Update aosp/master LLVM for rebase to r230699.

Change-Id: I2b5be30509658cb8266be782de0ab24f9099f9b9
diff --git a/lib/CodeGen/SelectionDAG/StatepointLowering.cpp b/lib/CodeGen/SelectionDAG/StatepointLowering.cpp
new file mode 100644
index 0000000..1271f6b
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/StatepointLowering.cpp
@@ -0,0 +1,679 @@
+//===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file includes support code use by SelectionDAGBuilder when lowering a
+// statepoint sequence in SelectionDAG IR.
+//
+//===----------------------------------------------------------------------===//
+
+#include "StatepointLowering.h"
+#include "SelectionDAGBuilder.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/GCMetadata.h"
+#include "llvm/CodeGen/GCStrategy.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Statepoint.h"
+#include "llvm/Target/TargetLowering.h"
+#include <algorithm>
+using namespace llvm;
+
+#define DEBUG_TYPE "statepoint-lowering"
+
+STATISTIC(NumSlotsAllocatedForStatepoints,
+          "Number of stack slots allocated for statepoints");
+STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
+STATISTIC(StatepointMaxSlotsRequired,
+          "Maximum number of stack slots required for a singe statepoint");
+
+void
+StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
+  // Consistency check
+  assert(PendingGCRelocateCalls.empty() &&
+         "Trying to visit statepoint before finished processing previous one");
+  Locations.clear();
+  RelocLocations.clear();
+  NextSlotToAllocate = 0;
+  // Need to resize this on each safepoint - we need the two to stay in
+  // sync and the clear patterns of a SelectionDAGBuilder have no relation
+  // to FunctionLoweringInfo.
+  AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
+  for (size_t i = 0; i < AllocatedStackSlots.size(); i++) {
+    AllocatedStackSlots[i] = false;
+  }
+}
+void StatepointLoweringState::clear() {
+  Locations.clear();
+  RelocLocations.clear();
+  AllocatedStackSlots.clear();
+  assert(PendingGCRelocateCalls.empty() &&
+         "cleared before statepoint sequence completed");
+}
+
+SDValue
+StatepointLoweringState::allocateStackSlot(EVT ValueType,
+                                           SelectionDAGBuilder &Builder) {
+
+  NumSlotsAllocatedForStatepoints++;
+
+  // The basic scheme here is to first look for a previously created stack slot
+  // which is not in use (accounting for the fact arbitrary slots may already
+  // be reserved), or to create a new stack slot and use it.
+
+  // If this doesn't succeed in 40000 iterations, something is seriously wrong
+  for (int i = 0; i < 40000; i++) {
+    assert(Builder.FuncInfo.StatepointStackSlots.size() ==
+               AllocatedStackSlots.size() &&
+           "broken invariant");
+    const size_t NumSlots = AllocatedStackSlots.size();
+    assert(NextSlotToAllocate <= NumSlots && "broken invariant");
+
+    if (NextSlotToAllocate >= NumSlots) {
+      assert(NextSlotToAllocate == NumSlots);
+      // record stats
+      if (NumSlots + 1 > StatepointMaxSlotsRequired) {
+        StatepointMaxSlotsRequired = NumSlots + 1;
+      }
+
+      SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
+      const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
+      Builder.FuncInfo.StatepointStackSlots.push_back(FI);
+      AllocatedStackSlots.push_back(true);
+      return SpillSlot;
+    }
+    if (!AllocatedStackSlots[NextSlotToAllocate]) {
+      const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
+      AllocatedStackSlots[NextSlotToAllocate] = true;
+      return Builder.DAG.getFrameIndex(FI, ValueType);
+    }
+    // Note: We deliberately choose to advance this only on the failing path.
+    // Doing so on the suceeding path involes a bit of complexity that caused a
+    // minor bug previously.  Unless performance shows this matters, please
+    // keep this code as simple as possible.
