| //===- DataStructure.cpp - Implement the core data structure analysis -----===// |
| // |
| // This file implements the core data structure functionality. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/DSGraph.h" |
| #include "llvm/Function.h" |
| #include "llvm/iOther.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Target/TargetData.h" |
| #include "Support/STLExtras.h" |
| #include "Support/Statistic.h" |
| #include "Support/Timer.h" |
| #include <algorithm> |
| |
| namespace { |
| Statistic<> NumFolds ("dsnode", "Number of nodes completely folded"); |
| Statistic<> NumCallNodesMerged("dsnode", "Number of call nodes merged"); |
| }; |
| |
| namespace DS { // TODO: FIXME |
| extern TargetData TD; |
| } |
| using namespace DS; |
| |
| //===----------------------------------------------------------------------===// |
| // DSNode Implementation |
| //===----------------------------------------------------------------------===// |
| |
| DSNode::DSNode(enum NodeTy NT, const Type *T) |
| : Ty(Type::VoidTy), Size(0), NodeType(NT) { |
| // Add the type entry if it is specified... |
| if (T) mergeTypeInfo(T, 0); |
| } |
| |
| // DSNode copy constructor... do not copy over the referrers list! |
| DSNode::DSNode(const DSNode &N) |
| : Links(N.Links), Globals(N.Globals), Ty(N.Ty), Size(N.Size), |
| NodeType(N.NodeType) { |
| } |
| |
| void DSNode::removeReferrer(DSNodeHandle *H) { |
| // Search backwards, because we depopulate the list from the back for |
| // efficiency (because it's a vector). |
| std::vector<DSNodeHandle*>::reverse_iterator I = |
| std::find(Referrers.rbegin(), Referrers.rend(), H); |
| assert(I != Referrers.rend() && "Referrer not pointing to node!"); |
| Referrers.erase(I.base()-1); |
| } |
| |
| // addGlobal - Add an entry for a global value to the Globals list. This also |
| // marks the node with the 'G' flag if it does not already have it. |
| // |
| void DSNode::addGlobal(GlobalValue *GV) { |
| // Keep the list sorted. |
| std::vector<GlobalValue*>::iterator I = |
| std::lower_bound(Globals.begin(), Globals.end(), GV); |
| |
| if (I == Globals.end() || *I != GV) { |
| //assert(GV->getType()->getElementType() == Ty); |
| Globals.insert(I, GV); |
| NodeType |= GlobalNode; |
| } |
| } |
| |
| /// foldNodeCompletely - If we determine that this node has some funny |
| /// behavior happening to it that we cannot represent, we fold it down to a |
| /// single, completely pessimistic, node. This node is represented as a |
| /// single byte with a single TypeEntry of "void". |
| /// |
| void DSNode::foldNodeCompletely() { |
| if (isNodeCompletelyFolded()) return; |
| |
| ++NumFolds; |
| |
| // We are no longer typed at all... |
| Ty = Type::VoidTy; |
| NodeType |= Array; |
| Size = 1; |
| |
| // Loop over all of our referrers, making them point to our zero bytes of |
| // space. |
| for (std::vector<DSNodeHandle*>::iterator I = Referrers.begin(), |
| E = Referrers.end(); I != E; ++I) |
| (*I)->setOffset(0); |
| |
| // If we have links, merge all of our outgoing links together... |
| for (unsigned i = 1; i < Links.size(); ++i) |
| Links[0].mergeWith(Links[i]); |
| Links.resize(1); |
| } |
| |
| /// isNodeCompletelyFolded - Return true if this node has been completely |
| /// folded down to something that can never be expanded, effectively losing |
| /// all of the field sensitivity that may be present in the node. |
| /// |
| bool DSNode::isNodeCompletelyFolded() const { |
| return getSize() == 1 && Ty == Type::VoidTy && isArray(); |
| } |
| |
| |
| /// mergeTypeInfo - This method merges the specified type into the current node |
| /// at the specified offset. This may update the current node's type record if |
| /// this gives more information to the node, it may do nothing to the node if |
| /// this information is already known, or it may merge the node completely (and |
| /// return true) if the information is incompatible with what is already known. |
| /// |
| /// This method returns true if the node is completely folded, otherwise false. |
| /// |
| bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset) { |
| // Check to make sure the Size member is up-to-date. Size can be one of the |
| // following: |
| // Size = 0, Ty = Void: Nothing is known about this node. |
| // Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero |
| // Size = 1, Ty = Void, Array = 1: The node is collapsed |
| // Otherwise, sizeof(Ty) = Size |
| // |
| assert(((Size == 0 && Ty == Type::VoidTy && !isArray()) || |
| (Size == 0 && !Ty->isSized() && !isArray()) || |
| (Size == 1 && Ty == Type::VoidTy && isArray()) || |
| (Size == 0 && !Ty->isSized() && !isArray()) || |
| (TD.getTypeSize(Ty) == Size)) && |
| "Size member of DSNode doesn't match the type structure!"); |
| assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!"); |
| |
| if (Offset == 0 && NewTy == Ty) |
| return false; // This should be a common case, handle it efficiently |
| |
| // Return true immediately if the node is completely folded. |
| if (isNodeCompletelyFolded()) return true; |
| |
| // If this is an array type, eliminate the outside arrays because they won't |
| // be used anyway. This greatly reduces the size of large static arrays used |
| // as global variables, for example. |
| // |
| bool WillBeArray = false; |
| while (const ArrayType *AT = dyn_cast<ArrayType>(NewTy)) { |
| // FIXME: we might want to keep small arrays, but must be careful about |
| // things like: [2 x [10000 x int*]] |
| NewTy = AT->getElementType(); |
| WillBeArray = true; |
| } |
| |
| // Figure out how big the new type we're merging in is... |
| unsigned NewTySize = NewTy->isSized() ? TD.getTypeSize(NewTy) : 0; |
| |
| // Otherwise check to see if we can fold this type into the current node. If |
| // we can't, we fold the node completely, if we can, we potentially update our |
| // internal state. |
| // |
| if (Ty == Type::VoidTy) { |
| // If this is the first type that this node has seen, just accept it without |
| // question.... |
| assert(Offset == 0 && "Cannot have an offset into a void node!"); |
| assert(!isArray() && "This shouldn't happen!"); |
