docs: Sphinxify `docs/tutorial/`

Sorry for the massive commit, but I just wanted to knock this one down
and it is really straightforward.

There are still a couple trivial (i.e. not related to the content)
things left to fix:

- Use of raw HTML links where :doc:`...` and :ref:`...` could be used
  instead. If you are a newbie and want to help fix this it would make
  for some good bite-sized patches; more experienced developers should
  be focusing on adding new content (to this tutorial or elsewhere, but
  please _do not_ waste your time on formatting when there is such dire
  need for documentation (see docs/SphinxQuickstartTemplate.rst to get
  started writing)).

- Highlighting of the kaleidoscope code blocks (currently left as bare
  `::`).  I will be working on writing a custom Pygments highlighter for
  this, mostly as training for maintaining the `llvm` code-block's lexer
  in-tree. I want to do this because I am extremely unhappy with how it
  just "gives up" on the slightest deviation from the expected syntax
  and leaves the whole code-block un-highlighted.

  More generally I am looking at writing some Sphinx extensions and
  keeping them in-tree as well, to support common use cases that
  currently have no good solution (like "monospace text inside a link").

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169343 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/docs/tutorial/LangImpl3.rst b/docs/tutorial/LangImpl3.rst
new file mode 100644
index 0000000..01935a4
--- /dev/null
+++ b/docs/tutorial/LangImpl3.rst
@@ -0,0 +1,1162 @@
+========================================
+Kaleidoscope: Code generation to LLVM IR
+========================================
+
+.. contents::
+   :local:
+
+Written by `Chris Lattner <mailto:sabre@nondot.org>`_
+
+Chapter 3 Introduction
+======================
+
+Welcome to Chapter 3 of the "`Implementing a language with
+LLVM <index.html>`_" tutorial. This chapter shows you how to transform
+the `Abstract Syntax Tree <LangImpl2.html>`_, built in Chapter 2, into
+LLVM IR. This will teach you a little bit about how LLVM does things, as
+well as demonstrate how easy it is to use. It's much more work to build
+a lexer and parser than it is to generate LLVM IR code. :)
+
+**Please note**: the code in this chapter and later require LLVM 2.2 or
+later. LLVM 2.1 and before will not work with it. Also note that you
+need to use a version of this tutorial that matches your LLVM release:
+If you are using an official LLVM release, use the version of the
+documentation included with your release or on the `llvm.org releases
+page <http://llvm.org/releases/>`_.
+
+Code Generation Setup
+=====================
+
+In order to generate LLVM IR, we want some simple setup to get started.
+First we define virtual code generation (codegen) methods in each AST
+class:
+
+.. code-block:: c++
+
+    /// ExprAST - Base class for all expression nodes.
+    class ExprAST {
+    public:
+      virtual ~ExprAST() {}
+      virtual Value *Codegen() = 0;
+    };
+
+    /// NumberExprAST - Expression class for numeric literals like "1.0".
+    class NumberExprAST : public ExprAST {
+      double Val;
+    public:
+      NumberExprAST(double val) : Val(val) {}
+      virtual Value *Codegen();
+    };
+    ...
+
+The Codegen() method says to emit IR for that AST node along with all
+the things it depends on, and they all return an LLVM Value object.
+"Value" is the class used to represent a "`Static Single Assignment
+(SSA) <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_
+register" or "SSA value" in LLVM. The most distinct aspect of SSA values
+is that their value is computed as the related instruction executes, and
+it does not get a new value until (and if) the instruction re-executes.
+In other words, there is no way to "change" an SSA value. For more
+information, please read up on `Static Single
+Assignment <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_
+- the concepts are really quite natural once you grok them.
+
+Note that instead of adding virtual methods to the ExprAST class
+hierarchy, it could also make sense to use a `visitor
+pattern <http://en.wikipedia.org/wiki/Visitor_pattern>`_ or some other
+way to model this. Again, this tutorial won't dwell on good software
+engineering practices: for our purposes, adding a virtual method is
+simplest.
+
+The second thing we want is an "Error" method like we used for the
+parser, which will be used to report errors found during code generation
+(for example, use of an undeclared parameter):
+
+.. code-block:: c++
+
+    Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+    static Module *TheModule;
+    static IRBuilder<> Builder(getGlobalContext());
+    static std::map<std::string, Value*> NamedValues;
+
+The static variables will be used during code generation. ``TheModule``
+is the LLVM construct that contains all of the functions and global
+variables in a chunk of code. In many ways, it is the top-level
+structure that the LLVM IR uses to contain code.
+
+The ``Builder`` object is a helper object that makes it easy to generate
+LLVM instructions. Instances of the
+```IRBuilder`` <http://llvm.org/doxygen/IRBuilder_8h-source.html>`_
+class template keep track of the current place to insert instructions
+and has methods to create new instructions.
+
+The ``NamedValues`` map keeps track of which values are defined in the
+current scope and what their LLVM representation is. (In other words, it
+is a symbol table for the code). In this form of Kaleidoscope, the only
+things that can be referenced are function parameters. As such, function
+parameters will be in this map when generating code for their function
+body.