+    NextSlotToAllocate++;
+  }
+  llvm_unreachable("infinite loop?");
+}
+
+/// Try to find existing copies of the incoming values in stack slots used for
+/// statepoint spilling.  If we can find a spill slot for the incoming value,
+/// mark that slot as allocated, and reuse the same slot for this safepoint.
+/// This helps to avoid series of loads and stores that only serve to resuffle
+/// values on the stack between calls.
+static void reservePreviousStackSlotForValue(SDValue Incoming,
+                                             SelectionDAGBuilder &Builder) {
+
+  if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
+    // We won't need to spill this, so no need to check for previously
+    // allocated stack slots
+    return;
+  }
+
+  SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
+  if (Loc.getNode()) {
+    // duplicates in input
+    return;
+  }
+
+  // Search back for the load from a stack slot pattern to find the original
+  // slot we allocated for this value.  We could extend this to deal with
+  // simple modification patterns, but simple dealing with trivial load/store
+  // sequences helps a lot already.
+  if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Incoming)) {
+    if (auto *FI = dyn_cast<FrameIndexSDNode>(Load->getBasePtr())) {
+      const int Index = FI->getIndex();
+      auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(),
+                           Builder.FuncInfo.StatepointStackSlots.end(), Index);
+      if (Itr == Builder.FuncInfo.StatepointStackSlots.end()) {
+        // not one of the lowering stack slots, can't reuse!
+        // TODO: Actually, we probably could reuse the stack slot if the value
+        // hasn't changed at all, but we'd need to look for intervening writes
+        return;
+      } else {
+        // This is one of our dedicated lowering slots
+        const int Offset =
+            std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr);
+        if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
+          // stack slot already assigned to someone else, can't use it!
+          // TODO: currently we reserve space for gc arguments after doing
+          // normal allocation for deopt arguments.  We should reserve for
+          // _all_ deopt and gc arguments, then start allocating.  This
+          // will prevent some moves being inserted when vm state changes,
+          // but gc state doesn't between two calls.
+          return;
+        }
+        // Reserve this stack slot
+        Builder.StatepointLowering.reserveStackSlot(Offset);
+      }
+
+      // Cache this slot so we find it when going through the normal
+      // assignment loop.
+      SDValue Loc =
+          Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
+
+      Builder.StatepointLowering.setLocation(Incoming, Loc);
+    }
+  }
+
+  // TODO: handle case where a reloaded value flows through a phi to
+  // another safepoint.  e.g.
+  // bb1:
+  //  a' = relocated...
+  // bb2: % pred: bb1, bb3, bb4, etc.
+  //  a_phi = phi(a', ...)
+  // statepoint ... a_phi
+  // NOTE: This will require reasoning about cross basic block values.  This is
+  // decidedly non trivial and this might not be the right place to do it.  We
+  // don't really have the information we need here...
+
+  // TODO: handle simple updates.  If a value is modified and the original
+  // value is no longer live, it would be nice to put the modified value in the
+  // same slot.  This allows folding of the memory accesses for some
+  // instructions types (like an increment).
+  // statepoint (i)
+  // i1 = i+1
+  // statepoint (i1)
+}
+
+/// Remove any duplicate (as SDValues) from the derived pointer pairs.  This
+/// is not required for correctness.  It's purpose is to reduce the size of
+/// StackMap section.  It has no effect on the number of spill slots required
+/// or the actual lowering.