| Ty = NewTy; |
| NodeType &= ~Array; |
| if (WillBeArray) NodeType |= Array; |
| Size = NewTySize; |
| |
| // Calculate the number of outgoing links from this node. |
| Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift); |
| return false; |
| } |
| |
| // Handle node expansion case here... |
| if (Offset+NewTySize > Size) { |
| // It is illegal to grow this node if we have treated it as an array of |
| // objects... |
| if (isArray()) { |
| foldNodeCompletely(); |
| return true; |
| } |
| |
| if (Offset) { // We could handle this case, but we don't for now... |
| DEBUG(std::cerr << "UNIMP: Trying to merge a growth type into " |
| << "offset != 0: Collapsing!\n"); |
| foldNodeCompletely(); |
| return true; |
| } |
| |
| // Okay, the situation is nice and simple, we are trying to merge a type in |
| // at offset 0 that is bigger than our current type. Implement this by |
| // switching to the new type and then merge in the smaller one, which should |
| // hit the other code path here. If the other code path decides it's not |
| // ok, it will collapse the node as appropriate. |
| // |
| const Type *OldTy = Ty; |
| Ty = NewTy; |
| NodeType &= ~Array; |
| if (WillBeArray) NodeType |= Array; |
| Size = NewTySize; |
| |
| // Must grow links to be the appropriate size... |
| Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift); |
| |
| // Merge in the old type now... which is guaranteed to be smaller than the |
| // "current" type. |
| return mergeTypeInfo(OldTy, 0); |
| } |
| |
| assert(Offset <= Size && |
| "Cannot merge something into a part of our type that doesn't exist!"); |
| |
| // Find the section of Ty that NewTy overlaps with... first we find the |
| // type that starts at offset Offset. |
| // |
| unsigned O = 0; |
| const Type *SubType = Ty; |
| while (O < Offset) { |
| assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!"); |
| |
| switch (SubType->getPrimitiveID()) { |
| case Type::StructTyID: { |
| const StructType *STy = cast<StructType>(SubType); |
| const StructLayout &SL = *TD.getStructLayout(STy); |
| |
| unsigned i = 0, e = SL.MemberOffsets.size(); |
| for (; i+1 < e && SL.MemberOffsets[i+1] <= Offset-O; ++i) |
| /* empty */; |
| |
| // The offset we are looking for must be in the i'th element... |
| SubType = STy->getElementTypes()[i]; |
| O += SL.MemberOffsets[i]; |
| break; |
| } |
| case Type::ArrayTyID: { |
| SubType = cast<ArrayType>(SubType)->getElementType(); |
| unsigned ElSize = TD.getTypeSize(SubType); |
| unsigned Remainder = (Offset-O) % ElSize; |
| O = Offset-Remainder; |
| break; |
| } |
| default: |
| foldNodeCompletely(); |
| return true; |
| } |
| } |
| |
| assert(O == Offset && "Could not achieve the correct offset!"); |
| |
| // If we found our type exactly, early exit |
| if (SubType == NewTy) return false; |
| |
| // Okay, so we found the leader type at the offset requested. Search the list |
| // of types that starts at this offset. If SubType is currently an array or |
| // structure, the type desired may actually be the first element of the |
| // composite type... |
| // |
| unsigned SubTypeSize = SubType->isSized() ? TD.getTypeSize(SubType) : 0; |
| unsigned PadSize = SubTypeSize; // Size, including pad memory which is ignored |
| while (SubType != NewTy) { |
| const Type *NextSubType = 0; |
| unsigned NextSubTypeSize = 0; |
| unsigned NextPadSize = 0; |
| switch (SubType->getPrimitiveID()) { |
| case Type::StructTyID: { |
| const StructType *STy = cast<StructType>(SubType); |
| const StructLayout &SL = *TD.getStructLayout(STy); |
| if (SL.MemberOffsets.size() > 1) |
| NextPadSize = SL.MemberOffsets[1]; |
| else |
| NextPadSize = SubTypeSize; |
| NextSubType = STy->getElementTypes()[0]; |
| NextSubTypeSize = TD.getTypeSize(NextSubType); |
| break; |
| } |
| case Type::ArrayTyID: |
| NextSubType = cast<ArrayType>(SubType)->getElementType(); |
| NextSubTypeSize = TD.getTypeSize(NextSubType); |
| NextPadSize = NextSubTypeSize; |
| break; |
| default: ; |
| // fall out |
| } |
| |
| if (NextSubType == 0) |
| break; // In the default case, break out of the loop |
| |
| if (NextPadSize < NewTySize) |
| break; // Don't allow shrinking to a smaller type than NewTySize |
| SubType = NextSubType; |
| SubTypeSize = NextSubTypeSize; |
| PadSize = NextPadSize; |
| } |
| |
| // If we found the type exactly, return it... |
| if (SubType == NewTy) |
| return false; |
| |
| // Check to see if we have a compatible, but different type... |
| if (NewTySize == SubTypeSize) { |
| // Check to see if this type is obviously convertable... int -> uint f.e. |
| if (NewTy->isLosslesslyConvertableTo(SubType)) |
| return false; |
| |
| // Check to see if we have a pointer & integer mismatch going on here, |
| // loading a pointer as a long, for example. |
| // |
| if (SubType->isInteger() && isa<PointerType>(NewTy) || |
| NewTy->isInteger() && isa<PointerType>(SubType)) |
| return false; |
| } else if (NewTySize > SubTypeSize && NewTySize <= PadSize) { |
| // We are accessing the field, plus some structure padding. Ignore the |
| // structure padding. |
| return false; |
| } |
| |
| |
| DEBUG(std::cerr << "MergeTypeInfo Folding OrigTy: " << Ty |
| << "\n due to:" << NewTy << " @ " << Offset << "!\n" |
| << "SubType: " << SubType << "\n\n"); |
| |
| foldNodeCompletely(); |
| return true; |
| } |
| |
| |
| |
| // addEdgeTo - Add an edge from the current node to the specified node. This |
| // can cause merging of nodes in the graph. |
| // |
| void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) { |
| if (NH.getNode() == 0) return; // Nothing to do |
| |
| DSNodeHandle &ExistingEdge = getLink(Offset); |
| if (ExistingEdge.getNode()) { |
| // Merge the two nodes... |
| ExistingEdge.mergeWith(NH); |
| } else { // No merging to perform... |
| setLink(Offset, NH); // Just force a link in there... |
| } |
| } |
| |
| |
| // MergeSortedVectors - Efficiently merge a vector into another vector where |
| // duplicates are not allowed and both are sorted. This assumes that 'T's are |
| // efficiently copyable and have sane comparison semantics. |
| // |
