| //===- Parallelize.cpp - Auto parallelization using DS Graphs -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a pass that automatically parallelizes a program, |
| // using the Cilk multi-threaded runtime system to execute parallel code. |
| // |
| // The pass uses the Program Dependence Graph (class PDGIterator) to |
| // identify parallelizable function calls, i.e., calls whose instances |
| // can be executed in parallel with instances of other function calls. |
| // (In the future, this should also execute different instances of the same |
| // function call in parallel, but that requires parallelizing across |
| // loop iterations.) |
| // |
| // The output of the pass is LLVM code with: |
| // (1) all parallelizable functions renamed to flag them as parallelizable; |
| // (2) calls to a sync() function introduced at synchronization points. |
| // The CWriter recognizes these functions and inserts the appropriate Cilk |
| // keywords when writing out C code. This C code must be compiled with cilk2c. |
| // |
| // Current algorithmic limitations: |
| // -- no array dependence analysis |
| // -- no parallelization for function calls in different loop iterations |
| // (except in unlikely trivial cases) |
| // |
| // Limitations of using Cilk: |
| // -- No parallelism within a function body, e.g., in a loop; |
| // -- Simplistic synchronization model requiring all parallel threads |
| // created within a function to block at a sync(). |
| // -- Excessive overhead at "spawned" function calls, which has no benefit |
| // once all threads are busy (especially common when the degree of |
| // parallelism is low). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Module.h" |
| #include "PgmDependenceGraph.h" |
| #include "llvm/Analysis/DataStructure/DataStructure.h" |
| #include "llvm/Analysis/DataStructure/DSGraph.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "Support/Statistic.h" |
| #include "Support/STLExtras.h" |
| #include "Support/hash_set" |
| #include "Support/hash_map" |
| #include <functional> |
| #include <algorithm> |
| using namespace llvm; |
| |
| //---------------------------------------------------------------------------- |
| // Global constants used in marking Cilk functions and function calls. |
| //---------------------------------------------------------------------------- |
| |
| static const char * const CilkSuffix = ".llvm2cilk"; |
| static const char * const DummySyncFuncName = "__sync.llvm2cilk"; |
| |
| //---------------------------------------------------------------------------- |
| // Routines to identify Cilk functions, calls to Cilk functions, and syncs. |
| //---------------------------------------------------------------------------- |
| |
| static bool isCilk(const Function& F) { |
| return (F.getName().rfind(CilkSuffix) == |
| F.getName().size() - std::strlen(CilkSuffix)); |
| } |
| |
| static bool isCilkMain(const Function& F) { |
| return F.getName() == "main" + std::string(CilkSuffix); |
| } |
| |
| |
| static bool isCilk(const CallInst& CI) { |
| return CI.getCalledFunction() && isCilk(*CI.getCalledFunction()); |
| } |
| |
| static bool isSync(const CallInst& CI) { |
| return CI.getCalledFunction() && |
| CI.getCalledFunction()->getName() == DummySyncFuncName; |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // class Cilkifier |
| // |
| // Code generation pass that transforms code to identify where Cilk keywords |
| // should be inserted. This relies on `llvm-dis -c' to print out the keywords. |
| //---------------------------------------------------------------------------- |
| class Cilkifier: public InstVisitor<Cilkifier> { |
| Function* DummySyncFunc; |
| |
| // Data used when transforming each function. |
| hash_set<const Instruction*> stmtsVisited; // Flags for recursive DFS |