+static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases,
+                                   SmallVectorImpl<const Value *> &Ptrs,
+                                   SmallVectorImpl<const Value *> &Relocs,
+                                   SelectionDAGBuilder &Builder) {
+
+  // This is horribly ineffecient, but I don't care right now
+  SmallSet<SDValue, 64> Seen;
+
+  SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs;
+  for (size_t i = 0; i < Ptrs.size(); i++) {
+    SDValue SD = Builder.getValue(Ptrs[i]);
+    // Only add non-duplicates
+    if (Seen.count(SD) == 0) {
+      NewBases.push_back(Bases[i]);
+      NewPtrs.push_back(Ptrs[i]);
+      NewRelocs.push_back(Relocs[i]);
+    }
+    Seen.insert(SD);
+  }
+  assert(Bases.size() >= NewBases.size());
+  assert(Ptrs.size() >= NewPtrs.size());
+  assert(Relocs.size() >= NewRelocs.size());
+  Bases = NewBases;
+  Ptrs = NewPtrs;
+  Relocs = NewRelocs;
+  assert(Ptrs.size() == Bases.size());
+  assert(Ptrs.size() == Relocs.size());
+}
+
+/// Extract call from statepoint, lower it and return pointer to the
+/// call node. Also update NodeMap so that getValue(statepoint) will
+/// reference lowered call result
+static SDNode *lowerCallFromStatepoint(ImmutableStatepoint StatepointSite,
+                                       SelectionDAGBuilder &Builder) {
+
+  ImmutableCallSite CS(StatepointSite.getCallSite());
+
+  // Lower the actual call itself - This is a bit of a hack, but we want to
+  // avoid modifying the actual lowering code.  This is similiar in intent to
+  // the LowerCallOperands mechanism used by PATCHPOINT, but is structured
+  // differently.  Hopefully, this is slightly more robust w.r.t. calling
+  // convention, return values, and other function attributes.
+  Value *ActualCallee = const_cast<Value *>(StatepointSite.actualCallee());
+
+  std::vector<Value *> Args;
+  CallInst::const_op_iterator arg_begin = StatepointSite.call_args_begin();
+  CallInst::const_op_iterator arg_end = StatepointSite.call_args_end();
+  Args.insert(Args.end(), arg_begin, arg_end);
+  // TODO: remove the creation of a new instruction!  We should not be
+  // modifying the IR (even temporarily) at this point.
+  CallInst *Tmp = CallInst::Create(ActualCallee, Args);
+  Tmp->setTailCall(CS.isTailCall());
+  Tmp->setCallingConv(CS.getCallingConv());
+  Tmp->setAttributes(CS.getAttributes());
+  Builder.LowerCallTo(Tmp, Builder.getValue(ActualCallee), false);
+
+  // Handle the return value of the call iff any.
+  const bool HasDef = !Tmp->getType()->isVoidTy();
+  if (HasDef) {
+    // The value of the statepoint itself will be the value of call itself.
+    // We'll replace the actually call node shortly.  gc_result will grab
+    // this value.
+    Builder.setValue(CS.getInstruction(), Builder.getValue(Tmp));
+  } else {
+    // The token value is never used from here on, just generate a poison value
+    Builder.setValue(CS.getInstruction(), Builder.DAG.getIntPtrConstant(-1));
+  }
+  // Remove the fake entry we created so we don't have a hanging reference
+  // after we delete this node.
+  Builder.removeValue(Tmp);
+  delete Tmp;
+  Tmp = nullptr;
+
+  // Search for the call node
+  // The following code is essentially reverse engineering X86's
+  // LowerCallTo.