| static void MergeSortedVectors(std::vector<GlobalValue*> &Dest, |
| const std::vector<GlobalValue*> &Src) { |
| // By far, the most common cases will be the simple ones. In these cases, |
| // avoid having to allocate a temporary vector... |
| // |
| if (Src.empty()) { // Nothing to merge in... |
| return; |
| } else if (Dest.empty()) { // Just copy the result in... |
| Dest = Src; |
| } else if (Src.size() == 1) { // Insert a single element... |
| const GlobalValue *V = Src[0]; |
| std::vector<GlobalValue*>::iterator I = |
| std::lower_bound(Dest.begin(), Dest.end(), V); |
| if (I == Dest.end() || *I != Src[0]) // If not already contained... |
| Dest.insert(I, Src[0]); |
| } else if (Dest.size() == 1) { |
| GlobalValue *Tmp = Dest[0]; // Save value in temporary... |
| Dest = Src; // Copy over list... |
| std::vector<GlobalValue*>::iterator I = |
| std::lower_bound(Dest.begin(), Dest.end(), Tmp); |
| if (I == Dest.end() || *I != Tmp) // If not already contained... |
| Dest.insert(I, Tmp); |
| |
| } else { |
| // Make a copy to the side of Dest... |
| std::vector<GlobalValue*> Old(Dest); |
| |
| // Make space for all of the type entries now... |
| Dest.resize(Dest.size()+Src.size()); |
| |
| // Merge the two sorted ranges together... into Dest. |
| std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin()); |
| |
| // Now erase any duplicate entries that may have accumulated into the |
| // vectors (because they were in both of the input sets) |
| Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end()); |
| } |
| } |
| |
| |
| // MergeNodes() - Helper function for DSNode::mergeWith(). |
| // This function does the hard work of merging two nodes, CurNodeH |
| // and NH after filtering out trivial cases and making sure that |
| // CurNodeH.offset >= NH.offset. |
| // |
| // ***WARNING*** |
| // Since merging may cause either node to go away, we must always |
| // use the node-handles to refer to the nodes. These node handles are |
| // automatically updated during merging, so will always provide access |
| // to the correct node after a merge. |
| // |
| void DSNode::MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH) { |
| assert(CurNodeH.getOffset() >= NH.getOffset() && |
| "This should have been enforced in the caller."); |
| |
| // Now we know that Offset >= NH.Offset, so convert it so our "Offset" (with |
| // respect to NH.Offset) is now zero. NOffset is the distance from the base |
| // of our object that N starts from. |
| // |
| unsigned NOffset = CurNodeH.getOffset()-NH.getOffset(); |
| unsigned NSize = NH.getNode()->getSize(); |
| |
| // Merge the type entries of the two nodes together... |
| if (NH.getNode()->Ty != Type::VoidTy) { |
| CurNodeH.getNode()->mergeTypeInfo(NH.getNode()->Ty, NOffset); |
| } |
| assert((CurNodeH.getNode()->NodeType & DSNode::DEAD) == 0); |
| |
| // If we are merging a node with a completely folded node, then both nodes are |
| // now completely folded. |
| // |
| if (CurNodeH.getNode()->isNodeCompletelyFolded()) { |
| if (!NH.getNode()->isNodeCompletelyFolded()) { |
| NH.getNode()->foldNodeCompletely(); |
| assert(NH.getOffset()==0 && "folding did not make offset 0?"); |
| NOffset = NH.getOffset(); |
| NSize = NH.getNode()->getSize(); |
| assert(NOffset == 0 && NSize == 1); |
| } |
| } else if (NH.getNode()->isNodeCompletelyFolded()) { |
| CurNodeH.getNode()->foldNodeCompletely(); |
| assert(CurNodeH.getOffset()==0 && "folding did not make offset 0?"); |
| NOffset = NH.getOffset(); |
| NSize = NH.getNode()->getSize(); |
| assert(NOffset == 0 && NSize == 1); |
| } |
| |
| if (CurNodeH.getNode() == NH.getNode() || NH.getNode() == 0) return; |
| assert((CurNodeH.getNode()->NodeType & DSNode::DEAD) == 0); |
| |
| // Remove all edges pointing at N, causing them to point to 'this' instead. |
| // Make sure to adjust their offset, not just the node pointer. |
| // Also, be careful to use the DSNode* rather than NH since NH is one of |
| // the referrers and once NH refers to CurNodeH.getNode() this will |
| // become an infinite loop. |
| DSNode* N = NH.getNode(); |
| unsigned OldNHOffset = NH.getOffset(); |
| while (!N->Referrers.empty()) { |
| DSNodeHandle &Ref = *N->Referrers.back(); |
| Ref = DSNodeHandle(CurNodeH.getNode(), NOffset+Ref.getOffset()); |
| } |
| NH = DSNodeHandle(N, OldNHOffset); // reset NH to point back to where it was |
| |
| assert((CurNodeH.getNode()->NodeType & DSNode::DEAD) == 0); |
| |
| // Make all of the outgoing links of *NH now be outgoing links of |
| // this. This can cause recursive merging! |
| // |
| for (unsigned i = 0; i < NH.getNode()->getSize(); i += DS::PointerSize) { |
| DSNodeHandle &Link = NH.getNode()->getLink(i); |
| if (Link.getNode()) { |
| // Compute the offset into the current node at which to |
| // merge this link. In the common case, this is a linear |
| // relation to the offset in the original node (with |
| // wrapping), but if the current node gets collapsed due to |
| // recursive merging, we must make sure to merge in all remaining |
| // links at offset zero. |
| unsigned MergeOffset = 0; |
| if (CurNodeH.getNode()->Size != 1) |
| MergeOffset = (i+NOffset) % CurNodeH.getNode()->getSize(); |
| CurNodeH.getNode()->addEdgeTo(MergeOffset, Link); |
| } |
| } |
| |
| // Now that there are no outgoing edges, all of the Links are dead. |
| NH.getNode()->Links.clear(); |
| NH.getNode()->Size = 0; |
| NH.getNode()->Ty = Type::VoidTy; |
| |
| // Merge the node types |
| CurNodeH.getNode()->NodeType |= NH.getNode()->NodeType; |
| NH.getNode()->NodeType = DEAD; // NH is now a dead node. |
| |
| // Merge the globals list... |
| if (!NH.getNode()->Globals.empty()) { |
| MergeSortedVectors(CurNodeH.getNode()->Globals, NH.getNode()->Globals); |
| |
| // Delete the globals from the old node... |
| NH.getNode()->Globals.clear(); |
| } |
| } |
| |
| |
| // mergeWith - Merge this node and the specified node, moving all links to and |
| // from the argument node into the current node, deleting the node argument. |
| // Offset indicates what offset the specified node is to be merged into the |
| // current node. |
| // |
