It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Analysis/PostDominators.cpp b/lib/Analysis/PostDominators.cpp
new file mode 100644
index 0000000..48f7b30
--- /dev/null
+++ b/lib/Analysis/PostDominators.cpp
@@ -0,0 +1,262 @@
+//===- PostDominators.cpp - Post-Dominator Calculation --------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the post-dominator construction algorithms.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/PostDominators.h"
+#include "llvm/Instructions.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SetOperations.h"
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+//  PostDominatorTree Implementation
+//===----------------------------------------------------------------------===//
+
+char PostDominatorTree::ID = 0;
+char PostDominanceFrontier::ID = 0;
+static RegisterPass<PostDominatorTree>
+F("postdomtree", "Post-Dominator Tree Construction", true);
+
+unsigned PostDominatorTree::DFSPass(BasicBlock *V, InfoRec &VInfo,
+                                          unsigned N) {
+  std::vector<std::pair<BasicBlock *, InfoRec *> > workStack;
+  std::set<BasicBlock *> visited;
+  workStack.push_back(std::make_pair(V, &VInfo));
+
+  do {
+    BasicBlock *currentBB = workStack.back().first; 
+    InfoRec *currentVInfo = workStack.back().second;
+
+    // Visit each block only once.
+    if (visited.count(currentBB) == 0) {
+
+      visited.insert(currentBB);
+      currentVInfo->Semi = ++N;
+      currentVInfo->Label = currentBB;
+      
+      Vertex.push_back(currentBB);  // Vertex[n] = current;
+      // Info[currentBB].Ancestor = 0;     
+      // Ancestor[n] = 0
+      // Child[currentBB] = 0;
+      currentVInfo->Size = 1;       // Size[currentBB] = 1
+    }
+
+    // Visit children
+    bool visitChild = false;
+    for (pred_iterator PI = pred_begin(currentBB), PE = pred_end(currentBB); 
+         PI != PE && !visitChild; ++PI) {
+      InfoRec &SuccVInfo = Info[*PI];
+      if (SuccVInfo.Semi == 0) {
+        SuccVInfo.Parent = currentBB;
+        if (visited.count (*PI) == 0) {
+          workStack.push_back(std::make_pair(*PI, &SuccVInfo));   
+          visitChild = true;
+        }
+      }
+    }
+
+    // If all children are visited or if this block has no child then pop this
+    // block out of workStack.
+    if (!visitChild)
+      workStack.pop_back();
+
+  } while (!workStack.empty());
+
+  return N;
+}
+
+void PostDominatorTree::Compress(BasicBlock *V, InfoRec &VInfo) {
+  BasicBlock *VAncestor = VInfo.Ancestor;
+  InfoRec &VAInfo = Info[VAncestor];
+  if (VAInfo.Ancestor == 0)
+    return;
+  
+  Compress(VAncestor, VAInfo);
+  
+  BasicBlock *VAncestorLabel = VAInfo.Label;
+  BasicBlock *VLabel = VInfo.Label;
+  if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
+    VInfo.Label = VAncestorLabel;
+  
+  VInfo.Ancestor = VAInfo.Ancestor;
+}
+
+BasicBlock *PostDominatorTree::Eval(BasicBlock *V) {
+  InfoRec &VInfo = Info[V];
+
+  // Higher-complexity but faster implementation
+  if (VInfo.Ancestor == 0)
+    return V;
+  Compress(V, VInfo);
+  return VInfo.Label;
+}
+
+void PostDominatorTree::Link(BasicBlock *V, BasicBlock *W, 
+                                   InfoRec &WInfo) {
+  // Higher-complexity but faster implementation
+  WInfo.Ancestor = V;
+}
+
+void PostDominatorTree::calculate(Function &F) {
+  // Step #0: Scan the function looking for the root nodes of the post-dominance
+  // relationships.  These blocks, which have no successors, end with return and
+  // unwind instructions.
+  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
+    if (succ_begin(I) == succ_end(I))
+      Roots.push_back(I);
+  
+  Vertex.push_back(0);
+  
+  // Step #1: Number blocks in depth-first order and initialize variables used
+  // in later stages of the algorithm.
+  unsigned N = 0;
+  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
+    N = DFSPass(Roots[i], Info[Roots[i]], N);
+  
+  for (unsigned i = N; i >= 2; --i) {
+    BasicBlock *W = Vertex[i];
+    InfoRec &WInfo = Info[W];
+    
+    // Step #2: Calculate the semidominators of all vertices
+    for (succ_iterator SI = succ_begin(W), SE = succ_end(W); SI != SE; ++SI)
+      if (Info.count(*SI)) {  // Only if this predecessor is reachable!