+  SDNode *CallNode = nullptr;
+
+  // We just emitted a call, so it should be last thing generated
+  SDValue Chain = Builder.DAG.getRoot();
+
+  // Find closest CALLSEQ_END walking back through lowered nodes if needed
+  SDNode *CallEnd = Chain.getNode();
+  int Sanity = 0;
+  while (CallEnd->getOpcode() != ISD::CALLSEQ_END) {
+    CallEnd = CallEnd->getGluedNode();
+    assert(CallEnd && "Can not find call node");
+    assert(Sanity < 20 && "should have found call end already");
+    Sanity++;
+  }
+  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
+         "Expected a callseq node.");
+  assert(CallEnd->getGluedNode());
+
+  // Step back inside the CALLSEQ
+  CallNode = CallEnd->getGluedNode();
+  return CallNode;
+}
+
+/// Callect all gc pointers coming into statepoint intrinsic, clean them up,
+/// and return two arrays:
+///   Bases - base pointers incoming to this statepoint
+///   Ptrs - derived pointers incoming to this statepoint
+///   Relocs - the gc_relocate corresponding to each base/ptr pair
+/// Elements of this arrays should be in one-to-one correspondence with each
+/// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call
+static void
+getIncomingStatepointGCValues(SmallVectorImpl<const Value *> &Bases,
+                              SmallVectorImpl<const Value *> &Ptrs,
+                              SmallVectorImpl<const Value *> &Relocs,
+                              ImmutableStatepoint StatepointSite,
+                              SelectionDAGBuilder &Builder) {
+  for (GCRelocateOperands relocateOpers :
+         StatepointSite.getRelocates(StatepointSite)) {
+    Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction());
+    Bases.push_back(relocateOpers.basePtr());
+    Ptrs.push_back(relocateOpers.derivedPtr());
+  }
+
+  // Remove any redundant llvm::Values which map to the same SDValue as another
+  // input.  Also has the effect of removing duplicates in the original
+  // llvm::Value input list as well.  This is a useful optimization for
+  // reducing the size of the StackMap section.  It has no other impact.
+  removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder);
+
+  assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size());
+}
+
+/// Spill a value incoming to the statepoint. It might be either part of
+/// vmstate
+/// or gcstate. In both cases unconditionally spill it on the stack unless it
+/// is a null constant. Return pair with first element being frame index
+/// containing saved value and second element with outgoing chain from the
+/// emitted store
+static std::pair<SDValue, SDValue>
+spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
+                             SelectionDAGBuilder &Builder) {
+  SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
+
+  // Emit new store if we didn't do it for this ptr before
+  if (!Loc.getNode()) {
+    Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
+                                                       Builder);
+    assert(isa<FrameIndexSDNode>(Loc));
+    int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
+    // We use TargetFrameIndex so that isel will not select it into LEA
+    Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
+
+    // TODO: We can create TokenFactor node instead of
+    //       chaining stores one after another, this may allow
+    //       a bit more optimal scheduling for them
+    Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
+                                 MachinePointerInfo::getFixedStack(Index),
+                                 false, false, 0);
+
+    Builder.StatepointLowering.setLocation(Incoming, Loc);
+  }
+
+  assert(Loc.getNode());
+  return std::make_pair(Loc, Chain);
+}
+
+/// Lower a single value incoming to a statepoint node.  This value can be
+/// either a deopt value or a gc value, the handling is the same.  We special
+/// case constants and allocas, then fall back to spilling if required.
+static void lowerIncomingStatepointValue(SDValue Incoming,
+                                         SmallVectorImpl<SDValue> &Ops,
+                                         SelectionDAGBuilder &Builder) {
+  SDValue Chain = Builder.getRoot();
+
+  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
+    // If the original value was a constant, make sure it gets recorded as
+    // such in the stackmap.  This is required so that the consumer can
+    // parse any internal format to the deopt state.  It also handles null
+    // pointers and other constant pointers in GC states
+    Ops.push_back(
+        Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
+    Ops.push_back(Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
+  } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
+    // This handles allocas as arguments to the statepoint
+    const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
+    Ops.push_back(
+        Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
+  } else {
+    // Otherwise, locate a spill slot and explicitly spill it so it
+    // can be found by the runtime later.  We currently do not support
+    // tracking values through callee saved registers to their eventual
+    // spill location.  This would be a useful optimization, but would
+    // need to be optional since it requires a lot of complexity on the
+    // runtime side which not all would support.