| // The specified node may be a null pointer (in which case, nothing happens). |
| // |
| void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) { |
| DSNode *N = NH.getNode(); |
| if (N == 0 || (N == this && NH.getOffset() == Offset)) |
| return; // Noop |
| |
| assert((N->NodeType & DSNode::DEAD) == 0); |
| assert((NodeType & DSNode::DEAD) == 0); |
| assert(!hasNoReferrers() && "Should not try to fold a useless node!"); |
| |
| if (N == this) { |
| // We cannot merge two pieces of the same node together, collapse the node |
| // completely. |
| DEBUG(std::cerr << "Attempting to merge two chunks of" |
| << " the same node together!\n"); |
| foldNodeCompletely(); |
| return; |
| } |
| |
| // If both nodes are not at offset 0, make sure that we are merging the node |
| // at an later offset into the node with the zero offset. |
| // |
| if (Offset < NH.getOffset()) { |
| N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); |
| return; |
| } else if (Offset == NH.getOffset() && getSize() < N->getSize()) { |
| // If the offsets are the same, merge the smaller node into the bigger node |
| N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); |
| return; |
| } |
| |
| // Ok, now we can merge the two nodes. Use a static helper that works with |
| // two node handles, since "this" may get merged away at intermediate steps. |
| DSNodeHandle CurNodeH(this, Offset); |
| DSNodeHandle NHCopy(NH); |
| DSNode::MergeNodes(CurNodeH, NHCopy); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DSCallSite Implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h |
| Function &DSCallSite::getCaller() const { |
| return *Inst->getParent()->getParent(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // DSGraph Implementation |
| //===----------------------------------------------------------------------===// |
| |
| DSGraph::DSGraph(const DSGraph &G) : Func(G.Func), GlobalsGraph(0) { |
| PrintAuxCalls = false; |
| hash_map<const DSNode*, DSNodeHandle> NodeMap; |
| RetNode = cloneInto(G, ScalarMap, NodeMap); |
| } |
| |
| DSGraph::DSGraph(const DSGraph &G, |
| hash_map<const DSNode*, DSNodeHandle> &NodeMap) |
| : Func(G.Func), GlobalsGraph(0) { |
| PrintAuxCalls = false; |
| RetNode = cloneInto(G, ScalarMap, NodeMap); |
| } |
| |
| DSGraph::~DSGraph() { |
| FunctionCalls.clear(); |
| AuxFunctionCalls.clear(); |
| ScalarMap.clear(); |
| RetNode.setNode(0); |
| |
| // Drop all intra-node references, so that assertions don't fail... |
| std::for_each(Nodes.begin(), Nodes.end(), |
| std::mem_fun(&DSNode::dropAllReferences)); |
| |
| // Delete all of the nodes themselves... |
| std::for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>); |
| } |
| |
| // dump - Allow inspection of graph in a debugger. |
| void DSGraph::dump() const { print(std::cerr); } |
| |
| |
| /// remapLinks - Change all of the Links in the current node according to the |
| /// specified mapping. |
| /// |
| void DSNode::remapLinks(hash_map<const DSNode*, DSNodeHandle> &OldNodeMap) { |
| for (unsigned i = 0, e = Links.size(); i != e; ++i) { |
| DSNodeHandle &H = OldNodeMap[Links[i].getNode()]; |
| Links[i].setNode(H.getNode()); |
| Links[i].setOffset(Links[i].getOffset()+H.getOffset()); |
| } |
| } |
| |
| |
| // cloneInto - Clone the specified DSGraph into the current graph, returning the |
| // Return node of the graph. The translated ScalarMap for the old function is |
| // filled into the OldValMap member. If StripAllocas is set to true, Alloca |
| // markers are removed from the graph, as the graph is being cloned into a |
| // calling function's graph. |
| // |
| DSNodeHandle DSGraph::cloneInto(const DSGraph &G, |
| hash_map<Value*, DSNodeHandle> &OldValMap, |
| hash_map<const DSNode*, DSNodeHandle> &OldNodeMap, |
| unsigned CloneFlags) { |
| assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!"); |
| assert(&G != this && "Cannot clone graph into itself!"); |
| |
| unsigned FN = Nodes.size(); // First new node... |
| |
| // Duplicate all of the nodes, populating the node map... |
| Nodes.reserve(FN+G.Nodes.size()); |
| |
| // Remove alloca or mod/ref bits as specified... |
| unsigned clearBits = (CloneFlags & StripAllocaBit ? DSNode::AllocaNode : 0) |
| | (CloneFlags & StripModRefBits ? (DSNode::Modified | DSNode::Read) : 0); |
| clearBits |= DSNode::DEAD; // Clear dead flag... |
| for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) { |
| DSNode *Old = G.Nodes[i]; |
| DSNode *New = new DSNode(*Old); |
| New->NodeType &= ~clearBits; |
| Nodes.push_back(New); |
| OldNodeMap[Old] = New; |
| } |
| |
| #ifndef NDEBUG |
| Timer::addPeakMemoryMeasurement(); |
| #endif |
| |
| // Rewrite the links in the new nodes to point into the current graph now. |
| for (unsigned i = FN, e = Nodes.size(); i != e; ++i) |
| Nodes[i]->remapLinks(OldNodeMap); |
| |
| // Copy the scalar map... merging all of the global nodes... |
| for (hash_map<Value*, DSNodeHandle>::const_iterator I = G.ScalarMap.begin(), |
| E = G.ScalarMap.end(); I != E; ++I) { |
| DSNodeHandle &H = OldValMap[I->first]; |
| DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()]; |
| H.setNode(MappedNode.getNode()); |
| H.setOffset(I->second.getOffset()+MappedNode.getOffset()); |
| |
| if (isa<GlobalValue>(I->first)) { // Is this a global? |
| hash_map<Value*, DSNodeHandle>::iterator GVI = ScalarMap.find(I->first); |
| if (GVI != ScalarMap.end()) // Is the global value in this fn already? |
| GVI->second.mergeWith(H); |
| else |
| ScalarMap[I->first] = H; // Add global pointer to this graph |
| } |
| } |
| |
| if (!(CloneFlags & DontCloneCallNodes)) { |
| // Copy the function calls list... |
| unsigned FC = FunctionCalls.size(); // FirstCall |
| FunctionCalls.reserve(FC+G.FunctionCalls.size()); |
| for (unsigned i = 0, ei = G.FunctionCalls.size(); i != ei; ++i) |
| FunctionCalls.push_back(DSCallSite(G.FunctionCalls[i], OldNodeMap)); |
| } |
| |
| if (!(CloneFlags & DontCloneAuxCallNodes)) { |
| // Copy the auxillary function calls list... |
| unsigned FC = AuxFunctionCalls.size(); // FirstCall |
| AuxFunctionCalls.reserve(FC+G.AuxFunctionCalls.size()); |
| for (unsigned i = 0, ei = G.AuxFunctionCalls.size(); i != ei; ++i) |
