| //===- LoopDependenceAnalysis.cpp - LDA Implementation ----------*- C++ -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This is the (beginning) of an implementation of a loop dependence analysis | 
 | // framework, which is used to detect dependences in memory accesses in loops. | 
 | // | 
 | // Please note that this is work in progress and the interface is subject to | 
 | // change. | 
 | // | 
 | // TODO: adapt as implementation progresses. | 
 | // | 
 | // TODO: document lingo (pair, subscript, index) | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "lda" | 
 | #include "llvm/ADT/DenseSet.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/Analysis/AliasAnalysis.h" | 
 | #include "llvm/Analysis/LoopDependenceAnalysis.h" | 
 | #include "llvm/Analysis/LoopPass.h" | 
 | #include "llvm/Analysis/ScalarEvolution.h" | 
 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/Operator.h" | 
 | #include "llvm/Support/Allocator.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | using namespace llvm; | 
 |  | 
 | STATISTIC(NumAnswered,    "Number of dependence queries answered"); | 
 | STATISTIC(NumAnalysed,    "Number of distinct dependence pairs analysed"); | 
 | STATISTIC(NumDependent,   "Number of pairs with dependent accesses"); | 
 | STATISTIC(NumIndependent, "Number of pairs with independent accesses"); | 
 | STATISTIC(NumUnknown,     "Number of pairs with unknown accesses"); | 
 |  | 
 | LoopPass *llvm::createLoopDependenceAnalysisPass() { | 
 |   return new LoopDependenceAnalysis(); | 
 | } | 
 |  | 
 | static RegisterPass<LoopDependenceAnalysis> | 
 | R("lda", "Loop Dependence Analysis", false, true); | 
 | char LoopDependenceAnalysis::ID = 0; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                             Utility Functions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static inline bool IsMemRefInstr(const Value *V) { | 
 |   const Instruction *I = dyn_cast<const Instruction>(V); | 
 |   return I && (I->mayReadFromMemory() || I->mayWriteToMemory()); | 
 | } | 
 |  | 
 | static void GetMemRefInstrs(const Loop *L, | 
 |                             SmallVectorImpl<Instruction*> &Memrefs) { | 
 |   for (Loop::block_iterator b = L->block_begin(), be = L->block_end(); | 
 |        b != be; ++b) | 
 |     for (BasicBlock::iterator i = (*b)->begin(), ie = (*b)->end(); | 
 |          i != ie; ++i) | 
 |       if (IsMemRefInstr(i)) | 
 |         Memrefs.push_back(i); | 
 | } | 
 |  | 
 | static bool IsLoadOrStoreInst(Value *I) { | 
 |   return isa<LoadInst>(I) || isa<StoreInst>(I); | 
 | } | 
 |  | 
 | static Value *GetPointerOperand(Value *I) { | 
 |   if (LoadInst *i = dyn_cast<LoadInst>(I)) | 
 |     return i->getPointerOperand(); | 
 |   if (StoreInst *i = dyn_cast<StoreInst>(I)) | 
 |     return i->getPointerOperand(); | 
 |   llvm_unreachable("Value is no load or store instruction!"); | 
 |   // Never reached. | 
 |   return 0; | 
 | } | 
 |  | 
 | static AliasAnalysis::AliasResult UnderlyingObjectsAlias(AliasAnalysis *AA, | 
 |                                                          const Value *A, | 
 |                                                          const Value *B) { | 
 |   const Value *aObj = A->getUnderlyingObject(); | 
 |   const Value *bObj = B->getUnderlyingObject(); | 
 |   return AA->alias(aObj, AA->getTypeStoreSize(aObj->getType()), | 
 |                    bObj, AA->getTypeStoreSize(bObj->getType())); | 
 | } | 
 |  | 
