
+ MCE.emitByte(BaseOpcode);
+ emitRegModRMByte(MI.getOperand(0).getReg(),
+ getX86RegNum(MI.getOperand(MI.getNumOperands()-1).getReg()));
+ break;
+ case X86II::MRMDestMem:
+ MCE.emitByte(BaseOpcode);
+ emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg()));
+ break;
+ case X86II::MRMSrcReg:
+ MCE.emitByte(BaseOpcode);
+ emitRegModRMByte(MI.getOperand(MI.getNumOperands()-1).getReg(),
+ getX86RegNum(MI.getOperand(0).getReg()));
+ break;
+ case X86II::MRMSrcMem:
+ MCE.emitByte(BaseOpcode);
+ emitMemModRMByte(MI, MI.getNumOperands()-4,
+ getX86RegNum(MI.getOperand(0).getReg()));
+ break;
+
+ case X86II::MRMS0r: case X86II::MRMS1r:
+ case X86II::MRMS2r: case X86II::MRMS3r:
+ case X86II::MRMS4r: case X86II::MRMS5r:
+ case X86II::MRMS6r: case X86II::MRMS7r:
+ MCE.emitByte(BaseOpcode);
+ emitRegModRMByte(MI.getOperand(0).getReg(),
+ (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0r);
+
+ if (isImmediate(MI.getOperand(MI.getNumOperands()-1))) {
+ unsigned Size = 4;
+ emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), Size);
+ }
+ break;
+
+
}
}