It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Analysis/IPA/GlobalsModRef.cpp b/lib/Analysis/IPA/GlobalsModRef.cpp
new file mode 100644
index 0000000..63ddb89
--- /dev/null
+++ b/lib/Analysis/IPA/GlobalsModRef.cpp
@@ -0,0 +1,554 @@
+//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This simple pass provides alias and mod/ref information for global values
+// that do not have their address taken, and keeps track of whether functions
+// read or write memory (are "pure").  For this simple (but very common) case,
+// we can provide pretty accurate and useful information.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "globalsmodref-aa"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Instructions.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/InstIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/SCCIterator.h"
+#include <set>
+using namespace llvm;
+
+STATISTIC(NumNonAddrTakenGlobalVars,
+          "Number of global vars without address taken");
+STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
+STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
+STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
+STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
+
+namespace {
+  /// FunctionRecord - One instance of this structure is stored for every
+  /// function in the program.  Later, the entries for these functions are
+  /// removed if the function is found to call an external function (in which
+  /// case we know nothing about it.
+  struct VISIBILITY_HIDDEN FunctionRecord {
+    /// GlobalInfo - Maintain mod/ref info for all of the globals without
+    /// addresses taken that are read or written (transitively) by this
+    /// function.
+    std::map<GlobalValue*, unsigned> GlobalInfo;
+
+    unsigned getInfoForGlobal(GlobalValue *GV) const {
+      std::map<GlobalValue*, unsigned>::const_iterator I = GlobalInfo.find(GV);
+      if (I != GlobalInfo.end())
+        return I->second;
+      return 0;
+    }
+
+    /// FunctionEffect - Capture whether or not this function reads or writes to
+    /// ANY memory.  If not, we can do a lot of aggressive analysis on it.
+    unsigned FunctionEffect;
+
+    FunctionRecord() : FunctionEffect(0) {}
+  };
+
+  /// GlobalsModRef - The actual analysis pass.
+  class VISIBILITY_HIDDEN GlobalsModRef 
+      : public ModulePass, public AliasAnalysis {
+    /// NonAddressTakenGlobals - The globals that do not have their addresses
+    /// taken.
+    std::set<GlobalValue*> NonAddressTakenGlobals;
+
+    /// IndirectGlobals - The memory pointed to by this global is known to be
+    /// 'owned' by the global.
+    std::set<GlobalValue*> IndirectGlobals;
+    
+    /// AllocsForIndirectGlobals - If an instruction allocates memory for an
+    /// indirect global, this map indicates which one.
+    std::map<Value*, GlobalValue*> AllocsForIndirectGlobals;
+    
+    /// FunctionInfo - For each function, keep track of what globals are
+    /// modified or read.
+    std::map<Function*, FunctionRecord> FunctionInfo;
+
+  public:
+    static char ID;
+    GlobalsModRef() : ModulePass((intptr_t)&ID) {}
+
+    bool runOnModule(Module &M) {
+      InitializeAliasAnalysis(this);                 // set up super class
+      AnalyzeGlobals(M);                          // find non-addr taken globals
+      AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
+      return false;
+    }
+
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      AliasAnalysis::getAnalysisUsage(AU);
+      AU.addRequired<CallGraph>();
+      AU.setPreservesAll();                         // Does not transform code
+    }
+
+    //------------------------------------------------
+    // Implement the AliasAnalysis API
+    //
+    AliasResult alias(const Value *V1, unsigned V1Size,
+                      const Value *V2, unsigned V2Size);
+    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
+    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
+      return AliasAnalysis::getModRefInfo(CS1,CS2);
+    }
+    bool hasNoModRefInfoForCalls() const { return false; }
+
+    /// getModRefBehavior - Return the behavior of the specified function if
+    /// called from the specified call site.  The call site may be null in which
+    /// case the most generic behavior of this function should be returned.