+
+With these basics in place, we can start talking about how to generate
+code for each expression. Note that this assumes that the ``Builder``
+has been set up to generate code *into* something. For now, we'll assume
+that this has already been done, and we'll just use it to emit code.
+
+Expression Code Generation
+==========================
+
+Generating LLVM code for expression nodes is very straightforward: less
+than 45 lines of commented code for all four of our expression nodes.
+First we'll do numeric literals:
+
+.. code-block:: c++
+
+    Value *NumberExprAST::Codegen() {
+      return ConstantFP::get(getGlobalContext(), APFloat(Val));
+    }
+
+In the LLVM IR, numeric constants are represented with the
+``ConstantFP`` class, which holds the numeric value in an ``APFloat``
+internally (``APFloat`` has the capability of holding floating point
+constants of Arbitrary Precision). This code basically just creates
+and returns a ``ConstantFP``. Note that in the LLVM IR that constants
+are all uniqued together and shared. For this reason, the API uses the
+"foo::get(...)" idiom instead of "new foo(..)" or "foo::Create(..)".
+
+.. code-block:: c++
+
+    Value *VariableExprAST::Codegen() {
+      // Look this variable up in the function.
+      Value *V = NamedValues[Name];
+      return V ? V : ErrorV("Unknown variable name");
+    }
+
+References to variables are also quite simple using LLVM. In the simple
+version of Kaleidoscope, we assume that the variable has already been
+emitted somewhere and its value is available. In practice, the only
+values that can be in the ``NamedValues`` map are function arguments.
+This code simply checks to see that the specified name is in the map (if
+not, an unknown variable is being referenced) and returns the value for
+it. In future chapters, we'll add support for `loop induction
+variables <LangImpl5.html#for>`_ in the symbol table, and for `local
+variables <LangImpl7.html#localvars>`_.
+
+.. code-block:: c++
+
+    Value *BinaryExprAST::Codegen() {
+      Value *L = LHS->Codegen();
+      Value *R = RHS->Codegen();
+      if (L == 0 || R == 0) return 0;
+
+      switch (Op) {
+      case '+': return Builder.CreateFAdd(L, R, "addtmp");
+      case '-': return Builder.CreateFSub(L, R, "subtmp");
+      case '*': return Builder.CreateFMul(L, R, "multmp");
+      case '<':
+        L = Builder.CreateFCmpULT(L, R, "cmptmp");
+        // Convert bool 0/1 to double 0.0 or 1.0
+        return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+                                    "booltmp");
+      default: return ErrorV("invalid binary operator");
+      }
+    }
+
+Binary operators start to get more interesting. The basic idea here is
+that we recursively emit code for the left-hand side of the expression,
+then the right-hand side, then we compute the result of the binary
+expression. In this code, we do a simple switch on the opcode to create
+the right LLVM instruction.
+
+In the example above, the LLVM builder class is starting to show its
+value. IRBuilder knows where to insert the newly created instruction,
+all you have to do is specify what instruction to create (e.g. with
+``CreateFAdd``), which operands to use (``L`` and ``R`` here) and
+optionally provide a name for the generated instruction.
+
+One nice thing about LLVM is that the name is just a hint. For instance,
+if the code above emits multiple "addtmp" variables, LLVM will
+automatically provide each one with an increasing, unique numeric
+suffix. Local value names for instructions are purely optional, but it
+makes it much easier to read the IR dumps.
+
+`LLVM instructions <../LangRef.html#instref>`_ are constrained by strict
+rules: for example, the Left and Right operators of an `add
+instruction <../LangRef.html#i_add>`_ must have the same type, and the
+result type of the add must match the operand types. Because all values
+in Kaleidoscope are doubles, this makes for very simple code for add,
+sub and mul.
+
+On the other hand, LLVM specifies that the `fcmp
+instruction <../LangRef.html#i_fcmp>`_ always returns an 'i1' value (a
+one bit integer). The problem with this is that Kaleidoscope wants the
+value to be a 0.0 or 1.0 value. In order to get these semantics, we
+combine the fcmp instruction with a `uitofp
+instruction <../LangRef.html#i_uitofp>`_. This instruction converts its
+input integer into a floating point value by treating the input as an
+unsigned value. In contrast, if we used the `sitofp
+instruction <../LangRef.html#i_sitofp>`_, the Kaleidoscope '<' operator
+would return 0.0 and -1.0, depending on the input value.
+
+.. code-block:: c++
+
+    Value *CallExprAST::Codegen() {
+      // Look up the name in the global module table.
+      Function *CalleeF = TheModule->getFunction(Callee);
+      if (CalleeF == 0)
+        return ErrorV("Unknown function referenced");
+
+      // If argument mismatch error.
+      if (CalleeF->arg_size() != Args.size())
+        return ErrorV("Incorrect # arguments passed");
+
+      std::vector<Value*> ArgsV;
+      for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+        ArgsV.push_back(Args[i]->Codegen());
+        if (ArgsV.back() == 0) return 0;
+      }
+
+      return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
+    }
+
+Code generation for function calls is quite straightforward with LLVM.
