Added skeleton for inline asm multiple alternative constraint support.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113766 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
index e657445..1e77a66 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
@@ -5008,7 +5008,7 @@
   /// contains the set of register corresponding to the operand.
   RegsForValue AssignedRegs;
 
-  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
+  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
   }
 
@@ -5069,7 +5069,7 @@
 
     return TLI.getValueType(OpTy, true);
   }
-
+  
 private:
   /// MarkRegAndAliases - Mark the specified register and all aliases in the
   /// specified set.
@@ -5324,28 +5324,15 @@
 
   std::set<unsigned> OutputRegs, InputRegs;
 
-  // Do a prepass over the constraints, canonicalizing them, and building up the
-  // ConstraintOperands list.
-  std::vector<InlineAsm::ConstraintInfo>
-    ConstraintInfos = IA->ParseConstraints();
-
-  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
-
-  SDValue Chain, Flag;
-
-  // We won't need to flush pending loads if this asm doesn't touch
-  // memory and is nonvolatile.
-  if (hasMemory || IA->hasSideEffects())
-    Chain = getRoot();
-  else
-    Chain = DAG.getRoot();
-
+  std::vector<TargetLowering::AsmOperandInfo> TargetConstraints = TLI.ParseConstraints(CS);
+  bool hasMemory = false;
+  
   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
   unsigned ResNo = 0;   // ResNo - The result number of the next output.
-  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
-    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
+  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
+    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
-
+    
     EVT OpVT = MVT::Other;
 
     // Compute the value type for each operand.
@@ -5393,33 +5380,35 @@
     }
 
     OpInfo.ConstraintVT = OpVT;
+    
+    // Indirect operand accesses access memory.
+    if (OpInfo.isIndirect)
+      hasMemory = true;
+    else {
+      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
+        TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]);
+        if (CType == TargetLowering::C_Memory) {
+          hasMemory = true;
+          break;
+        }
+      }
+    }
   }
 
+  SDValue Chain, Flag;
+
+  // We won't need to flush pending loads if this asm doesn't touch
+  // memory and is nonvolatile.
+  if (hasMemory || IA->hasSideEffects())
+    Chain = getRoot();
+  else
+    Chain = DAG.getRoot();
+
   // Second pass over the constraints: compute which constraint option to use
   // and assign registers to constraints that want a specific physreg.
-  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
+  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
 
-    // If this is an output operand with a matching input operand, look up the
-    // matching input. If their types mismatch, e.g. one is an integer, the
-    // other is floating point, or their sizes are different, flag it as an
-    // error.
-    if (OpInfo.hasMatchingInput()) {
-      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
-      
-      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
-        if ((OpInfo.ConstraintVT.isInteger() !=
-             Input.ConstraintVT.isInteger()) ||
-            (OpInfo.ConstraintVT.getSizeInBits() !=
-             Input.ConstraintVT.getSizeInBits())) {
-          report_fatal_error("Unsupported asm: input constraint"
-                             " with a matching output constraint of"
-                             " incompatible type!");
-        }
-        Input.ConstraintVT = OpInfo.ConstraintVT;
-      }
-    }
-
     // Compute the constraint code and ConstraintType to use.
     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
 
@@ -5427,7 +5416,7 @@
     // need to to provide an address for the memory input.
     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
         !OpInfo.isIndirect) {
-      assert(OpInfo.Type == InlineAsm::isInput &&
+      assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) &&
              "Can only indirectify direct input operands!");
 
       // Memory operands really want the address of the value.  If we don't have
@@ -5469,8 +5458,6 @@
       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
   }
 
-  ConstraintInfos.clear();
-
   // Second pass - Loop over all of the operands, assigning virtual or physregs
   // to register class operands.
   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
diff --git a/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
index b74f600..419784d 100644
--- a/lib/CodeGen/SelectionDAG/TargetLowering.cpp
+++ b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
@@ -2654,6 +2654,156 @@
   return atoi(ConstraintCode.c_str());
 }
 
