It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
new file mode 100644
index 0000000..0039144
--- /dev/null
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -0,0 +1,2656 @@
+//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of the scalar evolution analysis
+// engine, which is used primarily to analyze expressions involving induction
+// variables in loops.
+//
+// There are several aspects to this library.  First is the representation of
+// scalar expressions, which are represented as subclasses of the SCEV class.
+// These classes are used to represent certain types of subexpressions that we
+// can handle.  These classes are reference counted, managed by the SCEVHandle
+// class.  We only create one SCEV of a particular shape, so pointer-comparisons
+// for equality are legal.
+//
+// One important aspect of the SCEV objects is that they are never cyclic, even
+// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
+// the PHI node is one of the idioms that we can represent (e.g., a polynomial
+// recurrence) then we represent it directly as a recurrence node, otherwise we
+// represent it as a SCEVUnknown node.
+//
+// In addition to being able to represent expressions of various types, we also
+// have folders that are used to build the *canonical* representation for a
+// particular expression.  These folders are capable of using a variety of
+// rewrite rules to simplify the expressions.
+//
+// Once the folders are defined, we can implement the more interesting
+// higher-level code, such as the code that recognizes PHI nodes of various
+// types, computes the execution count of a loop, etc.
+//
+// TODO: We should use these routines and value representations to implement
+// dependence analysis!
+//
+//===----------------------------------------------------------------------===//
+//
+// There are several good references for the techniques used in this analysis.
+//
+//  Chains of recurrences -- a method to expedite the evaluation
+//  of closed-form functions
+//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
+//
+//  On computational properties of chains of recurrences
+//  Eugene V. Zima
+//
+//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
+//  Robert A. van Engelen
+//
+//  Efficient Symbolic Analysis for Optimizing Compilers
+//  Robert A. van Engelen
+//
+//  Using the chains of recurrences algebra for data dependence testing and
+//  induction variable substitution
+//  MS Thesis, Johnie Birch
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "scalar-evolution"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Instructions.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ConstantRange.h"
+#include "llvm/Support/InstIterator.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Streams.h"
+#include "llvm/ADT/Statistic.h"
+#include <ostream>
+#include <algorithm>
+#include <cmath>
+using namespace llvm;
+
+STATISTIC(NumBruteForceEvaluations,
+          "Number of brute force evaluations needed to "
+          "calculate high-order polynomial exit values");
+STATISTIC(NumArrayLenItCounts,
+          "Number of trip counts computed with array length");
+STATISTIC(NumTripCountsComputed,
+          "Number of loops with predictable loop counts");
+STATISTIC(NumTripCountsNotComputed,
+          "Number of loops without predictable loop counts");
+STATISTIC(NumBruteForceTripCountsComputed,
+          "Number of loops with trip counts computed by force");
+
+cl::opt<unsigned>
+MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
+                        cl::desc("Maximum number of iterations SCEV will "
+                                 "symbolically execute a constant derived loop"),
+                        cl::init(100));
+
+namespace {
+  RegisterPass<ScalarEvolution>
+  R("scalar-evolution", "Scalar Evolution Analysis");
+}
+char ScalarEvolution::ID = 0;
+
+//===----------------------------------------------------------------------===//
+//                           SCEV class definitions
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Implementation of the SCEV class.
+//
+SCEV::~SCEV() {}
+void SCEV::dump() const {
+  print(cerr);
+}
+
+/// getValueRange - Return the tightest constant bounds that this value is
+/// known to have.  This method is only valid on integer SCEV objects.
+ConstantRange SCEV::getValueRange() const {
+  const Type *Ty = getType();
+  assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
+  // Default to a full range if no better information is available.