+    virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
+                                         std::vector<PointerAccessInfo> *Info) {
+      if (FunctionRecord *FR = getFunctionInfo(F))
+        if (FR->FunctionEffect == 0)
+          return DoesNotAccessMemory;
+        else if ((FR->FunctionEffect & Mod) == 0)
+          return OnlyReadsMemory;
+      return AliasAnalysis::getModRefBehavior(F, CS, Info);
+    }
+
+    virtual void deleteValue(Value *V);
+    virtual void copyValue(Value *From, Value *To);
+
+  private:
+    /// getFunctionInfo - Return the function info for the function, or null if
+    /// the function calls an external function (in which case we don't have
+    /// anything useful to say about it).
+    FunctionRecord *getFunctionInfo(Function *F) {
+      std::map<Function*, FunctionRecord>::iterator I = FunctionInfo.find(F);
+      if (I != FunctionInfo.end())
+        return &I->second;
+      return 0;
+    }
+
+    void AnalyzeGlobals(Module &M);
+    void AnalyzeCallGraph(CallGraph &CG, Module &M);
+    void AnalyzeSCC(std::vector<CallGraphNode *> &SCC);
+    bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
+                              std::vector<Function*> &Writers,
+                              GlobalValue *OkayStoreDest = 0);
+    bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
+  };
+
+  char GlobalsModRef::ID = 0;
+  RegisterPass<GlobalsModRef> X("globalsmodref-aa",
+                                "Simple mod/ref analysis for globals");
+  RegisterAnalysisGroup<AliasAnalysis> Y(X);
+}
+
+Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
+
+/// getUnderlyingObject - This traverses the use chain to figure out what object
+/// the specified value points to.  If the value points to, or is derived from,
+/// a global object, return it.
+static Value *getUnderlyingObject(Value *V) {
+  if (!isa<PointerType>(V->getType())) return V;
+  
+  // If we are at some type of object... return it.
+  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
+  
+  // Traverse through different addressing mechanisms.
+  if (Instruction *I = dyn_cast<Instruction>(V)) {
+    if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I))
+      return getUnderlyingObject(I->getOperand(0));
+  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+    if (CE->getOpcode() == Instruction::BitCast || 
+        CE->getOpcode() == Instruction::GetElementPtr)
+      return getUnderlyingObject(CE->getOperand(0));
+  }
+  
+  // Othewise, we don't know what this is, return it as the base pointer.
+  return V;
+}
+
+/// AnalyzeGlobals - Scan through the users of all of the internal
+/// GlobalValue's in the program.  If none of them have their "Address taken"
+/// (really, their address passed to something nontrivial), record this fact,
+/// and record the functions that they are used directly in.
+void GlobalsModRef::AnalyzeGlobals(Module &M) {
+  std::vector<Function*> Readers, Writers;
+  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
+    if (I->hasInternalLinkage()) {
+      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
+        // Remember that we are tracking this global.
+        NonAddressTakenGlobals.insert(I);
+        ++NumNonAddrTakenFunctions;
+      }
+      Readers.clear(); Writers.clear();
+    }
+
+  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+       I != E; ++I)
+    if (I->hasInternalLinkage()) {
+      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
+        // Remember that we are tracking this global, and the mod/ref fns
+        NonAddressTakenGlobals.insert(I);
+        for (unsigned i = 0, e = Readers.size(); i != e; ++i)
+          FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
+
+        if (!I->isConstant())  // No need to keep track of writers to constants
+          for (unsigned i = 0, e = Writers.size(); i != e; ++i)
+            FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
+        ++NumNonAddrTakenGlobalVars;
+        
+        // If this global holds a pointer type, see if it is an indirect global.
+        if (isa<PointerType>(I->getType()->getElementType()) &&
+            AnalyzeIndirectGlobalMemory(I))
+          ++NumIndirectGlobalVars;
+      }
+      Readers.clear(); Writers.clear();
+    }
+}
+
+/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
+/// If this is used by anything complex (i.e., the address escapes), return
+/// true.  Also, while we are at it, keep track of those functions that read and
+/// write to the value.
+///
+/// If OkayStoreDest is non-null, stores into this global are allowed.
+bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
+                                         std::vector<Function*> &Readers,
+                                         std::vector<Function*> &Writers,
+                                         GlobalValue *OkayStoreDest) {
+  if (!isa<PointerType>(V->getType())) return true;
+
+  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
+    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
+      Readers.push_back(LI->getParent()->getParent());
+    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
+      if (V == SI->getOperand(1)) {
+        Writers.push_back(SI->getParent()->getParent());
+      } else if (SI->getOperand(1) != OkayStoreDest) {
+        return true;  // Storing the pointer
+      }
+    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
+      if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
+    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
+      // Make sure that this is just the function being called, not that it is
+      // passing into the function.
+      for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
+        if (CI->getOperand(i) == V) return true;
+    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
+      // Make sure that this is just the function being called, not that it is
+      // passing into the function.
+      for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i)
+        if (II->getOperand(i) == V) return true;
+    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
+      if (CE->getOpcode() == Instruction::GetElementPtr || 
+          CE->getOpcode() == Instruction::BitCast) {
+        if (AnalyzeUsesOfPointer(CE, Readers, Writers))
+          return true;
+      } else {
+        return true;
+      }
+    } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
+      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
+        return true;  // Allow comparison against null.
+    } else if (FreeInst *F = dyn_cast<FreeInst>(*UI)) {
+      Writers.push_back(F->getParent()->getParent());
+    } else {
+      return true;
+    }
+  return false;
+}
+
+/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
+/// which holds a pointer type.  See if the global always points to non-aliased
+/// heap memory: that is, all initializers of the globals are allocations, and
+/// those allocations have no use other than initialization of the global.
+/// Further, all loads out of GV must directly use the memory, not store the
+/// pointer somewhere.  If this is true, we consider the memory pointed to by
+/// GV to be owned by GV and can disambiguate other pointers from it.
+bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
+  // Keep track of values related to the allocation of the memory, f.e. the
+  // value produced by the malloc call and any casts.
+  std::vector<Value*> AllocRelatedValues;
+  
+  // Walk the user list of the global.  If we find anything other than a direct
+  // load or store, bail out.
+  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
+    if (LoadInst *LI = dyn_cast<LoadInst>(*I)) {
+      // The pointer loaded from the global can only be used in simple ways:
+      // we allow addressing of it and loading storing to it.  We do *not* allow
+      // storing the loaded pointer somewhere else or passing to a function.
+      std::vector<Function*> ReadersWriters;
+      if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
+        return false;  // Loaded pointer escapes.
+      // TODO: Could try some IP mod/ref of the loaded pointer.
+    } else if (StoreInst *SI = dyn_cast<StoreInst>(*I)) {
+      // Storing the global itself.
+      if (SI->getOperand(0) == GV) return false;
+      
+      // If storing the null pointer, ignore it.
+      if (isa<ConstantPointerNull>(SI->getOperand(0)))
+        continue;
+      
+      // Check the value being stored.
+      Value *Ptr = getUnderlyingObject(SI->getOperand(0));
+
+      if (isa<MallocInst>(Ptr)) {
+        // Okay, easy case.
+      } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
+        Function *F = CI->getCalledFunction();
+        if (!F || !F->isDeclaration()) return false;     // Too hard to analyze.
+        if (F->getName() != "calloc") return false;   // Not calloc.
+      } else {
+        return false;  // Too hard to analyze.
+      }
+      
+      // Analyze all uses of the allocation.  If any of them are used in a
+      // non-simple way (e.g. stored to another global) bail out.
+      std::vector<Function*> ReadersWriters;
+      if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
+        return false;  // Loaded pointer escapes.
+
+      // Remember that this allocation is related to the indirect global.
+      AllocRelatedValues.push_back(Ptr);
+    } else {
+      // Something complex, bail out.
+      return false;
+    }
+  }
+  
+  // Okay, this is an indirect global.  Remember all of the allocations for
+  // this global in AllocsForIndirectGlobals.
+  while (!AllocRelatedValues.empty()) {
+    AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
+    AllocRelatedValues.pop_back();
+  }
+  IndirectGlobals.insert(GV);
+  return true;
+}
+
+/// AnalyzeCallGraph - At this point, we know the functions where globals are
+/// immediately stored to and read from.  Propagate this information up the call
+/// graph to all callers and compute the mod/ref info for all memory for each
+/// function.