| hash_map<const CallInst*, hash_set<CallInst*> > spawnToSyncsMap; |
| |
| // Input data for the transformation. |
| const hash_set<Function*>* cilkFunctions; // Set of parallel functions |
| PgmDependenceGraph* depGraph; |
| |
| void DFSVisitInstr (Instruction* I, |
| Instruction* root, |
| hash_set<const Instruction*>& depsOfRoot); |
| |
| public: |
| /*ctor*/ Cilkifier (Module& M); |
| |
| // Transform a single function including its name, its call sites, and syncs |
| // |
| void TransformFunc (Function* F, |
| const hash_set<Function*>& cilkFunctions, |
| PgmDependenceGraph& _depGraph); |
| |
| // The visitor function that does most of the hard work, via DFSVisitInstr |
| // |
| void visitCallInst(CallInst& CI); |
| }; |
| |
| |
| Cilkifier::Cilkifier(Module& M) { |
| // create the dummy Sync function and add it to the Module |
| DummySyncFunc = M.getOrInsertFunction(DummySyncFuncName, Type::VoidTy, 0); |
| } |
| |
| void Cilkifier::TransformFunc(Function* F, |
| const hash_set<Function*>& _cilkFunctions, |
| PgmDependenceGraph& _depGraph) { |
| // Memoize the information for this function |
| cilkFunctions = &_cilkFunctions; |
| depGraph = &_depGraph; |
| |
| // Add the marker suffix to the Function name |
| // This should automatically mark all calls to the function also! |
| F->setName(F->getName() + CilkSuffix); |
| |
| // Insert sync operations for each separate spawn |
| visit(*F); |
| |
| // Now traverse the CFG in rPostorder and eliminate redundant syncs, i.e., |
| // two consecutive sync's on a straight-line path with no intervening spawn. |
| |
| } |
| |
| |
| void Cilkifier::DFSVisitInstr(Instruction* I, |
| Instruction* root, |
| hash_set<const Instruction*>& depsOfRoot) |
| { |
| assert(stmtsVisited.find(I) == stmtsVisited.end()); |
| stmtsVisited.insert(I); |
| |
| // If there is a dependence from root to I, insert Sync and return |
| if (depsOfRoot.find(I) != depsOfRoot.end()) { |
| // Insert a sync before I and stop searching along this path. |
| // If I is a Phi instruction, the dependence can only be an SSA dep. |
| // and we need to insert the sync in the predecessor on the appropriate |
| // incoming edge! |
| CallInst* syncI = 0; |
| if (PHINode* phiI = dyn_cast<PHINode>(I)) { |
| // check all operands of the Phi and insert before each one |
| for (unsigned i = 0, N = phiI->getNumIncomingValues(); i < N; ++i) |
| if (phiI->getIncomingValue(i) == root) |
| syncI = new CallInst(DummySyncFunc, std::vector<Value*>(), "", |
| phiI->getIncomingBlock(i)->getTerminator()); |
| } else |
| syncI = new CallInst(DummySyncFunc, std::vector<Value*>(), "", I); |
| |
| // Remember the sync for each spawn to eliminate redundant ones later |
| spawnToSyncsMap[cast<CallInst>(root)].insert(syncI); |
| |
| return; |
| } |
| |
| // else visit unvisited successors |
| if (BranchInst* brI = dyn_cast<BranchInst>(I)) { |
| // visit first instruction in each successor BB |
| for (unsigned i = 0, N = brI->getNumSuccessors(); i < N; ++i) |
| if (stmtsVisited.find(&brI->getSuccessor(i)->front()) |
| == stmtsVisited.end()) |
| DFSVisitInstr(&brI->getSuccessor(i)->front(), root, depsOfRoot); |
| } else |
| if (Instruction* nextI = I->getNext()) |
| if (stmtsVisited.find(nextI) == stmtsVisited.end()) |
| DFSVisitInstr(nextI, root, depsOfRoot); |
| } |
| |
| |
| void Cilkifier::visitCallInst(CallInst& CI) |
| { |
| assert(CI.getCalledFunction() != 0 && "Only direct calls can be spawned."); |
| if (cilkFunctions->find(CI.getCalledFunction()) == cilkFunctions->end()) |
| return; // not a spawn |
| |
| // Find all the outgoing memory dependences. |
| hash_set<const Instruction*> depsOfRoot; |
| for (PgmDependenceGraph::iterator DI = |
| depGraph->outDepBegin(CI, MemoryDeps); ! DI.fini(); ++DI) |