 | static inline const SCEV *GetZeroSCEV(ScalarEvolution *SE) { | 
 |   return SE->getConstant(Type::getInt32Ty(SE->getContext()), 0L); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                             Dependence Testing | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | bool LoopDependenceAnalysis::isDependencePair(const Value *A, | 
 |                                               const Value *B) const { | 
 |   return IsMemRefInstr(A) && | 
 |          IsMemRefInstr(B) && | 
 |          (cast<const Instruction>(A)->mayWriteToMemory() || | 
 |           cast<const Instruction>(B)->mayWriteToMemory()); | 
 | } | 
 |  | 
 | bool LoopDependenceAnalysis::findOrInsertDependencePair(Value *A, | 
 |                                                         Value *B, | 
 |                                                         DependencePair *&P) { | 
 |   void *insertPos = 0; | 
 |   FoldingSetNodeID id; | 
 |   id.AddPointer(A); | 
 |   id.AddPointer(B); | 
 |  | 
 |   P = Pairs.FindNodeOrInsertPos(id, insertPos); | 
 |   if (P) return true; | 
 |  | 
 |   P = PairAllocator.Allocate<DependencePair>(); | 
 |   new (P) DependencePair(id, A, B); | 
 |   Pairs.InsertNode(P, insertPos); | 
 |   return false; | 
 | } | 
 |  | 
 | void LoopDependenceAnalysis::getLoops(const SCEV *S, | 
 |                                       DenseSet<const Loop*>* Loops) const { | 
 |   // Refactor this into an SCEVVisitor, if efficiency becomes a concern. | 
 |   for (const Loop *L = this->L; L != 0; L = L->getParentLoop()) | 
 |     if (!S->isLoopInvariant(L)) | 
 |       Loops->insert(L); | 
 | } | 
 |  | 
 | bool LoopDependenceAnalysis::isLoopInvariant(const SCEV *S) const { | 
 |   DenseSet<const Loop*> loops; | 
 |   getLoops(S, &loops); | 
 |   return loops.empty(); | 
 | } | 
 |  | 
 | bool LoopDependenceAnalysis::isAffine(const SCEV *S) const { | 
 |   const SCEVAddRecExpr *rec = dyn_cast<SCEVAddRecExpr>(S); | 
 |   return isLoopInvariant(S) || (rec && rec->isAffine()); | 
 | } | 
 |  | 
 | bool LoopDependenceAnalysis::isZIVPair(const SCEV *A, const SCEV *B) const { | 
 |   return isLoopInvariant(A) && isLoopInvariant(B); | 
 | } | 
 |  | 
 | bool LoopDependenceAnalysis::isSIVPair(const SCEV *A, const SCEV *B) const { | 
 |   DenseSet<const Loop*> loops; | 
 |   getLoops(A, &loops); | 
 |   getLoops(B, &loops); | 
 |   return loops.size() == 1; | 
 | } | 
 |  | 
 | LoopDependenceAnalysis::DependenceResult | 
 | LoopDependenceAnalysis::analyseZIV(const SCEV *A, | 
 |                                    const SCEV *B, | 
 |                                    Subscript *S) const { | 
 |   assert(isZIVPair(A, B) && "Attempted to ZIV-test non-ZIV SCEVs!"); | 
 |   return A == B ? Dependent : Independent; | 
 | } | 
 |  | 
 | LoopDependenceAnalysis::DependenceResult | 
 | LoopDependenceAnalysis::analyseSIV(const SCEV *A, | 
 |                                    const SCEV *B, | 
 |                                    Subscript *S) const { | 
 |   return Unknown; // TODO: Implement. | 
 | } | 
 |  | 
 | LoopDependenceAnalysis::DependenceResult | 
 | LoopDependenceAnalysis::analyseMIV(const SCEV *A, | 
 |                                    const SCEV *B, | 
 |                                    Subscript *S) const { | 
 |   return Unknown; // TODO: Implement. | 
 | } | 
 |  | 
 | LoopDependenceAnalysis::DependenceResult | 
 | LoopDependenceAnalysis::analyseSubscript(const SCEV *A, | 
 |                                          const SCEV *B, | 