+    std::pair<SDValue, SDValue> Res =
+        spillIncomingStatepointValue(Incoming, Chain, Builder);
+    Ops.push_back(Res.first);
+    Chain = Res.second;
+  }
+
+  Builder.DAG.setRoot(Chain);
+}
+
+/// Lower deopt state and gc pointer arguments of the statepoint.  The actual
+/// lowering is described in lowerIncomingStatepointValue.  This function is
+/// responsible for lowering everything in the right position and playing some
+/// tricks to avoid redundant stack manipulation where possible.  On
+/// completion, 'Ops' will contain ready to use operands for machine code
+/// statepoint. The chain nodes will have already been created and the DAG root
+/// will be set to the last value spilled (if any were).
+static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
+                                    ImmutableStatepoint StatepointSite,
+                                    SelectionDAGBuilder &Builder) {
+
+  // Lower the deopt and gc arguments for this statepoint.  Layout will
+  // be: deopt argument length, deopt arguments.., gc arguments...
+
+  SmallVector<const Value *, 64> Bases, Ptrs, Relocations;
+  getIncomingStatepointGCValues(Bases, Ptrs, Relocations,
+                                StatepointSite, Builder);
+
+#ifndef NDEBUG
+  // Check that each of the gc pointer and bases we've gotten out of the
+  // safepoint is something the strategy thinks might be a pointer into the GC
+  // heap.  This is basically just here to help catch errors during statepoint
+  // insertion. TODO: This should actually be in the Verifier, but we can't get
+  // to the GCStrategy from there (yet).
+  if (Builder.GFI) {
+    GCStrategy &S = Builder.GFI->getStrategy();
+    for (const Value *V : Bases) {
+      auto Opt = S.isGCManagedPointer(V);
+      if (Opt.hasValue()) {
+        assert(Opt.getValue() &&
+               "non gc managed base pointer found in statepoint");
+      }
+    }
+    for (const Value *V : Ptrs) {
+      auto Opt = S.isGCManagedPointer(V);
+      if (Opt.hasValue()) {
+        assert(Opt.getValue() &&
+               "non gc managed derived pointer found in statepoint");
+      }
+    }
+    for (const Value *V : Relocations) {
+      auto Opt = S.isGCManagedPointer(V);
+      if (Opt.hasValue()) {
+        assert(Opt.getValue() && "non gc managed pointer relocated");
+      }
+    }
+  }
+#endif
+
+
+
+  // Before we actually start lowering (and allocating spill slots for values),
+  // reserve any stack slots which we judge to be profitable to reuse for a
+  // particular value.  This is purely an optimization over the code below and
+  // doesn't change semantics at all.  It is important for performance that we
+  // reserve slots for both deopt and gc values before lowering either.
+  for (auto I = StatepointSite.vm_state_begin() + 1,
+            E = StatepointSite.vm_state_end();
+       I != E; ++I) {
+    Value *V = *I;
+    SDValue Incoming = Builder.getValue(V);
+    reservePreviousStackSlotForValue(Incoming, Builder);
+  }
+  for (unsigned i = 0; i < Bases.size() * 2; ++i) {
+    // Even elements will contain base, odd elements - derived ptr
+    const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2];
+    SDValue Incoming = Builder.getValue(V);
+    reservePreviousStackSlotForValue(Incoming, Builder);
+  }
+
+  // First, prefix the list with the number of unique values to be
+  // lowered.  Note that this is the number of *Values* not the
+  // number of SDValues required to lower them.
+  const int NumVMSArgs = StatepointSite.numTotalVMSArgs();
+  Ops.push_back(
+      Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
+  Ops.push_back(Builder.DAG.getTargetConstant(NumVMSArgs, MVT::i64));
+
+  assert(NumVMSArgs + 1 == std::distance(StatepointSite.vm_state_begin(),
+                                         StatepointSite.vm_state_end()));
+
+  // The vm state arguments are lowered in an opaque manner.  We do
+  // not know what type of values are contained within.  We skip the
+  // first one since that happens to be the total number we lowered
+  // explicitly just above.  We could have left it in the loop and
+  // not done it explicitly, but it's far easier to understand this
+  // way.