+The code above initially does a function name lookup in the LLVM
+Module's symbol table. Recall that the LLVM Module is the container that
+holds all of the functions we are JIT'ing. By giving each function the
+same name as what the user specifies, we can use the LLVM symbol table
+to resolve function names for us.
+
+Once we have the function to call, we recursively codegen each argument
+that is to be passed in, and create an LLVM `call
+instruction <../LangRef.html#i_call>`_. Note that LLVM uses the native C
+calling conventions by default, allowing these calls to also call into
+standard library functions like "sin" and "cos", with no additional
+effort.
+
+This wraps up our handling of the four basic expressions that we have so
+far in Kaleidoscope. Feel free to go in and add some more. For example,
+by browsing the `LLVM language reference <../LangRef.html>`_ you'll find
+several other interesting instructions that are really easy to plug into
+our basic framework.
+
+Function Code Generation
+========================
+
+Code generation for prototypes and functions must handle a number of
+details, which make their code less beautiful than expression code
+generation, but allows us to illustrate some important points. First,
+lets talk about code generation for prototypes: they are used both for
+function bodies and external function declarations. The code starts
+with:
+
+.. code-block:: c++
+
+    Function *PrototypeAST::Codegen() {
+      // Make the function type:  double(double,double) etc.
+      std::vector<Type*> Doubles(Args.size(),
+                                 Type::getDoubleTy(getGlobalContext()));
+      FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+                                           Doubles, false);
+
+      Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+
+This code packs a lot of power into a few lines. Note first that this
+function returns a "Function\*" instead of a "Value\*". Because a
+"prototype" really talks about the external interface for a function
+(not the value computed by an expression), it makes sense for it to
+return the LLVM Function it corresponds to when codegen'd.
+
+The call to ``FunctionType::get`` creates the ``FunctionType`` that
+should be used for a given Prototype. Since all function arguments in
+Kaleidoscope are of type double, the first line creates a vector of "N"
+LLVM double types. It then uses the ``Functiontype::get`` method to
+create a function type that takes "N" doubles as arguments, returns one
+double as a result, and that is not vararg (the false parameter
+indicates this). Note that Types in LLVM are uniqued just like Constants
+are, so you don't "new" a type, you "get" it.
+
+The final line above actually creates the function that the prototype
+will correspond to. This indicates the type, linkage and name to use, as
+well as which module to insert into. "`external
+linkage <../LangRef.html#linkage>`_" means that the function may be
+defined outside the current module and/or that it is callable by
+functions outside the module. The Name passed in is the name the user
+specified: since "``TheModule``" is specified, this name is registered
+in "``TheModule``"s symbol table, which is used by the function call
+code above.
+
+.. code-block:: c++
+
+      // If F conflicted, there was already something named 'Name'.  If it has a
+      // body, don't allow redefinition or reextern.
+      if (F->getName() != Name) {
+        // Delete the one we just made and get the existing one.
+        F->eraseFromParent();
+        F = TheModule->getFunction(Name);
+
+The Module symbol table works just like the Function symbol table when
+it comes to name conflicts: if a new function is created with a name
+that was previously added to the symbol table, the new function will get
+implicitly renamed when added to the Module. The code above exploits
+this fact to determine if there was a previous definition of this
+function.
+
+In Kaleidoscope, I choose to allow redefinitions of functions in two
+cases: first, we want to allow 'extern'ing a function more than once, as
+long as the prototypes for the externs match (since all arguments have
+the same type, we just have to check that the number of arguments
+match). Second, we want to allow 'extern'ing a function and then
+defining a body for it. This is useful when defining mutually recursive
+functions.
+
+In order to implement this, the code above first checks to see if there
+is a collision on the name of the function. If so, it deletes the
+function we just created (by calling ``eraseFromParent``) and then
+calling ``getFunction`` to get the existing function with the specified
+name. Note that many APIs in LLVM have "erase" forms and "remove" forms.
+The "remove" form unlinks the object from its parent (e.g. a Function
+from a Module) and returns it. The "erase" form unlinks the object and
+then deletes it.
+
+.. code-block:: c++
+
+        // If F already has a body, reject this.
+        if (!F->empty()) {
+          ErrorF("redefinition of function");
+          return 0;
+        }
+
+        // If F took a different number of args, reject.
+        if (F->arg_size() != Args.size()) {
+          ErrorF("redefinition of function with different # args");
+          return 0;
+        }
+      }
+
+In order to verify the logic above, we first check to see if the
+pre-existing function is "empty". In this case, empty means that it has
+no basic blocks in it, which means it has no body. If it has no body, it
+is a forward declaration. Since we don't allow anything after a full
+definition of the function, the code rejects this case. If the previous
+reference to a function was an 'extern', we simply verify that the
+number of arguments for that definition and this one match up. If not,
+we emit an error.
+
+.. code-block:: c++
+
+      // Set names for all arguments.