| depsOfRoot.insert(&DI->getSink()->getInstr()); |
| |
| // Now find all outgoing SSA dependences to the eventual non-Phi users of |
| // the call value (i.e., direct users that are not phis, and for any |
| // user that is a Phi, direct non-Phi users of that Phi, and recursively). |
| std::vector<const PHINode*> phiUsers; |
| hash_set<const PHINode*> phisSeen; // ensures we don't visit a phi twice |
| for (Value::use_iterator UI=CI.use_begin(), UE=CI.use_end(); UI != UE; ++UI) |
| if (const PHINode* phiUser = dyn_cast<PHINode>(*UI)) { |
| if (phisSeen.find(phiUser) == phisSeen.end()) { |
| phiUsers.push_back(phiUser); |
| phisSeen.insert(phiUser); |
| } |
| } |
| else |
| depsOfRoot.insert(cast<Instruction>(*UI)); |
| |
| // Now we've found the non-Phi users and immediate phi users. |
| // Recursively walk the phi users and add their non-phi users. |
| for (const PHINode* phiUser; !phiUsers.empty(); phiUsers.pop_back()) { |
| phiUser = phiUsers.back(); |
| for (Value::use_const_iterator UI=phiUser->use_begin(), |
| UE=phiUser->use_end(); UI != UE; ++UI) |
| if (const PHINode* pn = dyn_cast<PHINode>(*UI)) { |
| if (phisSeen.find(pn) == phisSeen.end()) { |
| phiUsers.push_back(pn); |
| phisSeen.insert(pn); |
| } |
| } else |
| depsOfRoot.insert(cast<Instruction>(*UI)); |
| } |
| |
| // Walk paths of the CFG starting at the call instruction and insert |
| // one sync before the first dependence on each path, if any. |
| if (! depsOfRoot.empty()) { |
| stmtsVisited.clear(); // start a new DFS for this CallInst |
| assert(CI.getNext() && "Call instruction cannot be a terminator!"); |
| DFSVisitInstr(CI.getNext(), &CI, depsOfRoot); |
| } |
| |
| // Now, eliminate all users of the SSA value of the CallInst, i.e., |
| // if the call instruction returns a value, delete the return value |
| // register and replace it by a stack slot. |
| if (CI.getType() != Type::VoidTy) |
| DemoteRegToStack(CI); |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // class FindParallelCalls |
| // |
| // Find all CallInst instructions that have at least one other CallInst |
| // that is independent. These are the instructions that can produce |
| // useful parallelism. |
| //---------------------------------------------------------------------------- |
| |
| class FindParallelCalls : public InstVisitor<FindParallelCalls> { |
| typedef hash_set<CallInst*> DependentsSet; |
| typedef DependentsSet::iterator Dependents_iterator; |
| typedef DependentsSet::const_iterator Dependents_const_iterator; |
| |
| PgmDependenceGraph& depGraph; // dependence graph for the function |
| hash_set<Instruction*> stmtsVisited; // flags for DFS walk of depGraph |
| hash_map<CallInst*, bool > completed; // flags marking if a CI is done |
| hash_map<CallInst*, DependentsSet> dependents; // dependent CIs for each CI |
| |
| void VisitOutEdges(Instruction* I, |
| CallInst* root, |
| DependentsSet& depsOfRoot); |
| |
| FindParallelCalls(const FindParallelCalls &); // DO NOT IMPLEMENT |
| void operator=(const FindParallelCalls&); // DO NOT IMPLEMENT |
| public: |
| std::vector<CallInst*> parallelCalls; |
| |
| public: |
| /*ctor*/ FindParallelCalls (Function& F, PgmDependenceGraph& DG); |
| void visitCallInst (CallInst& CI); |
| }; |
| |
| |
| FindParallelCalls::FindParallelCalls(Function& F, |
| PgmDependenceGraph& DG) |
| : depGraph(DG) |
| { |
| // Find all CallInsts reachable from each CallInst using a recursive DFS |
| visit(F); |
| |
| // Now we've found all CallInsts reachable from each CallInst. |
| // Find those CallInsts that are parallel with at least one other CallInst |
| // by counting total inEdges and outEdges. |
| unsigned long totalNumCalls = completed.size(); |
| |
| if (totalNumCalls == 1) { |
| // Check first for the special case of a single call instruction not |