+void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
+  // We do a bottom-up SCC traversal of the call graph.  In other words, we
+  // visit all callees before callers (leaf-first).
+  for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I!=E; ++I)
+    if ((*I).size() != 1) {
+      AnalyzeSCC(*I);
+    } else if (Function *F = (*I)[0]->getFunction()) {
+      if (!F->isDeclaration()) {
+        // Nonexternal function.
+        AnalyzeSCC(*I);
+      } else {
+        // Otherwise external function.  Handle intrinsics and other special
+        // cases here.
+        if (getAnalysis<AliasAnalysis>().doesNotAccessMemory(F))
+          // If it does not access memory, process the function, causing us to
+          // realize it doesn't do anything (the body is empty).
+          AnalyzeSCC(*I);
+        else {
+          // Otherwise, don't process it.  This will cause us to conservatively
+          // assume the worst.
+        }
+      }
+    } else {
+      // Do not process the external node, assume the worst.
+    }
+}
+
+void GlobalsModRef::AnalyzeSCC(std::vector<CallGraphNode *> &SCC) {
+  assert(!SCC.empty() && "SCC with no functions?");
+  FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
+
+  bool CallsExternal = false;
+  unsigned FunctionEffect = 0;
+
+  // Collect the mod/ref properties due to called functions.  We only compute
+  // one mod-ref set
+  for (unsigned i = 0, e = SCC.size(); i != e && !CallsExternal; ++i)
+    for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
+         CI != E; ++CI)
+      if (Function *Callee = CI->second->getFunction()) {
+        if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
+          // Propagate function effect up.
+          FunctionEffect |= CalleeFR->FunctionEffect;
+
+          // Incorporate callee's effects on globals into our info.
+          for (std::map<GlobalValue*, unsigned>::iterator GI =
+                 CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
+               GI != E; ++GI)
+            FR.GlobalInfo[GI->first] |= GI->second;
+
+        } else {
+          // Okay, if we can't say anything about it, maybe some other alias
+          // analysis can.
+          ModRefBehavior MRB =
+            AliasAnalysis::getModRefBehavior(Callee, CallSite());
+          if (MRB != DoesNotAccessMemory) {
+            // FIXME: could make this more aggressive for functions that just
+            // read memory.  We should just say they read all globals.
+            CallsExternal = true;
+            break;
+          }
+        }
+      } else {
+        CallsExternal = true;
+        break;
+      }
+
+  // If this SCC calls an external function, we can't say anything about it, so
+  // remove all SCC functions from the FunctionInfo map.
+  if (CallsExternal) {
+    for (unsigned i = 0, e = SCC.size(); i != e; ++i)
+      FunctionInfo.erase(SCC[i]->getFunction());
+    return;
+  }
+
+  // Otherwise, unless we already know that this function mod/refs memory, scan
+  // the function bodies to see if there are any explicit loads or stores.
+  if (FunctionEffect != ModRef) {
+    for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
+      for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
+             E = inst_end(SCC[i]->getFunction());
+           II != E && FunctionEffect != ModRef; ++II)
+        if (isa<LoadInst>(*II))
+          FunctionEffect |= Ref;
+        else if (isa<StoreInst>(*II))
+          FunctionEffect |= Mod;
+        else if (isa<MallocInst>(*II) || isa<FreeInst>(*II))
+          FunctionEffect |= ModRef;
+  }
+
+  if ((FunctionEffect & Mod) == 0)
+    ++NumReadMemFunctions;
+  if (FunctionEffect == 0)
+    ++NumNoMemFunctions;
+  FR.FunctionEffect = FunctionEffect;
+
+  // Finally, now that we know the full effect on this SCC, clone the
+  // information to each function in the SCC.
+  for (unsigned i = 1, e = SCC.size(); i != e; ++i)
+    FunctionInfo[SCC[i]->getFunction()] = FR;
+}
+
+
+
+/// alias - If one of the pointers is to a global that we are tracking, and the
+/// other is some random pointer, we know there cannot be an alias, because the
+/// address of the global isn't taken.