+        unsigned SemiU = Info[Eval(*SI)].Semi;
+        if (SemiU < WInfo.Semi)
+          WInfo.Semi = SemiU;
+      }
+        
+    Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
+    
+    BasicBlock *WParent = WInfo.Parent;
+    Link(WParent, W, WInfo);
+    
+    // Step #3: Implicitly define the immediate dominator of vertices
+    std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
+    while (!WParentBucket.empty()) {
+      BasicBlock *V = WParentBucket.back();
+      WParentBucket.pop_back();
+      BasicBlock *U = Eval(V);
+      IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
+    }
+  }
+  
+  // Step #4: Explicitly define the immediate dominator of each vertex
+  for (unsigned i = 2; i <= N; ++i) {
+    BasicBlock *W = Vertex[i];
+    BasicBlock *&WIDom = IDoms[W];
+    if (WIDom != Vertex[Info[W].Semi])
+      WIDom = IDoms[WIDom];
+  }
+  
+  if (Roots.empty()) return;
+
+  // Add a node for the root.  This node might be the actual root, if there is
+  // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
+  // which postdominates all real exits if there are multiple exit blocks.
+  BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0;
+  DomTreeNodes[Root] = RootNode = new DomTreeNode(Root, 0);
+  
+  // Loop over all of the reachable blocks in the function...
+  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
+    if (BasicBlock *ImmPostDom = getIDom(I)) {  // Reachable block.
+      DomTreeNode *&BBNode = DomTreeNodes[I];
+      if (!BBNode) {  // Haven't calculated this node yet?
+                      // Get or calculate the node for the immediate dominator
+        DomTreeNode *IPDomNode = getNodeForBlock(ImmPostDom);
+        
+        // Add a new tree node for this BasicBlock, and link it as a child of
+        // IDomNode
+        DomTreeNode *C = new DomTreeNode(I, IPDomNode);
+        DomTreeNodes[I] = C;
+        BBNode = IPDomNode->addChild(C);
+      }
+    }
+
+  // Free temporary memory used to construct idom's
+  IDoms.clear();
+  Info.clear();
+  std::vector<BasicBlock*>().swap(Vertex);
+
+  int dfsnum = 0;
+  // Iterate over all nodes in depth first order...
+  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
+    for (idf_iterator<BasicBlock*> I = idf_begin(Roots[i]),
+           E = idf_end(Roots[i]); I != E; ++I) {
+      if (!getNodeForBlock(*I)->getIDom())
+        getNodeForBlock(*I)->assignDFSNumber(dfsnum);
+    }
+  DFSInfoValid = true;
+}
+
+
+DomTreeNode *PostDominatorTree::getNodeForBlock(BasicBlock *BB) {
+  DomTreeNode *&BBNode = DomTreeNodes[BB];
+  if (BBNode) return BBNode;
+  
+  // Haven't calculated this node yet?  Get or calculate the node for the
+  // immediate postdominator.
+  BasicBlock *IPDom = getIDom(BB);
+  DomTreeNode *IPDomNode = getNodeForBlock(IPDom);
+  
+  // Add a new tree node for this BasicBlock, and link it as a child of
+  // IDomNode
+  DomTreeNode *C = new DomTreeNode(BB, IPDomNode);
+  DomTreeNodes[BB] = C;
+  return BBNode = IPDomNode->addChild(C);
+}
+
+//===----------------------------------------------------------------------===//
+//  PostDominanceFrontier Implementation
+//===----------------------------------------------------------------------===//
+
+static RegisterPass<PostDominanceFrontier>
+H("postdomfrontier", "Post-Dominance Frontier Construction", true);
+
+const DominanceFrontier::DomSetType &
+PostDominanceFrontier::calculate(const PostDominatorTree &DT,
+                                 const DomTreeNode *Node) {
+  // Loop over CFG successors to calculate DFlocal[Node]
+  BasicBlock *BB = Node->getBlock();
+  DomSetType &S = Frontiers[BB];       // The new set to fill in...
+  if (getRoots().empty()) return S;
+
+  if (BB)
+    for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
+         SI != SE; ++SI) {
+      // Does Node immediately dominate this predecessor?
+      DomTreeNode *SINode = DT[*SI];
+      if (SINode && SINode->getIDom() != Node)
+        S.insert(*SI);
+    }
+
+  // At this point, S is DFlocal.  Now we union in DFup's of our children...
+  // Loop through and visit the nodes that Node immediately dominates (Node's
+  // children in the IDomTree)
+  //
+  for (DomTreeNode::const_iterator
+         NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
+    DomTreeNode *IDominee = *NI;
+    const DomSetType &ChildDF = calculate(DT, IDominee);
+
+    DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
+    for (; CDFI != CDFE; ++CDFI) {
+      if (!DT.properlyDominates(Node, DT[*CDFI]))
+        S.insert(*CDFI);
+    }
+  }
+
+  return S;
+}
+
+// Ensure that this .cpp file gets linked when PostDominators.h is used.
+DEFINING_FILE_FOR(PostDominanceFrontier)