+  for (auto I = StatepointSite.vm_state_begin() + 1,
+            E = StatepointSite.vm_state_end();
+       I != E; ++I) {
+    const Value *V = *I;
+    SDValue Incoming = Builder.getValue(V);
+    lowerIncomingStatepointValue(Incoming, Ops, Builder);
+  }
+
+  // Finally, go ahead and lower all the gc arguments.  There's no prefixed
+  // length for this one.  After lowering, we'll have the base and pointer
+  // arrays interwoven with each (lowered) base pointer immediately followed by
+  // it's (lowered) derived pointer.  i.e
+  // (base[0], ptr[0], base[1], ptr[1], ...)
+  for (unsigned i = 0; i < Bases.size() * 2; ++i) {
+    // Even elements will contain base, odd elements - derived ptr
+    const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2];
+    SDValue Incoming = Builder.getValue(V);
+    lowerIncomingStatepointValue(Incoming, Ops, Builder);
+  }
+}
+
+void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) {
+  // Check some preconditions for sanity
+  assert(isStatepoint(&CI) &&
+         "function called must be the statepoint function");
+
+  LowerStatepoint(ImmutableStatepoint(&CI));
+}
+
+void SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP) {
+  // The basic scheme here is that information about both the original call and
+  // the safepoint is encoded in the CallInst.  We create a temporary call and
+  // lower it, then reverse engineer the calling sequence.
+
+  NumOfStatepoints++;
+  // Clear state
+  StatepointLowering.startNewStatepoint(*this);
+
+  ImmutableCallSite CS(ISP.getCallSite());
+
+#ifndef NDEBUG
+  // Consistency check
+  for (const User *U : CS->users()) {
+    const CallInst *Call = cast<CallInst>(U);
+    if (isGCRelocate(Call))
+      StatepointLowering.scheduleRelocCall(*Call);
+  }
+#endif
+
+#ifndef NDEBUG
+  // If this is a malformed statepoint, report it early to simplify debugging.
+  // This should catch any IR level mistake that's made when constructing or
+  // transforming statepoints.
+  ISP.verify();
+
+  // Check that the associated GCStrategy expects to encounter statepoints.
+  // TODO: This if should become an assert.  For now, we allow the GCStrategy
+  // to be optional for backwards compatibility.  This will only last a short
+  // period (i.e. a couple of weeks).
+  if (GFI) {
+    assert(GFI->getStrategy().useStatepoints() &&
+           "GCStrategy does not expect to encounter statepoints");
+  }
+#endif
+
+
+  // Lower statepoint vmstate and gcstate arguments
+  SmallVector<SDValue, 10> LoweredArgs;
+  lowerStatepointMetaArgs(LoweredArgs, ISP, *this);
+
+  // Get call node, we will replace it later with statepoint
+  SDNode *CallNode = lowerCallFromStatepoint(ISP, *this);
+
+  // Construct the actual STATEPOINT node with all the appropriate arguments
+  // and return values.
+
+  // TODO: Currently, all of these operands are being marked as read/write in
+  // PrologEpilougeInserter.cpp, we should special case the VMState arguments
+  // and flags to be read-only.