+      unsigned Idx = 0;
+      for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
+           ++AI, ++Idx) {
+        AI->setName(Args[Idx]);
+
+        // Add arguments to variable symbol table.
+        NamedValues[Args[Idx]] = AI;
+      }
+      return F;
+    }
+
+The last bit of code for prototypes loops over all of the arguments in
+the function, setting the name of the LLVM Argument objects to match,
+and registering the arguments in the ``NamedValues`` map for future use
+by the ``VariableExprAST`` AST node. Once this is set up, it returns the
+Function object to the caller. Note that we don't check for conflicting
+argument names here (e.g. "extern foo(a b a)"). Doing so would be very
+straight-forward with the mechanics we have already used above.
+
+.. code-block:: c++
+
+    Function *FunctionAST::Codegen() {
+      NamedValues.clear();
+
+      Function *TheFunction = Proto->Codegen();
+      if (TheFunction == 0)
+        return 0;
+
+Code generation for function definitions starts out simply enough: we
+just codegen the prototype (Proto) and verify that it is ok. We then
+clear out the ``NamedValues`` map to make sure that there isn't anything
+in it from the last function we compiled. Code generation of the
+prototype ensures that there is an LLVM Function object that is ready to
+go for us.
+
+.. code-block:: c++
+
+      // Create a new basic block to start insertion into.
+      BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+      Builder.SetInsertPoint(BB);
+
+      if (Value *RetVal = Body->Codegen()) {
+
+Now we get to the point where the ``Builder`` is set up. The first line
+creates a new `basic block <http://en.wikipedia.org/wiki/Basic_block>`_
+(named "entry"), which is inserted into ``TheFunction``. The second line
+then tells the builder that new instructions should be inserted into the
+end of the new basic block. Basic blocks in LLVM are an important part
+of functions that define the `Control Flow
+Graph <http://en.wikipedia.org/wiki/Control_flow_graph>`_. Since we
+don't have any control flow, our functions will only contain one block
+at this point. We'll fix this in `Chapter 5 <LangImpl5.html>`_ :).
+
+.. code-block:: c++
+
+      if (Value *RetVal = Body->Codegen()) {
+        // Finish off the function.
+        Builder.CreateRet(RetVal);
+
+        // Validate the generated code, checking for consistency.
+        verifyFunction(*TheFunction);
+
+        return TheFunction;
+      }
+
+Once the insertion point is set up, we call the ``CodeGen()`` method for
+the root expression of the function. If no error happens, this emits
+code to compute the expression into the entry block and returns the
+value that was computed. Assuming no error, we then create an LLVM `ret
+instruction <../LangRef.html#i_ret>`_, which completes the function.
+Once the function is built, we call ``verifyFunction``, which is
+provided by LLVM. This function does a variety of consistency checks on
+the generated code, to determine if our compiler is doing everything
+right. Using this is important: it can catch a lot of bugs. Once the
+function is finished and validated, we return it.
+
+.. code-block:: c++
+
+      // Error reading body, remove function.
+      TheFunction->eraseFromParent();
+      return 0;
+    }
+
+The only piece left here is handling of the error case. For simplicity,
+we handle this by merely deleting the function we produced with the
+``eraseFromParent`` method. This allows the user to redefine a function
+that they incorrectly typed in before: if we didn't delete it, it would
+live in the symbol table, with a body, preventing future redefinition.
+
+This code does have a bug, though. Since the ``PrototypeAST::Codegen``
+can return a previously defined forward declaration, our code can
+actually delete a forward declaration. There are a number of ways to fix
+this bug, see what you can come up with! Here is a testcase:
+
+::
+
+    extern foo(a b);     # ok, defines foo.
+    def foo(a b) c;      # error, 'c' is invalid.
+    def bar() foo(1, 2); # error, unknown function "foo"
+
+Driver Changes and Closing Thoughts
+===================================
+
+For now, code generation to LLVM doesn't really get us much, except that
+we can look at the pretty IR calls. The sample code inserts calls to
+Codegen into the "``HandleDefinition``", "``HandleExtern``" etc
+functions, and then dumps out the LLVM IR. This gives a nice way to look
+at the LLVM IR for simple functions. For example:
+
+::
+
+    ready> 4+5;
+    Read top-level expression:
+    define double @0() {
+    entry:
+      ret double 9.000000e+00
+    }
+
+Note how the parser turns the top-level expression into anonymous
+functions for us. This will be handy when we add `JIT
+support <LangImpl4.html#jit>`_ in the next chapter. Also note that the
+code is very literally transcribed, no optimizations are being performed
+except simple constant folding done by IRBuilder. We will `add
+optimizations <LangImpl4.html#trivialconstfold>`_ explicitly in the next
+chapter.
+
+::
+
+    ready> def foo(a b) a*a + 2*a*b + b*b;
+    Read function definition:
+    define double @foo(double %a, double %b) {
+    entry:
+      %multmp = fmul double %a, %a
+      %multmp1 = fmul double 2.000000e+00, %a
+      %multmp2 = fmul double %multmp1, %b
+      %addtmp = fadd double %multmp, %multmp2
+      %multmp3 = fmul double %b, %b
+      %addtmp4 = fadd double %addtmp, %multmp3
+      ret double %addtmp4
+    }
+
+This shows some simple arithmetic. Notice the striking similarity to the
+LLVM builder calls that we use to create the instructions.