| // in any loop. It is not parallel, even if it has no dependences |
| // (this is why it is a special case). |
| // |
| // FIXME: |
| // THIS CASE IS NOT HANDLED RIGHT NOW, I.E., THERE IS NO |
| // PARALLELISM FOR CALLS IN DIFFERENT ITERATIONS OF A LOOP. |
| return; |
| } |
| |
| hash_map<CallInst*, unsigned long> numDeps; |
| for (hash_map<CallInst*, DependentsSet>::iterator II = dependents.begin(), |
| IE = dependents.end(); II != IE; ++II) { |
| CallInst* fromCI = II->first; |
| numDeps[fromCI] += II->second.size(); |
| for (Dependents_iterator DI = II->second.begin(), DE = II->second.end(); |
| DI != DE; ++DI) |
| numDeps[*DI]++; // *DI can be reached from II->first |
| } |
| |
| for (hash_map<CallInst*, DependentsSet>::iterator |
| II = dependents.begin(), IE = dependents.end(); II != IE; ++II) |
| |
| // FIXME: Remove "- 1" when considering parallelism in loops |
| if (numDeps[II->first] < totalNumCalls - 1) |
| parallelCalls.push_back(II->first); |
| } |
| |
| |
| void FindParallelCalls::VisitOutEdges(Instruction* I, |
| CallInst* root, |
| DependentsSet& depsOfRoot) |
| { |
| assert(stmtsVisited.find(I) == stmtsVisited.end() && "Stmt visited twice?"); |
| stmtsVisited.insert(I); |
| |
| if (CallInst* CI = dyn_cast<CallInst>(I)) |
| // FIXME: Ignoring parallelism in a loop. Here we're actually *ignoring* |
| // a self-dependence in order to get the count comparison right above. |
| // When we include loop parallelism, self-dependences should be included. |
| if (CI != root) { |
| // CallInst root has a path to CallInst I and any calls reachable from I |
| depsOfRoot.insert(CI); |
| if (completed[CI]) { |
| // We have already visited I so we know all nodes it can reach! |
| DependentsSet& depsOfI = dependents[CI]; |
| depsOfRoot.insert(depsOfI.begin(), depsOfI.end()); |
| return; |
| } |
| } |
| |
| // If we reach here, we need to visit all children of I |
| for (PgmDependenceGraph::iterator DI = depGraph.outDepBegin(*I); |
| ! DI.fini(); ++DI) { |
| Instruction* sink = &DI->getSink()->getInstr(); |
| if (stmtsVisited.find(sink) == stmtsVisited.end()) |
| VisitOutEdges(sink, root, depsOfRoot); |
| } |
| } |
| |
| |
| void FindParallelCalls::visitCallInst(CallInst& CI) { |
| if (completed[&CI]) |
| return; |
| stmtsVisited.clear(); // clear flags to do a fresh DFS |
| |
| // Visit all children of CI using a recursive walk through dep graph |
| DependentsSet& depsOfRoot = dependents[&CI]; |
| for (PgmDependenceGraph::iterator DI = depGraph.outDepBegin(CI); |
| ! DI.fini(); ++DI) { |
| Instruction* sink = &DI->getSink()->getInstr(); |
| if (stmtsVisited.find(sink) == stmtsVisited.end()) |
| VisitOutEdges(sink, &CI, depsOfRoot); |
| } |
| |
| completed[&CI] = true; |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // class Parallelize |
| // |
| // (1) Find candidate parallel functions: any function F s.t. |
| // there is a call C1 to the function F that is followed or preceded |
| // by at least one other call C2 that is independent of this one |
| // (i.e., there is no dependence path from C1 to C2 or C2 to C1) |
| // (2) Label such a function F as a cilk function. |
| // (3) Convert every call to F to a spawn |
| // (4) For every function X, insert sync statements so that |
| // every spawn is postdominated by a sync before any statements |
| // with a data dependence to/from the call site for the spawn |
| // |
| //---------------------------------------------------------------------------- |
| |
| namespace { |
| class Parallelize: public Pass { |
| public: |
| /// Driver functions to transform a program |
| /// |
| bool run(Module& M); |
| |
| /// getAnalysisUsage - Modifies extensively so preserve nothing. |
| /// Uses the DependenceGraph and the Top-down DS Graph (only to find |
| /// all functions called via an indirect call). |