+  
+/// ParseConstraints - Split up the constraint string from the inline
+/// assembly value into the specific constraints and their prefixes,
+/// and also tie in the associated operand values.
+/// If this returns an empty vector, and if the constraint string itself
+/// isn't empty, there was an error parsing.
+std::vector<TargetLowering::AsmOperandInfo> TargetLowering::ParseConstraints(
+    ImmutableCallSite CS) const {
+  /// ConstraintOperands - Information about all of the constraints.
+  std::vector<AsmOperandInfo> ConstraintOperands;
+  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
+
+  // Do a prepass over the constraints, canonicalizing them, and building up the
+  // ConstraintOperands list.
+  std::vector<InlineAsm::ConstraintInfo>
+    ConstraintInfos = IA->ParseConstraints();
+    
+  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
+  unsigned ResNo = 0;   // ResNo - The result number of the next output.
+
+  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
+    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
+    AsmOperandInfo &OpInfo = ConstraintOperands.back();
+
+    EVT OpVT = MVT::Other;
+
+    // Compute the value type for each operand.
+    switch (OpInfo.Type) {
+    case InlineAsm::isOutput:
+      // Indirect outputs just consume an argument.
+      if (OpInfo.isIndirect) {
+        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
+        break;
+      }
+
+      // The return value of the call is this value.  As such, there is no
+      // corresponding argument.
+      assert(!CS.getType()->isVoidTy() &&
+             "Bad inline asm!");
+      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
+        OpVT = getValueType(STy->getElementType(ResNo));
+      } else {
+        assert(ResNo == 0 && "Asm only has one result!");
+        OpVT = getValueType(CS.getType());
+      }
+      ++ResNo;
+      break;
+    case InlineAsm::isInput:
+      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
+      break;
+    case InlineAsm::isClobber:
+      // Nothing to do.
+      break;
+    }
+  }
+
+  // If we have multiple alternative constraints, select the best alternative.
+  if (ConstraintInfos.size()) {
+    unsigned maCount = ConstraintInfos[0].multipleAlternatives.size();
+    if (maCount) {
+      unsigned bestMAIndex = 0;
+      int bestWeight = -1;
+      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
+      int weight = -1;
+      unsigned maIndex;
+      // Compute the sums of the weights for each alternative, keeping track
+      // of the best (highest weight) one so far.
+      for (maIndex = 0; maIndex < maCount; ++maIndex) {
+        int weightSum = 0;
+        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
+            cIndex != eIndex; ++cIndex) {
+          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
+          if (OpInfo.Type == InlineAsm::isClobber)
+            continue;
+          assert((OpInfo.multipleAlternatives.size() == maCount)
+            && "Constraint has inconsistent multiple alternative count.");
+
+          // If this is an output operand with a matching input operand, look up the
+          // matching input. If their types mismatch, e.g. one is an integer, the
+          // other is floating point, or their sizes are different, flag it as an
+          // maCantMatch.
+          if (OpInfo.hasMatchingInput()) {
+            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
+            
+            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
+              if ((OpInfo.ConstraintVT.isInteger() !=
+                   Input.ConstraintVT.isInteger()) ||
+                  (OpInfo.ConstraintVT.getSizeInBits() !=
+                   Input.ConstraintVT.getSizeInBits())) {
+                weightSum = -1;  // Can't match.
+                break;
+              }
+              Input.ConstraintVT = OpInfo.ConstraintVT;
+            }
+          }
+          
+          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
+          if (weight == -1) {
+            weightSum = -1;
+            break;
+          }
+          weightSum += weight;
+        }
+        // Update best.
+        if (weightSum > bestWeight) {
+          bestWeight = weightSum;
+          bestMAIndex = maIndex;
+        }
+      }
+
+      // Now select chosen alternative in each constraint.
+      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
+          cIndex != eIndex; ++cIndex) {
+        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
+        if (cInfo.Type == InlineAsm::isClobber)
+          continue;
+        cInfo.selectAlternative(bestMAIndex);
+      }
+    }
+  }
+
+  // Check and hook up tied operands, choose constraint code to use.
+  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
+      cIndex != eIndex; ++cIndex) {
+    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
+    
+    // If this is an output operand with a matching input operand, look up the
+    // matching input. If their types mismatch, e.g. one is an integer, the
+    // other is floating point, or their sizes are different, flag it as an
+    // error.
+    if (OpInfo.hasMatchingInput()) {
+      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
+      
+      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
+        if ((OpInfo.ConstraintVT.isInteger() !=
+             Input.ConstraintVT.isInteger()) ||
+            (OpInfo.ConstraintVT.getSizeInBits() !=
+             Input.ConstraintVT.getSizeInBits())) {
+          report_fatal_error("Unsupported asm: input constraint"
+                             " with a matching output constraint of"
+                             " incompatible type!");
+        }
+        Input.ConstraintVT = OpInfo.ConstraintVT;
+      }
+    }
+  }
+
+  return ConstraintOperands;
+}
+
 
 /// getConstraintGenerality - Return an integer indicating how general CT
 /// is.
@@ -2672,6 +2822,76 @@
   }
 }
 
+/// Examine constraint type and operand type and determine a weight value,
+/// where: -1 = invalid match, and 0 = so-so match to 3 = good match.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+int TargetLowering::getMultipleConstraintMatchWeight(
+    AsmOperandInfo &info, int maIndex) const {
+  std::vector<std::string> &rCodes = info.multipleAlternatives[maIndex].Codes;
+  int matchingInput = info.multipleAlternatives[maIndex].MatchingInput;
+  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
+  int BestWeight = -1;
+
+  // Loop over the options, keeping track of the most general one.
+  for (unsigned i = 0, e = rCodes.size(); i != e; ++i) {
+    int weight = getSingleConstraintMatchWeight(info, rCodes[i].c_str());
+    if (weight > BestWeight)
+      BestWeight = weight;
+  }
+
+  return BestWeight;
+}
+
+/// Examine constraint type and operand type and determine a weight value,
+/// where: -1 = invalid match, and 0 = so-so match to 3 = good match.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+int TargetLowering::getSingleConstraintMatchWeight(
+    AsmOperandInfo &info, const char *constraint) const {
+  int weight = -1;
+  Value *CallOperandVal = info.CallOperandVal;
+    // If we don't have a value, we can't do a match,
+    // but allow it at the lowest weight.
+  if (CallOperandVal == NULL)
+    return 0;
+  // Look at the constraint type.
+  switch (*constraint) {
+    case 'i': // immediate integer.
+    case 'n': // immediate integer with a known value.
+      weight = 0;
+      if (info.CallOperandVal) {
+        if (isa<ConstantInt>(info.CallOperandVal))
+          weight = 3;
+        else
+          weight = -1;
+      }
+      break;
+    case 's': // non-explicit intregal immediate.
+      weight = 0;
+      if (info.CallOperandVal) {
+        if (isa<GlobalValue>(info.CallOperandVal))
+          weight = 3;
+        else
+          weight = -1;
+      }
+      break;
+    case 'm': // memory operand.
+    case 'o': // offsettable memory operand
+    case 'V': // non-offsettable memory operand
+      weight = 2;
+      break;
+    case 'g': // general register, memory operand or immediate integer.
+    case 'X': // any operand.
+      weight = 1;
+      break;
+    default:
+      weight = 0;
+      break;
+  }
+  return weight;
+}
+
 /// ChooseConstraint - If there are multiple different constraints that we
 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
 /// This is somewhat tricky: constraints fall into four classes: