docs: Sphinxify `docs/tutorial/`

Sorry for the massive commit, but I just wanted to knock this one down
and it is really straightforward.

There are still a couple trivial (i.e. not related to the content)
things left to fix:

- Use of raw HTML links where :doc:`...` and :ref:`...` could be used
  instead. If you are a newbie and want to help fix this it would make
  for some good bite-sized patches; more experienced developers should
  be focusing on adding new content (to this tutorial or elsewhere, but
  please _do not_ waste your time on formatting when there is such dire
  need for documentation (see docs/SphinxQuickstartTemplate.rst to get
  started writing)).

- Highlighting of the kaleidoscope code blocks (currently left as bare
  `::`).  I will be working on writing a custom Pygments highlighter for
  this, mostly as training for maintaining the `llvm` code-block's lexer
  in-tree. I want to do this because I am extremely unhappy with how it
  just "gives up" on the slightest deviation from the expected syntax
  and leaves the whole code-block un-highlighted.

  More generally I am looking at writing some Sphinx extensions and
  keeping them in-tree as well, to support common use cases that
  currently have no good solution (like "monospace text inside a link").

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169343 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/docs/tutorial/OCamlLangImpl4.rst b/docs/tutorial/OCamlLangImpl4.rst
new file mode 100644
index 0000000..865a03d
--- /dev/null
+++ b/docs/tutorial/OCamlLangImpl4.rst
@@ -0,0 +1,918 @@
+==============================================
+Kaleidoscope: Adding JIT and Optimizer Support
+==============================================
+
+.. contents::
+   :local:
+
+Written by `Chris Lattner <mailto:sabre@nondot.org>`_ and `Erick
+Tryzelaar <mailto:idadesub@users.sourceforge.net>`_
+
+Chapter 4 Introduction
+======================
+
+Welcome to Chapter 4 of the "`Implementing a language with
+LLVM <index.html>`_" tutorial. Chapters 1-3 described the implementation
+of a simple language and added support for generating LLVM IR. This
+chapter describes two new techniques: adding optimizer support to your
+language, and adding JIT compiler support. These additions will
+demonstrate how to get nice, efficient code for the Kaleidoscope
+language.
+
+Trivial Constant Folding
+========================
+
+**Note:** the default ``IRBuilder`` now always includes the constant
+folding optimisations below.
+
+Our demonstration for Chapter 3 is elegant and easy to extend.
+Unfortunately, it does not produce wonderful code. For example, when
+compiling simple code, we don't get obvious optimizations:
+
+::
+
+    ready> def test(x) 1+2+x;
+    Read function definition:
+    define double @test(double %x) {
+    entry:
+            %addtmp = fadd double 1.000000e+00, 2.000000e+00
+            %addtmp1 = fadd double %addtmp, %x
+            ret double %addtmp1
+    }
+
+This code is a very, very literal transcription of the AST built by
+parsing the input. As such, this transcription lacks optimizations like
+constant folding (we'd like to get "``add x, 3.0``" in the example
+above) as well as other more important optimizations. Constant folding,
+in particular, is a very common and very important optimization: so much
+so that many language implementors implement constant folding support in
+their AST representation.
+
+With LLVM, you don't need this support in the AST. Since all calls to
+build LLVM IR go through the LLVM builder, it would be nice if the
+builder itself checked to see if there was a constant folding
+opportunity when you call it. If so, it could just do the constant fold
+and return the constant instead of creating an instruction. This is
+exactly what the ``LLVMFoldingBuilder`` class does.
+
+All we did was switch from ``LLVMBuilder`` to ``LLVMFoldingBuilder``.
+Though we change no other code, we now have all of our instructions
+implicitly constant folded without us having to do anything about it.
+For example, the input above now compiles to:
+
+::
+
+    ready> def test(x) 1+2+x;
+    Read function definition:
+    define double @test(double %x) {
+    entry:
+            %addtmp = fadd double 3.000000e+00, %x
+            ret double %addtmp
+    }
+
+Well, that was easy :). In practice, we recommend always using
+``LLVMFoldingBuilder`` when generating code like this. It has no
+"syntactic overhead" for its use (you don't have to uglify your compiler
+with constant checks everywhere) and it can dramatically reduce the
+amount of LLVM IR that is generated in some cases (particular for
+languages with a macro preprocessor or that use a lot of constants).
+
+On the other hand, the ``LLVMFoldingBuilder`` is limited by the fact
+that it does all of its analysis inline with the code as it is built. If
+you take a slightly more complex example:
+
+::
+
+    ready> def test(x) (1+2+x)*(x+(1+2));
+    ready> Read function definition:
+    define double @test(double %x) {
+    entry:
+            %addtmp = fadd double 3.000000e+00, %x
+            %addtmp1 = fadd double %x, 3.000000e+00
+            %multmp = fmul double %addtmp, %addtmp1
+            ret double %multmp
+    }
+
+In this case, the LHS and RHS of the multiplication are the same value.
+We'd really like to see this generate "``tmp = x+3; result = tmp*tmp;``"
+instead of computing "``x*3``" twice.
+
+Unfortunately, no amount of local analysis will be able to detect and
+correct this. This requires two transformations: reassociation of
+expressions (to make the add's lexically identical) and Common
+Subexpression Elimination (CSE) to delete the redundant add instruction.
+Fortunately, LLVM provides a broad range of optimizations that you can
+use, in the form of "passes".
+
+LLVM Optimization Passes
+========================
+
+LLVM provides many optimization passes, which do many different sorts of
+things and have different tradeoffs. Unlike other systems, LLVM doesn't
+hold to the mistaken notion that one set of optimizations is right for
+all languages and for all situations. LLVM allows a compiler implementor
+to make complete decisions about what optimizations to use, in which
+order, and in what situation.
+
+As a concrete example, LLVM supports both "whole module" passes, which
+look across as large of body of code as they can (often a whole file,
+but if run at link time, this can be a substantial portion of the whole
+program). It also supports and includes "per-function" passes which just
+operate on a single function at a time, without looking at other
+functions. For more information on passes and how they are run, see the
+`How to Write a Pass <../WritingAnLLVMPass.html>`_ document and the
+`List of LLVM Passes <../Passes.html>`_.
+
+For Kaleidoscope, we are currently generating functions on the fly, one
+at a time, as the user types them in. We aren't shooting for the
+ultimate optimization experience in this setting, but we also want to
+catch the easy and quick stuff where possible. As such, we will choose
+to run a few per-function optimizations as the user types the function
+in. If we wanted to make a "static Kaleidoscope compiler", we would use
+exactly the code we have now, except that we would defer running the
+optimizer until the entire file has been parsed.
+
+In order to get per-function optimizations going, we need to set up a
+`Llvm.PassManager <../WritingAnLLVMPass.html#passmanager>`_ to hold and
+organize the LLVM optimizations that we want to run. Once we have that,
+we can add a set of optimizations to run. The code looks like this:
+
+.. code-block:: ocaml
+
+      (* Create the JIT. *)
+      let the_execution_engine = ExecutionEngine.create Codegen.the_module in
+      let the_fpm = PassManager.create_function Codegen.the_module in
+
+      (* Set up the optimizer pipeline.  Start with registering info about how the
+       * target lays out data structures. *)
+      DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
+
+      (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
+      add_instruction_combining the_fpm;
+
+      (* reassociate expressions. *)
+      add_reassociation the_fpm;
+
+      (* Eliminate Common SubExpressions. *)
+      add_gvn the_fpm;
+
+      (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
+      add_cfg_simplification the_fpm;
+
+      ignore (PassManager.initialize the_fpm);
+
+      (* Run the main "interpreter loop" now. *)
+      Toplevel.main_loop the_fpm the_execution_engine stream;
+
+The meat of the matter here, is the definition of "``the_fpm``". It
+requires a pointer to the ``the_module`` to construct itself. Once it is
+set up, we use a series of "add" calls to add a bunch of LLVM passes.
+The first pass is basically boilerplate, it adds a pass so that later
+optimizations know how the data structures in the program are laid out.
+The "``the_execution_engine``" variable is related to the JIT, which we
+will get to in the next section.
+
+In this case, we choose to add 4 optimization passes. The passes we
+chose here are a pretty standard set of "cleanup" optimizations that are
+useful for a wide variety of code. I won't delve into what they do but,
+believe me, they are a good starting place :).
+
+Once the ``Llvm.PassManager.`` is set up, we need to make use of it. We
+do this by running it after our newly created function is constructed
+(in ``Codegen.codegen_func``), but before it is returned to the client:
+
+.. code-block:: ocaml
+
+    let codegen_func the_fpm = function
+          ...
+          try
+            let ret_val = codegen_expr body in
+
+            (* Finish off the function. *)
+            let _ = build_ret ret_val builder in
+
+            (* Validate the generated code, checking for consistency. *)
+            Llvm_analysis.assert_valid_function the_function;
+
+            (* Optimize the function. *)
+            let _ = PassManager.run_function the_function the_fpm in
+
+            the_function
+
+As you can see, this is pretty straightforward. The ``the_fpm``
+optimizes and updates the LLVM Function\* in place, improving
+(hopefully) its body. With this in place, we can try our test above
+again:
+
+::
+
+    ready> def test(x) (1+2+x)*(x+(1+2));
+    ready> Read function definition:
+    define double @test(double %x) {
+    entry:
+            %addtmp = fadd double %x, 3.000000e+00
+            %multmp = fmul double %addtmp, %addtmp
+            ret double %multmp
+    }
+
+As expected, we now get our nicely optimized code, saving a floating
+point add instruction from every execution of this function.
+
+LLVM provides a wide variety of optimizations that can be used in
+certain circumstances. Some `documentation about the various
+passes <../Passes.html>`_ is available, but it isn't very complete.
+Another good source of ideas can come from looking at the passes that
+``Clang`` runs to get started. The "``opt``" tool allows you to
+experiment with passes from the command line, so you can see if they do
+anything.
+
+Now that we have reasonable code coming out of our front-end, lets talk
+about executing it!
+
+Adding a JIT Compiler
+=====================
+
+Code that is available in LLVM IR can have a wide variety of tools
+applied to it. For example, you can run optimizations on it (as we did
+above), you can dump it out in textual or binary forms, you can compile
+the code to an assembly file (.s) for some target, or you can JIT
+compile it. The nice thing about the LLVM IR representation is that it
+is the "common currency" between many different parts of the compiler.
+
+In this section, we'll add JIT compiler support to our interpreter. The
+basic idea that we want for Kaleidoscope is to have the user enter
+function bodies as they do now, but immediately evaluate the top-level
+expressions they type in. For example, if they type in "1 + 2;", we
+should evaluate and print out 3. If they define a function, they should
+be able to call it from the command line.
+
+In order to do this, we first declare and initialize the JIT. This is
+done by adding a global variable and a call in ``main``:
+
+.. code-block:: ocaml
+
+    ...
+    let main () =
+      ...
+      (* Create the JIT. *)
+      let the_execution_engine = ExecutionEngine.create Codegen.the_module in
+      ...
+
+This creates an abstract "Execution Engine" which can be either a JIT
+compiler or the LLVM interpreter. LLVM will automatically pick a JIT
+compiler for you if one is available for your platform, otherwise it
+will fall back to the interpreter.
+
+Once the ``Llvm_executionengine.ExecutionEngine.t`` is created, the JIT
+is ready to be used. There are a variety of APIs that are useful, but
+the simplest one is the
+"``Llvm_executionengine.ExecutionEngine.run_function``" function. This
+method JIT compiles the specified LLVM Function and returns a function
+pointer to the generated machine code. In our case, this means that we
+can change the code that parses a top-level expression to look like
+this:
+
+.. code-block:: ocaml
+
+                (* Evaluate a top-level expression into an anonymous function. *)
+                let e = Parser.parse_toplevel stream in
+                print_endline "parsed a top-level expr";
+                let the_function = Codegen.codegen_func the_fpm e in
+                dump_value the_function;
+
+                (* JIT the function, returning a function pointer. *)
+                let result = ExecutionEngine.run_function the_function [||]
+                  the_execution_engine in
+
+                print_string "Evaluated to ";
+                print_float (GenericValue.as_float Codegen.double_type result);
+                print_newline ();
+
+Recall that we compile top-level expressions into a self-contained LLVM
+function that takes no arguments and returns the computed double.