 |                                          Subscript *S) const { | 
 |   DEBUG(errs() << "  Testing subscript: " << *A << ", " << *B << "\n"); | 
 |  | 
 |   if (A == B) { | 
 |     DEBUG(errs() << "  -> [D] same SCEV\n"); | 
 |     return Dependent; | 
 |   } | 
 |  | 
 |   if (!isAffine(A) || !isAffine(B)) { | 
 |     DEBUG(errs() << "  -> [?] not affine\n"); | 
 |     return Unknown; | 
 |   } | 
 |  | 
 |   if (isZIVPair(A, B)) | 
 |     return analyseZIV(A, B, S); | 
 |  | 
 |   if (isSIVPair(A, B)) | 
 |     return analyseSIV(A, B, S); | 
 |  | 
 |   return analyseMIV(A, B, S); | 
 | } | 
 |  | 
 | LoopDependenceAnalysis::DependenceResult | 
 | LoopDependenceAnalysis::analysePair(DependencePair *P) const { | 
 |   DEBUG(errs() << "Analysing:\n" << *P->A << "\n" << *P->B << "\n"); | 
 |  | 
 |   // We only analyse loads and stores but no possible memory accesses by e.g. | 
 |   // free, call, or invoke instructions. | 
 |   if (!IsLoadOrStoreInst(P->A) || !IsLoadOrStoreInst(P->B)) { | 
 |     DEBUG(errs() << "--> [?] no load/store\n"); | 
 |     return Unknown; | 
 |   } | 
 |  | 
 |   Value *aPtr = GetPointerOperand(P->A); | 
 |   Value *bPtr = GetPointerOperand(P->B); | 
 |  | 
 |   switch (UnderlyingObjectsAlias(AA, aPtr, bPtr)) { | 
 |   case AliasAnalysis::MayAlias: | 
 |     // We can not analyse objects if we do not know about their aliasing. | 
 |     DEBUG(errs() << "---> [?] may alias\n"); | 
 |     return Unknown; | 
 |  | 
 |   case AliasAnalysis::NoAlias: | 
 |     // If the objects noalias, they are distinct, accesses are independent. | 
 |     DEBUG(errs() << "---> [I] no alias\n"); | 
 |     return Independent; | 
 |  | 
 |   case AliasAnalysis::MustAlias: | 
 |     break; // The underlying objects alias, test accesses for dependence. | 
 |   } | 
 |  | 
 |   const GEPOperator *aGEP = dyn_cast<GEPOperator>(aPtr); | 
 |   const GEPOperator *bGEP = dyn_cast<GEPOperator>(bPtr); | 
 |  | 
 |   if (!aGEP || !bGEP) | 
 |     return Unknown; | 
 |  | 
 |   // FIXME: Is filtering coupled subscripts necessary? | 
 |  | 
 |   // Collect GEP operand pairs (FIXME: use GetGEPOperands from BasicAA), adding | 
 |   // trailing zeroes to the smaller GEP, if needed. | 
 |   typedef SmallVector<std::pair<const SCEV*, const SCEV*>, 4> GEPOpdPairsTy; | 
 |   GEPOpdPairsTy opds; | 
 |   for(GEPOperator::const_op_iterator aIdx = aGEP->idx_begin(), | 
 |                                      aEnd = aGEP->idx_end(), | 
 |                                      bIdx = bGEP->idx_begin(), | 
 |                                      bEnd = bGEP->idx_end(); | 
 |       aIdx != aEnd && bIdx != bEnd; | 
 |       aIdx += (aIdx != aEnd), bIdx += (bIdx != bEnd)) { | 
 |     const SCEV* aSCEV = (aIdx != aEnd) ? SE->getSCEV(*aIdx) : GetZeroSCEV(SE); | 
 |     const SCEV* bSCEV = (bIdx != bEnd) ? SE->getSCEV(*bIdx) : GetZeroSCEV(SE); | 
 |     opds.push_back(std::make_pair(aSCEV, bSCEV)); | 
 |   } | 
 |  | 
 |   if (!opds.empty() && opds[0].first != opds[0].second) { | 
 |     // We cannot (yet) handle arbitrary GEP pointer offsets. By limiting | 
 |     // | 
 |     // TODO: this could be relaxed by adding the size of the underlying object | 
 |     // to the first subscript. If we have e.g. (GEP x,0,i; GEP x,2,-i) and we | 
 |     // know that x is a [100 x i8]*, we could modify the first subscript to be | 
 |     // (i, 200-i) instead of (i, -i). | 
 |     return Unknown; | 
 |   } | 
 |  | 