+
+::
+
+    ready> def bar(a) foo(a, 4.0) + bar(31337);
+    Read function definition:
+    define double @bar(double %a) {
+    entry:
+      %calltmp = call double @foo(double %a, double 4.000000e+00)
+      %calltmp1 = call double @bar(double 3.133700e+04)
+      %addtmp = fadd double %calltmp, %calltmp1
+      ret double %addtmp
+    }
+
+This shows some function calls. Note that this function will take a long
+time to execute if you call it. In the future we'll add conditional
+control flow to actually make recursion useful :).
+
+::
+
+    ready> extern cos(x);
+    Read extern:
+    declare double @cos(double)
+
+    ready> cos(1.234);
+    Read top-level expression:
+    define double @1() {
+    entry:
+      %calltmp = call double @cos(double 1.234000e+00)
+      ret double %calltmp
+    }
+
+This shows an extern for the libm "cos" function, and a call to it.
+
+.. TODO:: Abandon Pygments' horrible `llvm` lexer. It just totally gives up
+   on highlighting this due to the first line.
+
+::
+
+    ready> ^D
+    ; ModuleID = 'my cool jit'
+
+    define double @0() {
+    entry:
+      %addtmp = fadd double 4.000000e+00, 5.000000e+00
+      ret double %addtmp
+    }
+
+    define double @foo(double %a, double %b) {
+    entry:
+      %multmp = fmul double %a, %a
+      %multmp1 = fmul double 2.000000e+00, %a
+      %multmp2 = fmul double %multmp1, %b
+      %addtmp = fadd double %multmp, %multmp2
+      %multmp3 = fmul double %b, %b
+      %addtmp4 = fadd double %addtmp, %multmp3
+      ret double %addtmp4
+    }
+
+    define double @bar(double %a) {
+    entry:
+      %calltmp = call double @foo(double %a, double 4.000000e+00)
+      %calltmp1 = call double @bar(double 3.133700e+04)
+      %addtmp = fadd double %calltmp, %calltmp1
+      ret double %addtmp
+    }
+
+    declare double @cos(double)
+
+    define double @1() {
+    entry:
+      %calltmp = call double @cos(double 1.234000e+00)
+      ret double %calltmp
+    }
+
+When you quit the current demo, it dumps out the IR for the entire
+module generated. Here you can see the big picture with all the
+functions referencing each other.
+
+This wraps up the third chapter of the Kaleidoscope tutorial. Up next,
+we'll describe how to `add JIT codegen and optimizer
+support <LangImpl4.html>`_ to this so we can actually start running
+code!
+
+Full Code Listing
+=================
+
+Here is the complete code listing for our running example, enhanced with
+the LLVM code generator. Because this uses the LLVM libraries, we need
+to link them in. To do this, we use the
+`llvm-config <http://llvm.org/cmds/llvm-config.html>`_ tool to inform
+our makefile/command line about which options to use:
+
+.. code-block:: bash
+
+    # Compile
+    clang++ -g -O3 toy.cpp `llvm-config --cppflags --ldflags --libs core` -o toy
+    # Run
+    ./toy
+
+Here is the code:
+
+.. code-block:: c++
+
+    // To build this:
+    // See example below.
+
+    #include "llvm/DerivedTypes.h"
+    #include "llvm/IRBuilder.h"
+    #include "llvm/LLVMContext.h"
+    #include "llvm/Module.h"
+    #include "llvm/Analysis/Verifier.h"
+    #include <cstdio>
+    #include <string>
+    #include <map>
+    #include <vector>
+    using namespace llvm;
+
+    //===----------------------------------------------------------------------===//
+    // Lexer
+    //===----------------------------------------------------------------------===//
+
+    // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+    // of these for known things.
+    enum Token {
+      tok_eof = -1,
+
+      // commands
+      tok_def = -2, tok_extern = -3,
+
+      // primary
+      tok_identifier = -4, tok_number = -5
+    };
+
+    static std::string IdentifierStr;  // Filled in if tok_identifier
+    static double NumVal;              // Filled in if tok_number
+
+    /// gettok - Return the next token from standard input.
+    static int gettok() {
+      static int LastChar = ' ';
+
+      // Skip any whitespace.
+      while (isspace(LastChar))
+        LastChar = getchar();
+
+      if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+        IdentifierStr = LastChar;
+        while (isalnum((LastChar = getchar())))
+          IdentifierStr += LastChar;
+
+        if (IdentifierStr == "def") return tok_def;
+        if (IdentifierStr == "extern") return tok_extern;
+        return tok_identifier;
+      }
+
+      if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
+        std::string NumStr;
+        do {
+          NumStr += LastChar;
+          LastChar = getchar();
+        } while (isdigit(LastChar) || LastChar == '.');
+
+        NumVal = strtod(NumStr.c_str(), 0);
+        return tok_number;
+      }
+
+      if (LastChar == '#') {
+        // Comment until end of line.