| AuxFunctionCalls.push_back(DSCallSite(G.AuxFunctionCalls[i], OldNodeMap)); |
| } |
| |
| // Return the returned node pointer... |
| DSNodeHandle &MappedRet = OldNodeMap[G.RetNode.getNode()]; |
| return DSNodeHandle(MappedRet.getNode(), |
| MappedRet.getOffset()+G.RetNode.getOffset()); |
| } |
| |
| /// mergeInGraph - The method is used for merging graphs together. If the |
| /// argument graph is not *this, it makes a clone of the specified graph, then |
| /// merges the nodes specified in the call site with the formal arguments in the |
| /// graph. |
| /// |
| void DSGraph::mergeInGraph(DSCallSite &CS, const DSGraph &Graph, |
| unsigned CloneFlags) { |
| hash_map<Value*, DSNodeHandle> OldValMap; |
| DSNodeHandle RetVal; |
| hash_map<Value*, DSNodeHandle> *ScalarMap = &OldValMap; |
| |
| // If this is not a recursive call, clone the graph into this graph... |
| if (&Graph != this) { |
| // Clone the callee's graph into the current graph, keeping |
| // track of where scalars in the old graph _used_ to point, |
| // and of the new nodes matching nodes of the old graph. |
| hash_map<const DSNode*, DSNodeHandle> OldNodeMap; |
| |
| // The clone call may invalidate any of the vectors in the data |
| // structure graph. Strip locals and don't copy the list of callers |
| RetVal = cloneInto(Graph, OldValMap, OldNodeMap, CloneFlags); |
| ScalarMap = &OldValMap; |
| } else { |
| RetVal = getRetNode(); |
| ScalarMap = &getScalarMap(); |
| } |
| |
| // Merge the return value with the return value of the context... |
| RetVal.mergeWith(CS.getRetVal()); |
| |
| // Resolve all of the function arguments... |
| Function &F = Graph.getFunction(); |
| Function::aiterator AI = F.abegin(); |
| |
| for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i, ++AI) { |
| // Advance the argument iterator to the first pointer argument... |
| while (AI != F.aend() && !isPointerType(AI->getType())) { |
| ++AI; |
| #ifndef NDEBUG |
| if (AI == F.aend()) |
| std::cerr << "Bad call to Function: " << F.getName() << "\n"; |
| #endif |
| } |
| if (AI == F.aend()) break; |
| |
| // Add the link from the argument scalar to the provided value |
| DSNodeHandle &NH = (*ScalarMap)[AI]; |
| assert(NH.getNode() && "Pointer argument without scalarmap entry?"); |
| NH.mergeWith(CS.getPtrArg(i)); |
| } |
| } |
| |
| |
| // markIncompleteNodes - Mark the specified node as having contents that are not |
| // known with the current analysis we have performed. Because a node makes all |
| // of the nodes it can reach imcomplete if the node itself is incomplete, we |
| // must recursively traverse the data structure graph, marking all reachable |
| // nodes as incomplete. |
| // |
| static void markIncompleteNode(DSNode *N) { |
| // Stop recursion if no node, or if node already marked... |
| if (N == 0 || (N->NodeType & DSNode::Incomplete)) return; |
| |
| // Actually mark the node |
| N->NodeType |= DSNode::Incomplete; |
| |
| // Recusively process children... |
| for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize) |
| if (DSNode *DSN = N->getLink(i).getNode()) |
| markIncompleteNode(DSN); |
| } |
| |
| static void markIncomplete(DSCallSite &Call) { |
| // Then the return value is certainly incomplete! |
| markIncompleteNode(Call.getRetVal().getNode()); |
| |
| // All objects pointed to by function arguments are incomplete! |
| for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i) |
| markIncompleteNode(Call.getPtrArg(i).getNode()); |
| } |
| |
| // markIncompleteNodes - Traverse the graph, identifying nodes that may be |
| // modified by other functions that have not been resolved yet. This marks |
| // nodes that are reachable through three sources of "unknownness": |
| // |
| // Global Variables, Function Calls, and Incoming Arguments |
| // |
| // For any node that may have unknown components (because something outside the |
| // scope of current analysis may have modified it), the 'Incomplete' flag is |
| // added to the NodeType. |
| // |
| void DSGraph::markIncompleteNodes(unsigned Flags) { |
| // Mark any incoming arguments as incomplete... |
| if ((Flags & DSGraph::MarkFormalArgs) && Func && Func->getName() != "main") |
| for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I) |
| if (isPointerType(I->getType()) && ScalarMap.find(I) != ScalarMap.end()) |
| markIncompleteNode(ScalarMap[I].getNode()); |
| |
| // Mark stuff passed into functions calls as being incomplete... |
| if (!shouldPrintAuxCalls()) |
| for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) |
| markIncomplete(FunctionCalls[i]); |
| else |
| for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i) |
| markIncomplete(AuxFunctionCalls[i]); |
| |
| |
| // Mark all global nodes as incomplete... |
| if ((Flags & DSGraph::IgnoreGlobals) == 0) |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) |
| if (Nodes[i]->NodeType & DSNode::GlobalNode) |
| markIncompleteNode(Nodes[i]); |
| } |
| |
| static inline void killIfUselessEdge(DSNodeHandle &Edge) { |
| if (DSNode *N = Edge.getNode()) // Is there an edge? |
| if (N->getReferrers().size() == 1) // Does it point to a lonely node? |
| if ((N->NodeType & ~DSNode::Incomplete) == 0 && // No interesting info? |
| N->getType() == Type::VoidTy && !N->isNodeCompletelyFolded()) |
| Edge.setNode(0); // Kill the edge! |
| } |
| |
| static inline bool nodeContainsExternalFunction(const DSNode *N) { |
| const std::vector<GlobalValue*> &Globals = N->getGlobals(); |
| for (unsigned i = 0, e = Globals.size(); i != e; ++i) |
| if (Globals[i]->isExternal()) |
| return true; |
| return false; |
| } |
| |
| static void removeIdenticalCalls(std::vector<DSCallSite> &Calls, |
| const std::string &where) { |
| // Remove trivially identical function calls |
| unsigned NumFns = Calls.size(); |
| std::sort(Calls.begin(), Calls.end()); // Sort by callee as primary key! |
| |
| // Scan the call list cleaning it up as necessary... |
| DSNode *LastCalleeNode = 0; |
| Function *LastCalleeFunc = 0; |
| unsigned NumDuplicateCalls = 0; |
| bool LastCalleeContainsExternalFunction = false; |
| for (unsigned i = 0; i != Calls.size(); ++i) { |
