Adds cyclic critical path computation and heuristics, temporarily disabled.
Estimate the cyclic critical path within a single block loop. If the
acyclic critical path is longer, then the loop will exhaust OOO
resources after some number of iterations. If lag between the acyclic
critical path and cyclic critical path is longer the the time it takes
to issue those loop iterations, then aggressively schedule for
latency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189120 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/MachineScheduler.cpp b/lib/CodeGen/MachineScheduler.cpp
index da69205..36eeb67 100644
--- a/lib/CodeGen/MachineScheduler.cpp
+++ b/lib/CodeGen/MachineScheduler.cpp
@@ -53,6 +53,9 @@
static bool ViewMISchedDAGs = false;
#endif // NDEBUG
+static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
+ cl::desc("Enable cyclic critical path analysis."), cl::init(false));
+
static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
cl::desc("Enable load clustering."), cl::init(true));
@@ -1207,16 +1210,21 @@
struct SchedRemainder {
// Critical path through the DAG in expected latency.
unsigned CriticalPath;
+ unsigned CyclicCritPath;
// Scaled count of micro-ops left to schedule.
unsigned RemIssueCount;
+ bool IsAcyclicLatencyLimited;
+
// Unscheduled resources
SmallVector<unsigned, 16> RemainingCounts;
void reset() {
CriticalPath = 0;
+ CyclicCritPath = 0;
RemIssueCount = 0;
+ IsAcyclicLatencyLimited = false;
RemainingCounts.clear();
}
@@ -1434,6 +1442,8 @@
virtual void registerRoots();
protected:
+ void checkAcyclicLatency();
+
void tryCandidate(SchedCandidate &Cand,
SchedCandidate &TryCand,
SchedBoundary &Zone,
@@ -1547,8 +1557,32 @@
Bot.releaseNode(SU, SU->BotReadyCycle);
}
+void ConvergingScheduler::checkAcyclicLatency() {
+ if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
+ return;
+
+ unsigned BufferLimit =
+ SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
+ unsigned LatencyLag = Rem.CriticalPath - Rem.CyclicCritPath;
+ Rem.IsAcyclicLatencyLimited =
+ (LatencyLag * SchedModel->getLatencyFactor()) > BufferLimit;
+
+ DEBUG(dbgs() << "BufferLimit " << BufferLimit << "u / "
+ << Rem.RemIssueCount << "u = "
+ << (BufferLimit + Rem.RemIssueCount) / Rem.RemIssueCount << " iters. "
+ << "Latency = " << LatencyLag << "c = "
+ << LatencyLag * SchedModel->getLatencyFactor() << "u\n";
+ if (Rem.IsAcyclicLatencyLimited)
+ dbgs() << " ACYCLIC LATENCY LIMIT\n");
+}
+
void ConvergingScheduler::registerRoots() {
Rem.CriticalPath = DAG->ExitSU.getDepth();
+
+ if (EnableCyclicPath) {
+ Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
+ checkAcyclicLatency();
+ }
// Some roots may not feed into ExitSU. Check all of them in case.
for (std::vector<SUnit*>::const_iterator
I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
@@ -2096,6 +2130,32 @@
return 0;
}
+static bool tryLatency(ConvergingScheduler::SchedCandidate &TryCand,
+ ConvergingScheduler::SchedCandidate &Cand,
+ ConvergingScheduler::SchedBoundary &Zone) {
+ if (Zone.isTop()) {
+ if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
+ if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
+ TryCand, Cand, ConvergingScheduler::TopDepthReduce))
+ return true;
+ }
+ if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
+ TryCand, Cand, ConvergingScheduler::TopPathReduce))
+ return true;
+ }
+ else {
+ if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
+ if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
+ TryCand, Cand, ConvergingScheduler::BotHeightReduce))
+ return true;
+ }
+ if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
+ TryCand, Cand, ConvergingScheduler::BotPathReduce))
+ return true;
+ }
+ return false;
+}
+
/// Apply a set of heursitics to a new candidate. Heuristics are currently
/// hierarchical. This may be more efficient than a graduated cost model because
/// we don't need to evaluate all aspects of the model for each node in the
@@ -2135,6 +2195,10 @@
RegExcess))
return;
+ // For loops that are acyclic path limited, aggressively schedule for latency.
+ if (Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone))
+ return;
+
// Avoid increasing the max critical pressure in the scheduled region.
if (tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax,
TryCand, Cand, RegCritical))
@@ -2174,27 +2238,10 @@
return;
// Avoid serializing long latency dependence chains.
- if (Cand.Policy.ReduceLatency) {
- if (Zone.isTop()) {
- if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
- if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
- TryCand, Cand, TopDepthReduce))
- return;
- }
- if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
- TryCand, Cand, TopPathReduce))
- return;
- }
- else {
- if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
- if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
- TryCand, Cand, BotHeightReduce))
- return;
- }
- if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
- TryCand, Cand, BotPathReduce))
- return;
- }
+ // For acyclic path limited loops, latency was already checked above.
+ if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited
+ && tryLatency(TryCand, Cand, Zone)) {
+ return;
}
// Prefer immediate defs/users of the last scheduled instruction. This is a