+Because the LLVM JIT compiler matches the native platform ABI, this
+means that you can just cast the result pointer to a function pointer of
+that type and call it directly. This means, there is no difference
+between JIT compiled code and native machine code that is statically
+linked into your application.
+
+With just these two changes, lets see how Kaleidoscope works now!
+
+::
+
+    ready> 4+5;
+    define double @""() {
+    entry:
+            ret double 9.000000e+00
+    }
+
+    Evaluated to 9.000000
+
+Well this looks like it is basically working. The dump of the function
+shows the "no argument function that always returns double" that we
+synthesize for each top level expression that is typed in. This
+demonstrates very basic functionality, but can we do more?
+
+::
+
+    ready> def testfunc(x y) x + y*2;
+    Read function definition:
+    define double @testfunc(double %x, double %y) {
+    entry:
+            %multmp = fmul double %y, 2.000000e+00
+            %addtmp = fadd double %multmp, %x
+            ret double %addtmp
+    }
+
+    ready> testfunc(4, 10);
+    define double @""() {
+    entry:
+            %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
+            ret double %calltmp
+    }
+
+    Evaluated to 24.000000
+
+This illustrates that we can now call user code, but there is something
+a bit subtle going on here. Note that we only invoke the JIT on the
+anonymous functions that *call testfunc*, but we never invoked it on
+*testfunc* itself. What actually happened here is that the JIT scanned
+for all non-JIT'd functions transitively called from the anonymous
+function and compiled all of them before returning from
+``run_function``.
+
+The JIT provides a number of other more advanced interfaces for things
+like freeing allocated machine code, rejit'ing functions to update them,
+etc. However, even with this simple code, we get some surprisingly
+powerful capabilities - check this out (I removed the dump of the
+anonymous functions, you should get the idea by now :) :
+
+::
+
+    ready> extern sin(x);
+    Read extern:
+    declare double @sin(double)
+
+    ready> extern cos(x);
+    Read extern:
+    declare double @cos(double)
+
+    ready> sin(1.0);
+    Evaluated to 0.841471
+
+    ready> def foo(x) sin(x)*sin(x) + cos(x)*cos(x);
+    Read function definition:
+    define double @foo(double %x) {
+    entry:
+            %calltmp = call double @sin(double %x)
+            %multmp = fmul double %calltmp, %calltmp
+            %calltmp2 = call double @cos(double %x)
+            %multmp4 = fmul double %calltmp2, %calltmp2
+            %addtmp = fadd double %multmp, %multmp4
+            ret double %addtmp
+    }
+
+    ready> foo(4.0);
+    Evaluated to 1.000000
+
+Whoa, how does the JIT know about sin and cos? The answer is
+surprisingly simple: in this example, the JIT started execution of a
+function and got to a function call. It realized that the function was
+not yet JIT compiled and invoked the standard set of routines to resolve
+the function. In this case, there is no body defined for the function,
+so the JIT ended up calling "``dlsym("sin")``" on the Kaleidoscope
+process itself. Since "``sin``" is defined within the JIT's address
+space, it simply patches up calls in the module to call the libm version
+of ``sin`` directly.
+
+The LLVM JIT provides a number of interfaces (look in the
+``llvm_executionengine.mli`` file) for controlling how unknown functions
+get resolved. It allows you to establish explicit mappings between IR
+objects and addresses (useful for LLVM global variables that you want to
+map to static tables, for example), allows you to dynamically decide on
+the fly based on the function name, and even allows you to have the JIT
+compile functions lazily the first time they're called.