+        do LastChar = getchar();
+        while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+        if (LastChar != EOF)
+          return gettok();
+      }
+
+      // Check for end of file.  Don't eat the EOF.
+      if (LastChar == EOF)
+        return tok_eof;
+
+      // Otherwise, just return the character as its ascii value.
+      int ThisChar = LastChar;
+      LastChar = getchar();
+      return ThisChar;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Abstract Syntax Tree (aka Parse Tree)
+    //===----------------------------------------------------------------------===//
+
+    /// ExprAST - Base class for all expression nodes.
+    class ExprAST {
+    public:
+      virtual ~ExprAST() {}
+      virtual Value *Codegen() = 0;
+    };
+
+    /// NumberExprAST - Expression class for numeric literals like "1.0".
+    class NumberExprAST : public ExprAST {
+      double Val;
+    public:
+      NumberExprAST(double val) : Val(val) {}
+      virtual Value *Codegen();
+    };
+
+    /// VariableExprAST - Expression class for referencing a variable, like "a".
+    class VariableExprAST : public ExprAST {
+      std::string Name;
+    public:
+      VariableExprAST(const std::string &name) : Name(name) {}
+      virtual Value *Codegen();
+    };
+
+    /// BinaryExprAST - Expression class for a binary operator.
+    class BinaryExprAST : public ExprAST {
+      char Op;
+      ExprAST *LHS, *RHS;
+    public:
+      BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+        : Op(op), LHS(lhs), RHS(rhs) {}
+      virtual Value *Codegen();
+    };
+
+    /// CallExprAST - Expression class for function calls.
+    class CallExprAST : public ExprAST {
+      std::string Callee;
+      std::vector<ExprAST*> Args;
+    public:
+      CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+        : Callee(callee), Args(args) {}
+      virtual Value *Codegen();
+    };
+
+    /// PrototypeAST - This class represents the "prototype" for a function,
+    /// which captures its name, and its argument names (thus implicitly the number
+    /// of arguments the function takes).
+    class PrototypeAST {
+      std::string Name;
+      std::vector<std::string> Args;
+    public:
+      PrototypeAST(const std::string &name, const std::vector<std::string> &args)
+        : Name(name), Args(args) {}
+
+      Function *Codegen();
+    };
+
+    /// FunctionAST - This class represents a function definition itself.
+    class FunctionAST {
+      PrototypeAST *Proto;
+      ExprAST *Body;
+    public:
+      FunctionAST(PrototypeAST *proto, ExprAST *body)
+        : Proto(proto), Body(body) {}
+
+      Function *Codegen();
+    };
+
+    //===----------------------------------------------------------------------===//
+    // Parser
+    //===----------------------------------------------------------------------===//
+
+    /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
+    /// token the parser is looking at.  getNextToken reads another token from the
+    /// lexer and updates CurTok with its results.
+    static int CurTok;
+    static int getNextToken() {
+      return CurTok = gettok();
+    }
+
+    /// BinopPrecedence - This holds the precedence for each binary operator that is
+    /// defined.
+    static std::map<char, int> BinopPrecedence;
+
+    /// GetTokPrecedence - Get the precedence of the pending binary operator token.
+    static int GetTokPrecedence() {
+      if (!isascii(CurTok))
+        return -1;
+
+      // Make sure it's a declared binop.
+      int TokPrec = BinopPrecedence[CurTok];
+      if (TokPrec <= 0) return -1;
+      return TokPrec;
+    }
+
+    /// Error* - These are little helper functions for error handling.
+    ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+    PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+    FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+    static ExprAST *ParseExpression();
+
+    /// identifierexpr
+    ///   ::= identifier
+    ///   ::= identifier '(' expression* ')'
+    static ExprAST *ParseIdentifierExpr() {
+      std::string IdName = IdentifierStr;
+
+      getNextToken();  // eat identifier.
+
+      if (CurTok != '(') // Simple variable ref.
+        return new VariableExprAST(IdName);
+
+      // Call.
+      getNextToken();  // eat (
+      std::vector<ExprAST*> Args;
+      if (CurTok != ')') {
+        while (1) {
+          ExprAST *Arg = ParseExpression();
+          if (!Arg) return 0;
+          Args.push_back(Arg);
+
+          if (CurTok == ')') break;
+
+          if (CurTok != ',')
+            return Error("Expected ')' or ',' in argument list");
+          getNextToken();
+        }
+      }
+
+      // Eat the ')'.
+      getNextToken();
+
+      return new CallExprAST(IdName, Args);
+    }
+
+    /// numberexpr ::= number
+    static ExprAST *ParseNumberExpr() {
+      ExprAST *Result = new NumberExprAST(NumVal);
+      getNextToken(); // consume the number
+      return Result;
+    }
+
+    /// parenexpr ::= '(' expression ')'
+    static ExprAST *ParseParenExpr() {
+      getNextToken();  // eat (.