| DSCallSite &CS = Calls[i]; |
| |
| // If the Callee is a useless edge, this must be an unreachable call site, |
| // eliminate it. |
| if (CS.isIndirectCall() && CS.getCalleeNode()->getReferrers().size() == 1 && |
| CS.getCalleeNode()->NodeType == 0) { // No useful info? |
| std::cerr << "WARNING: Useless call site found??\n"; |
| CS.swap(Calls.back()); |
| Calls.pop_back(); |
| --i; |
| } else { |
| // If the return value or any arguments point to a void node with no |
| // information at all in it, and the call node is the only node to point |
| // to it, remove the edge to the node (killing the node). |
| // |
| killIfUselessEdge(CS.getRetVal()); |
| for (unsigned a = 0, e = CS.getNumPtrArgs(); a != e; ++a) |
| killIfUselessEdge(CS.getPtrArg(a)); |
| |
| // If this call site calls the same function as the last call site, and if |
| // the function pointer contains an external function, this node will |
| // never be resolved. Merge the arguments of the call node because no |
| // information will be lost. |
| // |
| if ((CS.isDirectCall() && CS.getCalleeFunc() == LastCalleeFunc) || |
| (CS.isIndirectCall() && CS.getCalleeNode() == LastCalleeNode)) { |
| ++NumDuplicateCalls; |
| if (NumDuplicateCalls == 1) { |
| if (LastCalleeNode) |
| LastCalleeContainsExternalFunction = |
| nodeContainsExternalFunction(LastCalleeNode); |
| else |
| LastCalleeContainsExternalFunction = LastCalleeFunc->isExternal(); |
| } |
| |
| if (LastCalleeContainsExternalFunction || |
| // This should be more than enough context sensitivity! |
| // FIXME: Evaluate how many times this is tripped! |
| NumDuplicateCalls > 20) { |
| DSCallSite &OCS = Calls[i-1]; |
| OCS.mergeWith(CS); |
| |
| // The node will now be eliminated as a duplicate! |
| if (CS.getNumPtrArgs() < OCS.getNumPtrArgs()) |
| CS = OCS; |
| else if (CS.getNumPtrArgs() > OCS.getNumPtrArgs()) |
| OCS = CS; |
| } |
| } else { |
| if (CS.isDirectCall()) { |
| LastCalleeFunc = CS.getCalleeFunc(); |
| LastCalleeNode = 0; |
| } else { |
| LastCalleeNode = CS.getCalleeNode(); |
| LastCalleeFunc = 0; |
| } |
| NumDuplicateCalls = 0; |
| } |
| } |
| } |
| |
| Calls.erase(std::unique(Calls.begin(), Calls.end()), |
| Calls.end()); |
| |
| // Track the number of call nodes merged away... |
| NumCallNodesMerged += NumFns-Calls.size(); |
| |
| DEBUG(if (NumFns != Calls.size()) |
| std::cerr << "Merged " << (NumFns-Calls.size()) |
| << " call nodes in " << where << "\n";); |
| } |
| |
| |
| // removeTriviallyDeadNodes - After the graph has been constructed, this method |
| // removes all unreachable nodes that are created because they got merged with |
| // other nodes in the graph. These nodes will all be trivially unreachable, so |
| // we don't have to perform any non-trivial analysis here. |
| // |
| void DSGraph::removeTriviallyDeadNodes() { |
| removeIdenticalCalls(FunctionCalls, Func ? Func->getName() : ""); |
| removeIdenticalCalls(AuxFunctionCalls, Func ? Func->getName() : ""); |
| |
| for (unsigned i = 0; i != Nodes.size(); ++i) { |
| DSNode *Node = Nodes[i]; |
| if (!(Node->NodeType & ~(DSNode::Composition | DSNode::Array | |
| DSNode::DEAD))) { |
| // This is a useless node if it has no mod/ref info (checked above), |
| // outgoing edges (which it cannot, as it is not modified in this |
| // context), and it has no incoming edges. If it is a global node it may |
| // have all of these properties and still have incoming edges, due to the |
| // scalar map, so we check those now. |
| // |
| if (Node->getReferrers().size() == Node->getGlobals().size()) { |
| std::vector<GlobalValue*> &Globals = Node->getGlobals(); |
| for (unsigned j = 0, e = Globals.size(); j != e; ++j) |
| ScalarMap.erase(Globals[j]); |
| Globals.clear(); |
| |
| Node->NodeType = DSNode::DEAD; |
| } |
| } |
| |
| if ((Node->NodeType & ~DSNode::DEAD) == 0 && Node->hasNoReferrers()) { |
| // This node is dead! |
| delete Node; // Free memory... |
| Nodes.erase(Nodes.begin()+i--); // Remove from node list... |
| } |
| } |
| } |
| |
| |
| /// markReachableNodes - This method recursively traverses the specified |
| /// DSNodes, marking any nodes which are reachable. All reachable nodes it adds |
| /// to the set, which allows it to only traverse visited nodes once. |
| /// |
| void DSNode::markReachableNodes(hash_set<DSNode*> &ReachableNodes) { |
| if (this == 0) return; |
| if (ReachableNodes.count(this)) return; // Already marked reachable |
| ReachableNodes.insert(this); // Is reachable now |
| |
| for (unsigned i = 0, e = getSize(); i < e; i += DS::PointerSize) |
| getLink(i).getNode()->markReachableNodes(ReachableNodes); |
| } |
| |
| void DSCallSite::markReachableNodes(hash_set<DSNode*> &Nodes) { |
| getRetVal().getNode()->markReachableNodes(Nodes); |
| if (isIndirectCall()) getCalleeNode()->markReachableNodes(Nodes); |
| |
| for (unsigned i = 0, e = getNumPtrArgs(); i != e; ++i) |
| getPtrArg(i).getNode()->markReachableNodes(Nodes); |
| } |
| |
| // CanReachAliveNodes - Simple graph walker that recursively traverses the graph |
| // looking for a node that is marked alive. If an alive node is found, return |
| // true, otherwise return false. If an alive node is reachable, this node is |
| // marked as alive... |
| // |
| static bool CanReachAliveNodes(DSNode *N, hash_set<DSNode*> &Alive, |
| hash_set<DSNode*> &Visited) { |
| if (N == 0) return false; |
| |
| // If we know that this node is alive, return so! |
| if (Alive.count(N)) return true; |
| |
| // Otherwise, we don't think the node is alive yet, check for infinite |
| // recursion. |
| if (Visited.count(N)) return false; // Found a cycle |
| Visited.insert(N); // No recursion, insert into Visited... |
| |
| for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize) |
| if (CanReachAliveNodes(N->getLink(i).getNode(), Alive, Visited)) { |
| N->markReachableNodes(Alive); |
| return true; |
| } |
| return false; |
| } |
| |
| // CallSiteUsesAliveArgs - Return true if the specified call site can reach any |
| // alive nodes. |
| // |
| static bool CallSiteUsesAliveArgs(DSCallSite &CS, hash_set<DSNode*> &Alive, |
| hash_set<DSNode*> &Visited) { |