+
+One interesting application of this is that we can now extend the
+language by writing arbitrary C code to implement operations. For
+example, if we add:
+
+.. code-block:: c++
+
+    /* putchard - putchar that takes a double and returns 0. */
+    extern "C"
+    double putchard(double X) {
+      putchar((char)X);
+      return 0;
+    }
+
+Now we can produce simple output to the console by using things like:
+"``extern putchard(x); putchard(120);``", which prints a lowercase 'x'
+on the console (120 is the ASCII code for 'x'). Similar code could be
+used to implement file I/O, console input, and many other capabilities
+in Kaleidoscope.
+
+This completes the JIT and optimizer chapter of the Kaleidoscope
+tutorial. At this point, we can compile a non-Turing-complete
+programming language, optimize and JIT compile it in a user-driven way.
+Next up we'll look into `extending the language with control flow
+constructs <OCamlLangImpl5.html>`_, tackling some interesting LLVM IR
+issues along the way.
+
+Full Code Listing
+=================
+
+Here is the complete code listing for our running example, enhanced with
+the LLVM JIT and optimizer. To build this example, use:
+
+.. code-block:: bash
+
+    # Compile
+    ocamlbuild toy.byte
+    # Run
+    ./toy.byte
+
+Here is the code:
+
+\_tags:
+    ::
+
+        <{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
+        <*.{byte,native}>: g++, use_llvm, use_llvm_analysis
+        <*.{byte,native}>: use_llvm_executionengine, use_llvm_target
+        <*.{byte,native}>: use_llvm_scalar_opts, use_bindings
+
+myocamlbuild.ml:
+    .. code-block:: ocaml
+
+        open Ocamlbuild_plugin;;
+
+        ocaml_lib ~extern:true "llvm";;
+        ocaml_lib ~extern:true "llvm_analysis";;
+        ocaml_lib ~extern:true "llvm_executionengine";;
+        ocaml_lib ~extern:true "llvm_target";;
+        ocaml_lib ~extern:true "llvm_scalar_opts";;
+
+        flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
+        dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
+
+token.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Lexer Tokens
+         *===----------------------------------------------------------------------===*)
+
+        (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
+         * these others for known things. *)
+        type token =
+          (* commands *)
+          | Def | Extern
+
+          (* primary *)
+          | Ident of string | Number of float
+
+          (* unknown *)
+          | Kwd of char
+
+lexer.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Lexer
+         *===----------------------------------------------------------------------===*)
+
+        let rec lex = parser
+          (* Skip any whitespace. *)
+          | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
+
+          (* identifier: [a-zA-Z][a-zA-Z0-9] *)
+          | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
+              let buffer = Buffer.create 1 in
+              Buffer.add_char buffer c;
+              lex_ident buffer stream
+
+          (* number: [0-9.]+ *)
+          | [< ' ('0' .. '9' as c); stream >] ->
+              let buffer = Buffer.create 1 in
+              Buffer.add_char buffer c;
+              lex_number buffer stream
+
+          (* Comment until end of line. *)
+          | [< ' ('#'); stream >] ->
+              lex_comment stream
+
+          (* Otherwise, just return the character as its ascii value. *)
+          | [< 'c; stream >] ->
+              [< 'Token.Kwd c; lex stream >]
+
+          (* end of stream. *)
+          | [< >] -> [< >]
+
+        and lex_number buffer = parser
+          | [< ' ('0' .. '9' | '.' as c); stream >] ->
+              Buffer.add_char buffer c;
+              lex_number buffer stream
+          | [< stream=lex >] ->
+              [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
+
+        and lex_ident buffer = parser
+          | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
+              Buffer.add_char buffer c;
+              lex_ident buffer stream
+          | [< stream=lex >] ->
+              match Buffer.contents buffer with
+              | "def" -> [< 'Token.Def; stream >]
+              | "extern" -> [< 'Token.Extern; stream >]
+              | id -> [< 'Token.Ident id; stream >]
+
+        and lex_comment = parser
+          | [< ' ('\n'); stream=lex >] -> stream
+          | [< 'c; e=lex_comment >] -> e
+          | [< >] -> [< >]
+
+ast.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Abstract Syntax Tree (aka Parse Tree)
+         *===----------------------------------------------------------------------===*)
+
+        (* expr - Base type for all expression nodes. *)
+        type expr =
+          (* variant for numeric literals like "1.0". *)