+      ExprAST *V = ParseExpression();
+      if (!V) return 0;
+
+      if (CurTok != ')')
+        return Error("expected ')'");
+      getNextToken();  // eat ).
+      return V;
+    }
+
+    /// primary
+    ///   ::= identifierexpr
+    ///   ::= numberexpr
+    ///   ::= parenexpr
+    static ExprAST *ParsePrimary() {
+      switch (CurTok) {
+      default: return Error("unknown token when expecting an expression");
+      case tok_identifier: return ParseIdentifierExpr();
+      case tok_number:     return ParseNumberExpr();
+      case '(':            return ParseParenExpr();
+      }
+    }
+
+    /// binoprhs
+    ///   ::= ('+' primary)*
+    static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+      // If this is a binop, find its precedence.
+      while (1) {
+        int TokPrec = GetTokPrecedence();
+
+        // If this is a binop that binds at least as tightly as the current binop,
+        // consume it, otherwise we are done.
+        if (TokPrec < ExprPrec)
+          return LHS;
+
+        // Okay, we know this is a binop.
+        int BinOp = CurTok;
+        getNextToken();  // eat binop
+
+        // Parse the primary expression after the binary operator.
+        ExprAST *RHS = ParsePrimary();
+        if (!RHS) return 0;
+
+        // If BinOp binds less tightly with RHS than the operator after RHS, let
+        // the pending operator take RHS as its LHS.
+        int NextPrec = GetTokPrecedence();
+        if (TokPrec < NextPrec) {
+          RHS = ParseBinOpRHS(TokPrec+1, RHS);
+          if (RHS == 0) return 0;
+        }
+
+        // Merge LHS/RHS.
+        LHS = new BinaryExprAST(BinOp, LHS, RHS);
+      }
+    }
+
+    /// expression
+    ///   ::= primary binoprhs
+    ///
+    static ExprAST *ParseExpression() {
+      ExprAST *LHS = ParsePrimary();
+      if (!LHS) return 0;
+
+      return ParseBinOpRHS(0, LHS);
+    }
+
+    /// prototype
+    ///   ::= id '(' id* ')'
+    static PrototypeAST *ParsePrototype() {
+      if (CurTok != tok_identifier)
+        return ErrorP("Expected function name in prototype");
+
+      std::string FnName = IdentifierStr;
+      getNextToken();
+
+      if (CurTok != '(')
+        return ErrorP("Expected '(' in prototype");
+
+      std::vector<std::string> ArgNames;
+      while (getNextToken() == tok_identifier)
+        ArgNames.push_back(IdentifierStr);
+      if (CurTok != ')')
+        return ErrorP("Expected ')' in prototype");
+
+      // success.
+      getNextToken();  // eat ')'.
+
+      return new PrototypeAST(FnName, ArgNames);
+    }
+
+    /// definition ::= 'def' prototype expression
+    static FunctionAST *ParseDefinition() {
+      getNextToken();  // eat def.
+      PrototypeAST *Proto = ParsePrototype();
+      if (Proto == 0) return 0;
+
+      if (ExprAST *E = ParseExpression())
+        return new FunctionAST(Proto, E);
+      return 0;
+    }
+
+    /// toplevelexpr ::= expression
+    static FunctionAST *ParseTopLevelExpr() {
+      if (ExprAST *E = ParseExpression()) {
+        // Make an anonymous proto.
+        PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+        return new FunctionAST(Proto, E);
+      }
+      return 0;
+    }
+
+    /// external ::= 'extern' prototype
+    static PrototypeAST *ParseExtern() {
+      getNextToken();  // eat extern.
+      return ParsePrototype();
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Code Generation
+    //===----------------------------------------------------------------------===//
+
+    static Module *TheModule;
+    static IRBuilder<> Builder(getGlobalContext());
+    static std::map<std::string, Value*> NamedValues;
+
+    Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+    Value *NumberExprAST::Codegen() {
+      return ConstantFP::get(getGlobalContext(), APFloat(Val));
+    }
+
+    Value *VariableExprAST::Codegen() {
+      // Look this variable up in the function.
+      Value *V = NamedValues[Name];
+      return V ? V : ErrorV("Unknown variable name");
+    }
+
+    Value *BinaryExprAST::Codegen() {
+      Value *L = LHS->Codegen();
+      Value *R = RHS->Codegen();
+      if (L == 0 || R == 0) return 0;
+
+      switch (Op) {
+      case '+': return Builder.CreateFAdd(L, R, "addtmp");
+      case '-': return Builder.CreateFSub(L, R, "subtmp");
+      case '*': return Builder.CreateFMul(L, R, "multmp");
+      case '<':
+        L = Builder.CreateFCmpULT(L, R, "cmptmp");
+        // Convert bool 0/1 to double 0.0 or 1.0
+        return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+                                    "booltmp");
+      default: return ErrorV("invalid binary operator");
+      }
+    }
+
+    Value *CallExprAST::Codegen() {
+      // Look up the name in the global module table.