| if (CanReachAliveNodes(CS.getRetVal().getNode(), Alive, Visited)) |
| return true; |
| if (CS.isIndirectCall() && |
| CanReachAliveNodes(CS.getCalleeNode(), Alive, Visited)) |
| return true; |
| for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) |
| if (CanReachAliveNodes(CS.getPtrArg(i).getNode(), Alive, Visited)) |
| return true; |
| return false; |
| } |
| |
| // removeDeadNodes - Use a more powerful reachability analysis to eliminate |
| // subgraphs that are unreachable. This often occurs because the data |
| // structure doesn't "escape" into it's caller, and thus should be eliminated |
| // from the caller's graph entirely. This is only appropriate to use when |
| // inlining graphs. |
| // |
| void DSGraph::removeDeadNodes(unsigned Flags) { |
| // Reduce the amount of work we have to do... remove dummy nodes left over by |
| // merging... |
| removeTriviallyDeadNodes(); |
| |
| // FIXME: Merge nontrivially identical call nodes... |
| |
| // Alive - a set that holds all nodes found to be reachable/alive. |
| hash_set<DSNode*> Alive; |
| std::vector<std::pair<Value*, DSNode*> > GlobalNodes; |
| |
| // Mark all nodes reachable by (non-global) scalar nodes as alive... |
| for (hash_map<Value*, DSNodeHandle>::iterator I = ScalarMap.begin(), |
| E = ScalarMap.end(); I != E; ++I) |
| if (!isa<GlobalValue>(I->first)) |
| I->second.getNode()->markReachableNodes(Alive); |
| else { // Keep track of global nodes |
| GlobalNodes.push_back(std::make_pair(I->first, I->second.getNode())); |
| assert(I->second.getNode() && "Null global node?"); |
| } |
| |
| // The return value is alive as well... |
| RetNode.getNode()->markReachableNodes(Alive); |
| |
| // Mark any nodes reachable by primary calls as alive... |
| for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) |
| FunctionCalls[i].markReachableNodes(Alive); |
| |
| bool Iterate; |
| hash_set<DSNode*> Visited; |
| std::vector<unsigned char> AuxFCallsAlive(AuxFunctionCalls.size()); |
| do { |
| Visited.clear(); |
| // If any global nodes points to a non-global that is "alive", the global is |
| // "alive" as well... Remov it from the GlobalNodes list so we only have |
| // unreachable globals in the list. |
| // |
| Iterate = false; |
| for (unsigned i = 0; i != GlobalNodes.size(); ++i) |
| if (CanReachAliveNodes(GlobalNodes[i].second, Alive, Visited)) { |
| std::swap(GlobalNodes[i--], GlobalNodes.back()); // Move to end to erase |
| GlobalNodes.pop_back(); // Erase efficiently |
| Iterate = true; |
| } |
| |
| for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i) |
| if (!AuxFCallsAlive[i] && |
| CallSiteUsesAliveArgs(AuxFunctionCalls[i], Alive, Visited)) { |
| AuxFunctionCalls[i].markReachableNodes(Alive); |
| AuxFCallsAlive[i] = true; |
| Iterate = true; |
| } |
| } while (Iterate); |
| |
| // Remove all dead aux function calls... |
| unsigned CurIdx = 0; |
| for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i) |
| if (AuxFCallsAlive[i]) |
| AuxFunctionCalls[CurIdx++].swap(AuxFunctionCalls[i]); |
| if (!(Flags & DSGraph::RemoveUnreachableGlobals)) { |
| assert(GlobalsGraph && "No globals graph available??"); |
| // Move the unreachable call nodes to the globals graph... |
| GlobalsGraph->AuxFunctionCalls.insert(GlobalsGraph->AuxFunctionCalls.end(), |
| AuxFunctionCalls.begin()+CurIdx, |
| AuxFunctionCalls.end()); |
| } |
| // Crop all the useless ones out... |
| AuxFunctionCalls.erase(AuxFunctionCalls.begin()+CurIdx, |
| AuxFunctionCalls.end()); |
| |
| // At this point, any nodes which are visited, but not alive, are nodes which |
| // should be moved to the globals graph. Loop over all nodes, eliminating |
| // completely unreachable nodes, and moving visited nodes to the globals graph |
| // |
| for (unsigned i = 0; i != Nodes.size(); ++i) |
| if (!Alive.count(Nodes[i])) { |
| DSNode *N = Nodes[i]; |
| std::swap(Nodes[i--], Nodes.back()); // move node to end of vector |
| Nodes.pop_back(); // Erase node from alive list. |
| if (!(Flags & DSGraph::RemoveUnreachableGlobals) && // Not in TD pass |
| Visited.count(N)) { // Visited but not alive? |
| GlobalsGraph->Nodes.push_back(N); // Move node to globals graph |
| } else { // Otherwise, delete the node |
| assert(((N->NodeType & DSNode::GlobalNode) == 0 || |
| (Flags & DSGraph::RemoveUnreachableGlobals)) |
| && "Killing a global?"); |
| while (!N->hasNoReferrers()) // Rewrite referrers |
| N->getReferrers().back()->setNode(0); |
| delete N; // Usecount is zero |
| } |
| } |
| |
| // Now that the nodes have either been deleted or moved to the globals graph, |
| // loop over the scalarmap, updating the entries for globals... |
| // |
| if (!(Flags & DSGraph::RemoveUnreachableGlobals)) { // Not in the TD pass? |
| // In this array we start the remapping, which can cause merging. Because |
| // of this, the DSNode pointers in GlobalNodes may be invalidated, so we |
| // must always go through the ScalarMap (which contains DSNodeHandles [which |
| // cannot be invalidated by merging]). |
| // |
| for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i) { |
| Value *G = GlobalNodes[i].first; |
| hash_map<Value*, DSNodeHandle>::iterator I = ScalarMap.find(G); |
| assert(I != ScalarMap.end() && "Global not in scalar map anymore?"); |
| assert(I->second.getNode() && "Global not pointing to anything?"); |
| assert(!Alive.count(I->second.getNode()) && "Node is alive??"); |
| GlobalsGraph->ScalarMap[G].mergeWith(I->second); |
| assert(GlobalsGraph->ScalarMap[G].getNode() && |
| "Global not pointing to anything?"); |
| ScalarMap.erase(I); |
| } |
| |
| // Merging leaves behind silly nodes, we remove them to avoid polluting the |
| // globals graph. |
| GlobalsGraph->removeTriviallyDeadNodes(); |
| } else { |
| // If we are in the top-down pass, remove all unreachable globals from the |
| // ScalarMap... |
| for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i) |
| ScalarMap.erase(GlobalNodes[i].first); |
| } |
| |
| DEBUG(AssertGraphOK(); GlobalsGraph->AssertGraphOK()); |
| } |
| |
| void DSGraph::AssertGraphOK() const { |
| for (hash_map<Value*, DSNodeHandle>::const_iterator I = ScalarMap.begin(), |