+          | Number of float
+
+          (* variant for referencing a variable, like "a". *)
+          | Variable of string
+
+          (* variant for a binary operator. *)
+          | Binary of char * expr * expr
+
+          (* variant for function calls. *)
+          | Call of string * expr array
+
+        (* proto - This type represents the "prototype" for a function, which captures
+         * its name, and its argument names (thus implicitly the number of arguments the
+         * function takes). *)
+        type proto = Prototype of string * string array
+
+        (* func - This type represents a function definition itself. *)
+        type func = Function of proto * expr
+
+parser.ml:
+    .. code-block:: ocaml
+
+        (*===---------------------------------------------------------------------===
+         * Parser
+         *===---------------------------------------------------------------------===*)
+
+        (* binop_precedence - This holds the precedence for each binary operator that is
+         * defined *)
+        let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
+
+        (* precedence - Get the precedence of the pending binary operator token. *)
+        let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
+
+        (* primary
+         *   ::= identifier
+         *   ::= numberexpr
+         *   ::= parenexpr *)
+        let rec parse_primary = parser
+          (* numberexpr ::= number *)
+          | [< 'Token.Number n >] -> Ast.Number n
+
+          (* parenexpr ::= '(' expression ')' *)
+          | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
+
+          (* identifierexpr
+           *   ::= identifier
+           *   ::= identifier '(' argumentexpr ')' *)
+          | [< 'Token.Ident id; stream >] ->
+              let rec parse_args accumulator = parser
+                | [< e=parse_expr; stream >] ->
+                    begin parser
+                      | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
+                      | [< >] -> e :: accumulator
+                    end stream
+                | [< >] -> accumulator
+              in
+              let rec parse_ident id = parser
+                (* Call. *)
+                | [< 'Token.Kwd '(';
+                     args=parse_args [];
+                     'Token.Kwd ')' ?? "expected ')'">] ->
+                    Ast.Call (id, Array.of_list (List.rev args))
+
+                (* Simple variable ref. *)
+                | [< >] -> Ast.Variable id
+              in
+              parse_ident id stream
+
+          | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
+
+        (* binoprhs
+         *   ::= ('+' primary)* *)
+        and parse_bin_rhs expr_prec lhs stream =
+          match Stream.peek stream with
+          (* If this is a binop, find its precedence. *)
+          | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
+              let token_prec = precedence c in
+
+              (* If this is a binop that binds at least as tightly as the current binop,
+               * consume it, otherwise we are done. *)
+              if token_prec < expr_prec then lhs else begin
+                (* Eat the binop. *)
+                Stream.junk stream;
+
+                (* Parse the primary expression after the binary operator. *)
+                let rhs = parse_primary stream in
+
+                (* Okay, we know this is a binop. *)
+                let rhs =
+                  match Stream.peek stream with
+                  | Some (Token.Kwd c2) ->
+                      (* If BinOp binds less tightly with rhs than the operator after
+                       * rhs, let the pending operator take rhs as its lhs. *)
+                      let next_prec = precedence c2 in
+                      if token_prec < next_prec
+                      then parse_bin_rhs (token_prec + 1) rhs stream
+                      else rhs
+                  | _ -> rhs
+                in
+
+                (* Merge lhs/rhs. *)
+                let lhs = Ast.Binary (c, lhs, rhs) in
+                parse_bin_rhs expr_prec lhs stream
+              end
+          | _ -> lhs
+
+        (* expression
+         *   ::= primary binoprhs *)
+        and parse_expr = parser
+          | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
+
+        (* prototype
+         *   ::= id '(' id* ')' *)
+        let parse_prototype =
+          let rec parse_args accumulator = parser
+            | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
+            | [< >] -> accumulator
+          in
+
+          parser
+          | [< 'Token.Ident id;
+               'Token.Kwd '(' ?? "expected '(' in prototype";
+               args=parse_args [];
+               'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