+AliasAnalysis::AliasResult
+GlobalsModRef::alias(const Value *V1, unsigned V1Size,
+                     const Value *V2, unsigned V2Size) {
+  // Get the base object these pointers point to.
+  Value *UV1 = getUnderlyingObject(const_cast<Value*>(V1));
+  Value *UV2 = getUnderlyingObject(const_cast<Value*>(V2));
+  
+  // If either of the underlying values is a global, they may be non-addr-taken
+  // globals, which we can answer queries about.
+  GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
+  GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
+  if (GV1 || GV2) {
+    // If the global's address is taken, pretend we don't know it's a pointer to
+    // the global.
+    if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
+    if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
+
+    // If the the two pointers are derived from two different non-addr-taken
+    // globals, or if one is and the other isn't, we know these can't alias.
+    if ((GV1 || GV2) && GV1 != GV2)
+      return NoAlias;
+
+    // Otherwise if they are both derived from the same addr-taken global, we
+    // can't know the two accesses don't overlap.
+  }
+  
+  // These pointers may be based on the memory owned by an indirect global.  If
+  // so, we may be able to handle this.  First check to see if the base pointer
+  // is a direct load from an indirect global.
+  GV1 = GV2 = 0;
+  if (LoadInst *LI = dyn_cast<LoadInst>(UV1))
+    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
+      if (IndirectGlobals.count(GV))
+        GV1 = GV;
+  if (LoadInst *LI = dyn_cast<LoadInst>(UV2))
+    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
+      if (IndirectGlobals.count(GV))
+        GV2 = GV;
+  
+  // These pointers may also be from an allocation for the indirect global.  If
+  // so, also handle them.
+  if (AllocsForIndirectGlobals.count(UV1))
+    GV1 = AllocsForIndirectGlobals[UV1];
+  if (AllocsForIndirectGlobals.count(UV2))
+    GV2 = AllocsForIndirectGlobals[UV2];
+  
+  // Now that we know whether the two pointers are related to indirect globals,
+  // use this to disambiguate the pointers.  If either pointer is based on an
+  // indirect global and if they are not both based on the same indirect global,
+  // they cannot alias.
+  if ((GV1 || GV2) && GV1 != GV2)
+    return NoAlias;
+  
+  return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
+}
+
+AliasAnalysis::ModRefResult
+GlobalsModRef::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
+  unsigned Known = ModRef;
+
+  // If we are asking for mod/ref info of a direct call with a pointer to a
+  // global we are tracking, return information if we have it.
+  if (GlobalValue *GV = dyn_cast<GlobalValue>(getUnderlyingObject(P)))
+    if (GV->hasInternalLinkage())
+      if (Function *F = CS.getCalledFunction())
+        if (NonAddressTakenGlobals.count(GV))
+          if (FunctionRecord *FR = getFunctionInfo(F))
+            Known = FR->getInfoForGlobal(GV);
+
+  if (Known == NoModRef)
+    return NoModRef; // No need to query other mod/ref analyses
+  return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, P, Size));
+}
+
+
+//===----------------------------------------------------------------------===//
+// Methods to update the analysis as a result of the client transformation.
+//
+void GlobalsModRef::deleteValue(Value *V) {
+  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+    if (NonAddressTakenGlobals.erase(GV)) {
+      // This global might be an indirect global.  If so, remove it and remove
+      // any AllocRelatedValues for it.
+      if (IndirectGlobals.erase(GV)) {
+        // Remove any entries in AllocsForIndirectGlobals for this global.
+        for (std::map<Value*, GlobalValue*>::iterator
+             I = AllocsForIndirectGlobals.begin(),
+             E = AllocsForIndirectGlobals.end(); I != E; ) {
+          if (I->second == GV) {
+            AllocsForIndirectGlobals.erase(I++);
+          } else {
+            ++I;
+          }
+        }
+      }
+    }
+  }
+  
+  // Otherwise, if this is an allocation related to an indirect global, remove
+  // it.
+  AllocsForIndirectGlobals.erase(V);
+}
+
+void GlobalsModRef::copyValue(Value *From, Value *To) {
+}