+  SmallVector<SDValue, 40> Ops;
+
+  // Calculate and push starting position of vmstate arguments
+  // Call Node: Chain, Target, {Args}, RegMask, [Glue]
+  SDValue Glue;
+  if (CallNode->getGluedNode()) {
+    // Glue is always last operand
+    Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
+  }
+  // Get number of arguments incoming directly into call node
+  unsigned NumCallRegArgs =
+      CallNode->getNumOperands() - (Glue.getNode() ? 4 : 3);
+  Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
+
+  // Add call target
+  SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
+  Ops.push_back(CallTarget);
+
+  // Add call arguments
+  // Get position of register mask in the call
+  SDNode::op_iterator RegMaskIt;
+  if (Glue.getNode())
+    RegMaskIt = CallNode->op_end() - 2;
+  else
+    RegMaskIt = CallNode->op_end() - 1;
+  Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
+
+  // Add a leading constant argument with the Flags and the calling convention
+  // masked together
+  CallingConv::ID CallConv = CS.getCallingConv();
+  int Flags = dyn_cast<ConstantInt>(CS.getArgument(2))->getZExtValue();
+  assert(Flags == 0 && "not expected to be used");
+  Ops.push_back(DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
+  Ops.push_back(
+      DAG.getTargetConstant(Flags | ((unsigned)CallConv << 1), MVT::i64));
+
+  // Insert all vmstate and gcstate arguments
+  Ops.insert(Ops.end(), LoweredArgs.begin(), LoweredArgs.end());
+
+  // Add register mask from call node
+  Ops.push_back(*RegMaskIt);
+
+  // Add chain
+  Ops.push_back(CallNode->getOperand(0));
+
+  // Same for the glue, but we add it only if original call had it
+  if (Glue.getNode())
+    Ops.push_back(Glue);
+
+  // Compute return values.  Provide a glue output since we consume one as
+  // input.  This allows someone else to chain off us as needed.
+  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+
+  SDNode *StatepointMCNode = DAG.getMachineNode(TargetOpcode::STATEPOINT,
+                                                getCurSDLoc(), NodeTys, Ops);
+
+  // Replace original call
+  DAG.ReplaceAllUsesWith(CallNode, StatepointMCNode); // This may update Root
+  // Remove originall call node
+  DAG.DeleteNode(CallNode);
+
+  // DON'T set the root - under the assumption that it's already set past the
+  // inserted node we created.
+
+  // TODO: A better future implementation would be to emit a single variable
+  // argument, variable return value STATEPOINT node here and then hookup the
+  // return value of each gc.relocate to the respective output of the
+  // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
+  // to actually be possible today.
+}
+
+void SelectionDAGBuilder::visitGCResult(const CallInst &CI) {
+  // The result value of the gc_result is simply the result of the actual
+  // call.  We've already emitted this, so just grab the value.
+  Instruction *I = cast<Instruction>(CI.getArgOperand(0));
+  assert(isStatepoint(I) &&
+         "first argument must be a statepoint token");
+
+  setValue(&CI, getValue(I));
+}
+
+void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) {
+#ifndef NDEBUG
+  // Consistency check
+  StatepointLowering.relocCallVisited(CI);
+#endif
+
+  GCRelocateOperands relocateOpers(&CI);
+  SDValue SD = getValue(relocateOpers.derivedPtr());
+
+  if (isa<ConstantSDNode>(SD) || isa<FrameIndexSDNode>(SD)) {
+    // We didn't need to spill these special cases (constants and allocas).
+    // See the handling in spillIncomingValueForStatepoint for detail.
+    setValue(&CI, SD);
+    return;
+  }
+
+  SDValue Loc = StatepointLowering.getRelocLocation(SD);
+  // Emit new load if we did not emit it before
+  if (!Loc.getNode()) {
+    SDValue SpillSlot = StatepointLowering.getLocation(SD);
+    int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
+
+    // Be conservative: flush all pending loads
+    // TODO: Probably we can be less restrictive on this,
+    // it may allow more scheduling opprtunities
+    SDValue Chain = getRoot();
+
+    Loc = DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain,
+                      SpillSlot, MachinePointerInfo::getFixedStack(FI), false,
+                      false, false, 0);
+
+    StatepointLowering.setRelocLocation(SD, Loc);
+
+    // Again, be conservative, don't emit pending loads
+    DAG.setRoot(Loc.getValue(1));
+  }
+
+  assert(Loc.getNode());
+  setValue(&CI, Loc);
+}