+              (* success. *)
+              Ast.Prototype (id, Array.of_list (List.rev args))
+
+          | [< >] ->
+              raise (Stream.Error "expected function name in prototype")
+
+        (* definition ::= 'def' prototype expression *)
+        let parse_definition = parser
+          | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
+              Ast.Function (p, e)
+
+        (* toplevelexpr ::= expression *)
+        let parse_toplevel = parser
+          | [< e=parse_expr >] ->
+              (* Make an anonymous proto. *)
+              Ast.Function (Ast.Prototype ("", [||]), e)
+
+        (*  external ::= 'extern' prototype *)
+        let parse_extern = parser
+          | [< 'Token.Extern; e=parse_prototype >] -> e
+
+codegen.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Code Generation
+         *===----------------------------------------------------------------------===*)
+
+        open Llvm
+
+        exception Error of string
+
+        let context = global_context ()
+        let the_module = create_module context "my cool jit"
+        let builder = builder context
+        let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
+        let double_type = double_type context
+
+        let rec codegen_expr = function
+          | Ast.Number n -> const_float double_type n
+          | Ast.Variable name ->
+              (try Hashtbl.find named_values name with
+                | Not_found -> raise (Error "unknown variable name"))
+          | Ast.Binary (op, lhs, rhs) ->
+              let lhs_val = codegen_expr lhs in
+              let rhs_val = codegen_expr rhs in
+              begin
+                match op with
+                | '+' -> build_add lhs_val rhs_val "addtmp" builder
+                | '-' -> build_sub lhs_val rhs_val "subtmp" builder
+                | '*' -> build_mul lhs_val rhs_val "multmp" builder
+                | '<' ->
+                    (* Convert bool 0/1 to double 0.0 or 1.0 *)
+                    let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
+                    build_uitofp i double_type "booltmp" builder
+                | _ -> raise (Error "invalid binary operator")
+              end
+          | Ast.Call (callee, args) ->
+              (* Look up the name in the module table. *)
+              let callee =
+                match lookup_function callee the_module with
+                | Some callee -> callee
+                | None -> raise (Error "unknown function referenced")
+              in
+              let params = params callee in
+
+              (* If argument mismatch error. *)
+              if Array.length params == Array.length args then () else
+                raise (Error "incorrect # arguments passed");
+              let args = Array.map codegen_expr args in
+              build_call callee args "calltmp" builder
+
+        let codegen_proto = function
+          | Ast.Prototype (name, args) ->
+              (* Make the function type: double(double,double) etc. *)
+              let doubles = Array.make (Array.length args) double_type in
+              let ft = function_type double_type doubles in
+              let f =
+                match lookup_function name the_module with
+                | None -> declare_function name ft the_module
+
+                (* If 'f' conflicted, there was already something named 'name'. If it
+                 * has a body, don't allow redefinition or reextern. *)
+                | Some f ->
+                    (* If 'f' already has a body, reject this. *)
+                    if block_begin f <> At_end f then
+                      raise (Error "redefinition of function");
+
+                    (* If 'f' took a different number of arguments, reject. *)
+                    if element_type (type_of f) <> ft then
+                      raise (Error "redefinition of function with different # args");
+                    f
+              in
+
+              (* Set names for all arguments. *)
+              Array.iteri (fun i a ->
+                let n = args.(i) in
+                set_value_name n a;
+                Hashtbl.add named_values n a;
+              ) (params f);
+              f
+
+        let codegen_func the_fpm = function
+          | Ast.Function (proto, body) ->
+              Hashtbl.clear named_values;
+              let the_function = codegen_proto proto in
+
+              (* Create a new basic block to start insertion into. *)
+              let bb = append_block context "entry" the_function in
+              position_at_end bb builder;
+
+              try
+                let ret_val = codegen_expr body in
+
+                (* Finish off the function. *)
+                let _ = build_ret ret_val builder in
+