| E = ScalarMap.end(); I != E; ++I) { |
| assert(I->second.getNode() && "Null node in scalarmap!"); |
| AssertNodeInGraph(I->second.getNode()); |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(I->first)) { |
| assert((I->second.getNode()->NodeType & DSNode::GlobalNode) && |
| "Global points to node, but node isn't global?"); |
| AssertNodeContainsGlobal(I->second.getNode(), GV); |
| } |
| } |
| AssertCallNodesInGraph(); |
| AssertAuxCallNodesInGraph(); |
| } |
| |
| |
| #if 0 |
| //===----------------------------------------------------------------------===// |
| // GlobalDSGraph Implementation |
| //===----------------------------------------------------------------------===// |
| |
| #if 0 |
| // Bits used in the next function |
| static const char ExternalTypeBits = DSNode::GlobalNode | DSNode::HeapNode; |
| |
| // cloneGlobalInto - Clone the given global node and all its target links |
| // (and all their llinks, recursively). |
| // |
| DSNode *DSGraph::cloneGlobalInto(const DSNode *GNode) { |
| if (GNode == 0 || GNode->getGlobals().size() == 0) return 0; |
| |
| // If a clone has already been created for GNode, return it. |
| DSNodeHandle& ValMapEntry = ScalarMap[GNode->getGlobals()[0]]; |
| if (ValMapEntry != 0) |
| return ValMapEntry; |
| |
| // Clone the node and update the ValMap. |
| DSNode* NewNode = new DSNode(*GNode); |
| ValMapEntry = NewNode; // j=0 case of loop below! |
| Nodes.push_back(NewNode); |
| for (unsigned j = 1, N = NewNode->getGlobals().size(); j < N; ++j) |
| ScalarMap[NewNode->getGlobals()[j]] = NewNode; |
| |
| // Rewrite the links in the new node to point into the current graph. |
| for (unsigned j = 0, e = GNode->getNumLinks(); j != e; ++j) |
| NewNode->setLink(j, cloneGlobalInto(GNode->getLink(j))); |
| |
| return NewNode; |
| } |
| |
| // GlobalDSGraph::cloneNodeInto - Clone a global node and all its externally |
| // visible target links (and recursively their such links) into this graph. |
| // NodeCache maps the node being cloned to its clone in the Globals graph, |
| // in order to track cycles. |
| // GlobalsAreFinal is a flag that says whether it is safe to assume that |
| // an existing global node is complete. This is important to avoid |
| // reinserting all globals when inserting Calls to functions. |
| // This is a helper function for cloneGlobals and cloneCalls. |
| // |
| DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode, |
| hash_map<const DSNode*, DSNode*> &NodeCache, |
| bool GlobalsAreFinal) { |
| if (OldNode == 0) return 0; |
| |
| // The caller should check this is an external node. Just more efficient... |
| assert((OldNode->NodeType & ExternalTypeBits) && "Non-external node"); |
| |
| // If a clone has already been created for OldNode, return it. |
| DSNode*& CacheEntry = NodeCache[OldNode]; |
| if (CacheEntry != 0) |
| return CacheEntry; |
| |
| // The result value... |
| DSNode* NewNode = 0; |
| |
| // If nodes already exist for any of the globals of OldNode, |
| // merge all such nodes together since they are merged in OldNode. |
| // If ValueCacheIsFinal==true, look for an existing node that has |
| // an identical list of globals and return it if it exists. |
| // |
| for (unsigned j = 0, N = OldNode->getGlobals().size(); j != N; ++j) |
| if (DSNode *PrevNode = ScalarMap[OldNode->getGlobals()[j]].getNode()) { |
| if (NewNode == 0) { |
| NewNode = PrevNode; // first existing node found |
| if (GlobalsAreFinal && j == 0) |
| if (OldNode->getGlobals() == PrevNode->getGlobals()) { |
| CacheEntry = NewNode; |
| return NewNode; |
| } |
| } |
| else if (NewNode != PrevNode) { // found another, different from prev |
| // update ValMap *before* merging PrevNode into NewNode |
| for (unsigned k = 0, NK = PrevNode->getGlobals().size(); k < NK; ++k) |
| ScalarMap[PrevNode->getGlobals()[k]] = NewNode; |
| NewNode->mergeWith(PrevNode); |
| } |
| } else if (NewNode != 0) { |
| ScalarMap[OldNode->getGlobals()[j]] = NewNode; // add the merged node |
| } |
| |
| // If no existing node was found, clone the node and update the ValMap. |
| if (NewNode == 0) { |
| NewNode = new DSNode(*OldNode); |
| Nodes.push_back(NewNode); |
| for (unsigned j = 0, e = NewNode->getNumLinks(); j != e; ++j) |
| NewNode->setLink(j, 0); |
| for (unsigned j = 0, N = NewNode->getGlobals().size(); j < N; ++j) |
| ScalarMap[NewNode->getGlobals()[j]] = NewNode; |
| } |
| else |
| NewNode->NodeType |= OldNode->NodeType; // Markers may be different! |
| |
| // Add the entry to NodeCache |
| CacheEntry = NewNode; |
| |
| // Rewrite the links in the new node to point into the current graph, |
| // but only for links to external nodes. Set other links to NULL. |
| for (unsigned j = 0, e = OldNode->getNumLinks(); j != e; ++j) { |
| DSNode* OldTarget = OldNode->getLink(j); |
| if (OldTarget && (OldTarget->NodeType & ExternalTypeBits)) { |
| DSNode* NewLink = this->cloneNodeInto(OldTarget, NodeCache); |
| if (NewNode->getLink(j)) |
| NewNode->getLink(j)->mergeWith(NewLink); |
| else |
| NewNode->setLink(j, NewLink); |
| } |
| } |
| |
| // Remove all local markers |
| NewNode->NodeType &= ~(DSNode::AllocaNode | DSNode::ScalarNode); |
| |
| return NewNode; |
| } |
| |
| |
| // GlobalDSGraph::cloneCalls - Clone function calls and their visible target |
| // links (and recursively their such links) into this graph. |
| // |
| void GlobalDSGraph::cloneCalls(DSGraph& Graph) { |
| hash_map<const DSNode*, DSNode*> NodeCache; |
| std::vector<DSCallSite >& FromCalls =Graph.FunctionCalls; |
| |
| FunctionCalls.reserve(FunctionCalls.size() + FromCalls.size()); |
| |
| for (int i = 0, ei = FromCalls.size(); i < ei; ++i) { |
| DSCallSite& callCopy = FunctionCalls.back(); |
| callCopy.reserve(FromCalls[i].size()); |
| for (unsigned j = 0, ej = FromCalls[i].size(); j != ej; ++j) |
| callCopy.push_back |
| ((FromCalls[i][j] && (FromCalls[i][j]->NodeType & ExternalTypeBits)) |
| ? cloneNodeInto(FromCalls[i][j], NodeCache, true) |
| : 0); |
| } |
| |
| // remove trivially identical function calls |
| removeIdenticalCalls(FunctionCalls, "Globals Graph"); |
| } |
| #endif |
| |
| #endif |