+      Function *CalleeF = TheModule->getFunction(Callee);
+      if (CalleeF == 0)
+        return ErrorV("Unknown function referenced");
+
+      // If argument mismatch error.
+      if (CalleeF->arg_size() != Args.size())
+        return ErrorV("Incorrect # arguments passed");
+
+      std::vector<Value*> ArgsV;
+      for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+        ArgsV.push_back(Args[i]->Codegen());
+        if (ArgsV.back() == 0) return 0;
+      }
+
+      return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
+    }
+
+    Function *PrototypeAST::Codegen() {
+      // Make the function type:  double(double,double) etc.
+      std::vector<Type*> Doubles(Args.size(),
+                                 Type::getDoubleTy(getGlobalContext()));
+      FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+                                           Doubles, false);
+
+      Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+
+      // If F conflicted, there was already something named 'Name'.  If it has a
+      // body, don't allow redefinition or reextern.
+      if (F->getName() != Name) {
+        // Delete the one we just made and get the existing one.
+        F->eraseFromParent();
+        F = TheModule->getFunction(Name);
+
+        // If F already has a body, reject this.
+        if (!F->empty()) {
+          ErrorF("redefinition of function");
+          return 0;
+        }
+
+        // If F took a different number of args, reject.
+        if (F->arg_size() != Args.size()) {
+          ErrorF("redefinition of function with different # args");
+          return 0;
+        }
+      }
+
+      // Set names for all arguments.
+      unsigned Idx = 0;
+      for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
+           ++AI, ++Idx) {
+        AI->setName(Args[Idx]);
+
+        // Add arguments to variable symbol table.
+        NamedValues[Args[Idx]] = AI;
+      }
+
+      return F;
+    }
+
+    Function *FunctionAST::Codegen() {
+      NamedValues.clear();
+
+      Function *TheFunction = Proto->Codegen();
+      if (TheFunction == 0)
+        return 0;
+
+      // Create a new basic block to start insertion into.
+      BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+      Builder.SetInsertPoint(BB);
+
+      if (Value *RetVal = Body->Codegen()) {
+        // Finish off the function.
+        Builder.CreateRet(RetVal);
+
+        // Validate the generated code, checking for consistency.
+        verifyFunction(*TheFunction);
+
+        return TheFunction;
+      }
+
+      // Error reading body, remove function.
+      TheFunction->eraseFromParent();
+      return 0;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Top-Level parsing and JIT Driver
+    //===----------------------------------------------------------------------===//
+
+    static void HandleDefinition() {
+      if (FunctionAST *F = ParseDefinition()) {
+        if (Function *LF = F->Codegen()) {
+          fprintf(stderr, "Read function definition:");
+          LF->dump();
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    static void HandleExtern() {
+      if (PrototypeAST *P = ParseExtern()) {
+        if (Function *F = P->Codegen()) {
+          fprintf(stderr, "Read extern: ");
+          F->dump();
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    static void HandleTopLevelExpression() {
+      // Evaluate a top-level expression into an anonymous function.
+      if (FunctionAST *F = ParseTopLevelExpr()) {
+        if (Function *LF = F->Codegen()) {
+          fprintf(stderr, "Read top-level expression:");
+          LF->dump();
+        }
+      } else {
+        // Skip token for error recovery.
+        getNextToken();
+      }
+    }
+
+    /// top ::= definition | external | expression | ';'
+    static void MainLoop() {
+      while (1) {
+        fprintf(stderr, "ready> ");
+        switch (CurTok) {
+        case tok_eof:    return;
+        case ';':        getNextToken(); break;  // ignore top-level semicolons.
+        case tok_def:    HandleDefinition(); break;
+        case tok_extern: HandleExtern(); break;
+        default:         HandleTopLevelExpression(); break;
+        }
+      }
+    }
+
+    //===----------------------------------------------------------------------===//
+    // "Library" functions that can be "extern'd" from user code.
+    //===----------------------------------------------------------------------===//
+
+    /// putchard - putchar that takes a double and returns 0.
+    extern "C"
+    double putchard(double X) {
+      putchar((char)X);
+      return 0;
+    }
+
+    //===----------------------------------------------------------------------===//
+    // Main driver code.
+    //===----------------------------------------------------------------------===//
+
+    int main() {
+      LLVMContext &Context = getGlobalContext();
+
+      // Install standard binary operators.
+      // 1 is lowest precedence.
+      BinopPrecedence['<'] = 10;
+      BinopPrecedence['+'] = 20;
+      BinopPrecedence['-'] = 20;
+      BinopPrecedence['*'] = 40;  // highest.
+
+      // Prime the first token.
+      fprintf(stderr, "ready> ");
+      getNextToken();
+
+      // Make the module, which holds all the code.
+      TheModule = new Module("my cool jit", Context);
+
+      // Run the main "interpreter loop" now.
+      MainLoop();
+
+      // Print out all of the generated code.
+      TheModule->dump();
+
+      return 0;
+    }
+
+`Next: Adding JIT and Optimizer Support <LangImpl4.html>`_
+