+                (* Validate the generated code, checking for consistency. *)
+                Llvm_analysis.assert_valid_function the_function;
+
+                (* Optimize the function. *)
+                let _ = PassManager.run_function the_function the_fpm in
+
+                the_function
+              with e ->
+                delete_function the_function;
+                raise e
+
+toplevel.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Top-Level parsing and JIT Driver
+         *===----------------------------------------------------------------------===*)
+
+        open Llvm
+        open Llvm_executionengine
+
+        (* top ::= definition | external | expression | ';' *)
+        let rec main_loop the_fpm the_execution_engine stream =
+          match Stream.peek stream with
+          | None -> ()
+
+          (* ignore top-level semicolons. *)
+          | Some (Token.Kwd ';') ->
+              Stream.junk stream;
+              main_loop the_fpm the_execution_engine stream
+
+          | Some token ->
+              begin
+                try match token with
+                | Token.Def ->
+                    let e = Parser.parse_definition stream in
+                    print_endline "parsed a function definition.";
+                    dump_value (Codegen.codegen_func the_fpm e);
+                | Token.Extern ->
+                    let e = Parser.parse_extern stream in
+                    print_endline "parsed an extern.";
+                    dump_value (Codegen.codegen_proto e);
+                | _ ->
+                    (* Evaluate a top-level expression into an anonymous function. *)
+                    let e = Parser.parse_toplevel stream in
+                    print_endline "parsed a top-level expr";
+                    let the_function = Codegen.codegen_func the_fpm e in
+                    dump_value the_function;
+
+                    (* JIT the function, returning a function pointer. *)
+                    let result = ExecutionEngine.run_function the_function [||]
+                      the_execution_engine in
+
+                    print_string "Evaluated to ";
+                    print_float (GenericValue.as_float Codegen.double_type result);
+                    print_newline ();
+                with Stream.Error s | Codegen.Error s ->
+                  (* Skip token for error recovery. *)
+                  Stream.junk stream;
+                  print_endline s;
+              end;
+              print_string "ready> "; flush stdout;
+              main_loop the_fpm the_execution_engine stream
+
+toy.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Main driver code.
+         *===----------------------------------------------------------------------===*)
+
+        open Llvm
+        open Llvm_executionengine
+        open Llvm_target
+        open Llvm_scalar_opts
+
+        let main () =
+          ignore (initialize_native_target ());
+
+          (* Install standard binary operators.
+           * 1 is the lowest precedence. *)
+          Hashtbl.add Parser.binop_precedence '<' 10;
+          Hashtbl.add Parser.binop_precedence '+' 20;
+          Hashtbl.add Parser.binop_precedence '-' 20;
+          Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
+
+          (* Prime the first token. *)
+          print_string "ready> "; flush stdout;
+          let stream = Lexer.lex (Stream.of_channel stdin) in
+
+          (* Create the JIT. *)
+          let the_execution_engine = ExecutionEngine.create Codegen.the_module in
+          let the_fpm = PassManager.create_function Codegen.the_module in
+
+          (* Set up the optimizer pipeline.  Start with registering info about how the
+           * target lays out data structures. *)
+          DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
+
+          (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
+          add_instruction_combination the_fpm;
+
+          (* reassociate expressions. *)
+          add_reassociation the_fpm;
+
+          (* Eliminate Common SubExpressions. *)
+          add_gvn the_fpm;
+
+          (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
+          add_cfg_simplification the_fpm;
+
+          ignore (PassManager.initialize the_fpm);
+
+          (* Run the main "interpreter loop" now. *)
+          Toplevel.main_loop the_fpm the_execution_engine stream;
+
+          (* Print out all the generated code. *)
+          dump_module Codegen.the_module
+        ;;
+
+        main ()
+
+bindings.c
+    .. code-block:: c
+
+        #include <stdio.h>
+
+        /* putchard - putchar that takes a double and returns 0. */
+        extern double putchard(double X) {
+          putchar((char)X);
+          return 0;
+        }
+
+`Next: Extending the language: control flow <OCamlLangImpl5.html>`_
+