 |   // Now analyse the collected operand pairs (skipping the GEP ptr offsets). | 
 |   for (GEPOpdPairsTy::const_iterator i = opds.begin() + 1, end = opds.end(); | 
 |        i != end; ++i) { | 
 |     Subscript subscript; | 
 |     DependenceResult result = analyseSubscript(i->first, i->second, &subscript); | 
 |     if (result != Dependent) { | 
 |       // We either proved independence or failed to analyse this subscript. | 
 |       // Further subscripts will not improve the situation, so abort early. | 
 |       return result; | 
 |     } | 
 |     P->Subscripts.push_back(subscript); | 
 |   } | 
 |   // We successfully analysed all subscripts but failed to prove independence. | 
 |   return Dependent; | 
 | } | 
 |  | 
 | bool LoopDependenceAnalysis::depends(Value *A, Value *B) { | 
 |   assert(isDependencePair(A, B) && "Values form no dependence pair!"); | 
 |   ++NumAnswered; | 
 |  | 
 |   DependencePair *p; | 
 |   if (!findOrInsertDependencePair(A, B, p)) { | 
 |     // The pair is not cached, so analyse it. | 
 |     ++NumAnalysed; | 
 |     switch (p->Result = analysePair(p)) { | 
 |     case Dependent:   ++NumDependent;   break; | 
 |     case Independent: ++NumIndependent; break; | 
 |     case Unknown:     ++NumUnknown;     break; | 
 |     } | 
 |   } | 
 |   return p->Result != Independent; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                   LoopDependenceAnalysis Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | bool LoopDependenceAnalysis::runOnLoop(Loop *L, LPPassManager &) { | 
 |   this->L = L; | 
 |   AA = &getAnalysis<AliasAnalysis>(); | 
 |   SE = &getAnalysis<ScalarEvolution>(); | 
 |   return false; | 
 | } | 
 |  | 
 | void LoopDependenceAnalysis::releaseMemory() { | 
 |   Pairs.clear(); | 
 |   PairAllocator.Reset(); | 
 | } | 
 |  | 
 | void LoopDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |   AU.setPreservesAll(); | 
 |   AU.addRequiredTransitive<AliasAnalysis>(); | 
 |   AU.addRequiredTransitive<ScalarEvolution>(); | 
 | } | 
 |  | 
 | static void PrintLoopInfo(raw_ostream &OS, | 
 |                           LoopDependenceAnalysis *LDA, const Loop *L) { | 
 |   if (!L->empty()) return; // ignore non-innermost loops | 
 |  | 
 |   SmallVector<Instruction*, 8> memrefs; | 
 |   GetMemRefInstrs(L, memrefs); | 
 |  | 
 |   OS << "Loop at depth " << L->getLoopDepth() << ", header block: "; | 
 |   WriteAsOperand(OS, L->getHeader(), false); | 
 |   OS << "\n"; | 
 |  | 
 |   OS << "  Load/store instructions: " << memrefs.size() << "\n"; | 
 |   for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(), | 
 |        end = memrefs.end(); x != end; ++x) | 
 |     OS << "\t" << (x - memrefs.begin()) << ": " << **x << "\n"; | 
 |  | 
 |   OS << "  Pairwise dependence results:\n"; | 
 |   for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(), | 
 |        end = memrefs.end(); x != end; ++x) | 
 |     for (SmallVector<Instruction*, 8>::const_iterator y = x + 1; | 
 |          y != end; ++y) | 
 |       if (LDA->isDependencePair(*x, *y)) | 
 |         OS << "\t" << (x - memrefs.begin()) << "," << (y - memrefs.begin()) | 
 |            << ": " << (LDA->depends(*x, *y) ? "dependent" : "independent") | 
 |            << "\n"; | 
 | } | 
 |  | 
 | void LoopDependenceAnalysis::print(raw_ostream &OS, const Module*) const { | 
 |   // TODO: doc why const_cast is safe | 
 |   PrintLoopInfo(OS, const_cast<LoopDependenceAnalysis*>(this), this->L); | 
 | } |