| /// |
| void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<TDDataStructures>(); |
| AU.addRequired<MemoryDepAnalysis>(); // force this not to be released |
| AU.addRequired<PgmDependenceGraph>(); // because it is needed by this |
| } |
| }; |
| |
| RegisterOpt<Parallelize> X("parallel", "Parallelize program using Cilk"); |
| } |
| |
| |
| bool Parallelize::run(Module& M) { |
| hash_set<Function*> parallelFunctions; |
| hash_set<Function*> safeParallelFunctions; |
| hash_set<const GlobalValue*> indirectlyCalled; |
| |
| // If there is no main (i.e., for an incomplete program), we can do nothing. |
| // If there is a main, mark main as a parallel function. |
| Function* mainFunc = M.getMainFunction(); |
| if (!mainFunc) |
| return false; |
| |
| // (1) Find candidate parallel functions and mark them as Cilk functions |
| for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) |
| if (! FI->isExternal()) { |
| Function* F = FI; |
| DSGraph& tdg = getAnalysis<TDDataStructures>().getDSGraph(*F); |
| |
| // All the hard analysis work gets done here! |
| FindParallelCalls finder(*F, |
| getAnalysis<PgmDependenceGraph>().getGraph(*F)); |
| /* getAnalysis<MemoryDepAnalysis>().getGraph(*F)); */ |
| |
| // Now we know which call instructions are useful to parallelize. |
| // Remember those callee functions. |
| for (std::vector<CallInst*>::iterator |
| CII = finder.parallelCalls.begin(), |
| CIE = finder.parallelCalls.end(); CII != CIE; ++CII) { |
| // Check if this is a direct call... |
| if ((*CII)->getCalledFunction() != NULL) { |
| // direct call: if this is to a non-external function, |
| // mark it as a parallelizable function |
| if (! (*CII)->getCalledFunction()->isExternal()) |
| parallelFunctions.insert((*CII)->getCalledFunction()); |
| } else { |
| // Indirect call: mark all potential callees as bad |
| std::vector<GlobalValue*> callees = |
| tdg.getNodeForValue((*CII)->getCalledValue()) |
| .getNode()->getGlobals(); |
| indirectlyCalled.insert(callees.begin(), callees.end()); |
| } |
| } |
| } |
| |
| // Remove all indirectly called functions from the list of Cilk functions. |
| for (hash_set<Function*>::iterator PFI = parallelFunctions.begin(), |
| PFE = parallelFunctions.end(); PFI != PFE; ++PFI) |
| if (indirectlyCalled.count(*PFI) == 0) |
| safeParallelFunctions.insert(*PFI); |
| |
| #undef CAN_USE_BIND1ST_ON_REFERENCE_TYPE_ARGS |
| #ifdef CAN_USE_BIND1ST_ON_REFERENCE_TYPE_ARGS |
| // Use this indecipherable STLese because erase invalidates iterators. |
| // Otherwise we have to copy sets as above. |
| hash_set<Function*>::iterator extrasBegin = |
| std::remove_if(parallelFunctions.begin(), parallelFunctions.end(), |
| compose1(std::bind2nd(std::greater<int>(), 0), |
| bind_obj(&indirectlyCalled, |
| &hash_set<const GlobalValue*>::count))); |
| parallelFunctions.erase(extrasBegin, parallelFunctions.end()); |
| #endif |
| |
| // If there are no parallel functions, we can just give up. |
| if (safeParallelFunctions.empty()) |
| return false; |
| |
| // Add main as a parallel function since Cilk requires this. |
| safeParallelFunctions.insert(mainFunc); |
| |
| // (2,3) Transform each Cilk function and all its calls simply by |
| // adding a unique suffix to the function name. |
| // This should identify both functions and calls to such functions |
| // to the code generator. |
| // (4) Also, insert calls to sync at appropriate points. |
| Cilkifier cilkifier(M); |
| for (hash_set<Function*>::iterator CFI = safeParallelFunctions.begin(), |
| CFE = safeParallelFunctions.end(); CFI != CFE; ++CFI) { |
| cilkifier.TransformFunc(*CFI, safeParallelFunctions, |
| getAnalysis<PgmDependenceGraph>().getGraph(**CFI)); |
| /* getAnalysis<MemoryDepAnalysis>().getGraph(**CFI)); */ |
| } |
| |
| return true; |
| } |
| |