+  return ConstantRange(getBitWidth());
+}
+
+uint32_t SCEV::getBitWidth() const {
+  if (const IntegerType* ITy = dyn_cast<IntegerType>(getType()))
+    return ITy->getBitWidth();
+  return 0;
+}
+
+
+SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
+
+bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
+  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
+  return false;
+}
+
+const Type *SCEVCouldNotCompute::getType() const {
+  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
+  return 0;
+}
+
+bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
+  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
+  return false;
+}
+
+SCEVHandle SCEVCouldNotCompute::
+replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
+                                  const SCEVHandle &Conc) const {
+  return this;
+}
+
+void SCEVCouldNotCompute::print(std::ostream &OS) const {
+  OS << "***COULDNOTCOMPUTE***";
+}
+
+bool SCEVCouldNotCompute::classof(const SCEV *S) {
+  return S->getSCEVType() == scCouldNotCompute;
+}
+
+
+// SCEVConstants - Only allow the creation of one SCEVConstant for any
+// particular value.  Don't use a SCEVHandle here, or else the object will
+// never be deleted!
+static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
+
+
+SCEVConstant::~SCEVConstant() {
+  SCEVConstants->erase(V);
+}
+
+SCEVHandle SCEVConstant::get(ConstantInt *V) {
+  SCEVConstant *&R = (*SCEVConstants)[V];
+  if (R == 0) R = new SCEVConstant(V);
+  return R;
+}
+
+SCEVHandle SCEVConstant::get(const APInt& Val) {
+  return get(ConstantInt::get(Val));
+}
+
+ConstantRange SCEVConstant::getValueRange() const {
+  return ConstantRange(V->getValue());
+}
+
+const Type *SCEVConstant::getType() const { return V->getType(); }
+
+void SCEVConstant::print(std::ostream &OS) const {
+  WriteAsOperand(OS, V, false);
+}
+
+// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
+// particular input.  Don't use a SCEVHandle here, or else the object will
+// never be deleted!
+static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 
+                     SCEVTruncateExpr*> > SCEVTruncates;
+
+SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
+  : SCEV(scTruncate), Op(op), Ty(ty) {
+  assert(Op->getType()->isInteger() && Ty->isInteger() &&
+         "Cannot truncate non-integer value!");
+  assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()
+         && "This is not a truncating conversion!");
+}
+
+SCEVTruncateExpr::~SCEVTruncateExpr() {
+  SCEVTruncates->erase(std::make_pair(Op, Ty));
+}
+
+ConstantRange SCEVTruncateExpr::getValueRange() const {
+  return getOperand()->getValueRange().truncate(getBitWidth());
+}
+
+void SCEVTruncateExpr::print(std::ostream &OS) const {
+  OS << "(truncate " << *Op << " to " << *Ty << ")";
+}
+
+// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
+// particular input.  Don't use a SCEVHandle here, or else the object will never
+// be deleted!
+static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
+                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
+
+SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
+  : SCEV(scZeroExtend), Op(op), Ty(ty) {
+  assert(Op->getType()->isInteger() && Ty->isInteger() &&
+         "Cannot zero extend non-integer value!");
+  assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
+         && "This is not an extending conversion!");
+}
+
+SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
+  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
+}
+
+ConstantRange SCEVZeroExtendExpr::getValueRange() const {
+  return getOperand()->getValueRange().zeroExtend(getBitWidth());
+}
+
+void SCEVZeroExtendExpr::print(std::ostream &OS) const {
+  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
+}
+
+// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
+// particular input.  Don't use a SCEVHandle here, or else the object will never
+// be deleted!
+static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
+                     SCEVSignExtendExpr*> > SCEVSignExtends;
+
+SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
+  : SCEV(scSignExtend), Op(op), Ty(ty) {
+  assert(Op->getType()->isInteger() && Ty->isInteger() &&
+         "Cannot sign extend non-integer value!");
+  assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
+         && "This is not an extending conversion!");
+}
+
+SCEVSignExtendExpr::~SCEVSignExtendExpr() {
+  SCEVSignExtends->erase(std::make_pair(Op, Ty));
+}
+
+ConstantRange SCEVSignExtendExpr::getValueRange() const {
+  return getOperand()->getValueRange().signExtend(getBitWidth());
+}
+
+void SCEVSignExtendExpr::print(std::ostream &OS) const {
+  OS << "(signextend " << *Op << " to " << *Ty << ")";
+}
+
+// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
+// particular input.  Don't use a SCEVHandle here, or else the object will never
+// be deleted!
+static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
+                     SCEVCommutativeExpr*> > SCEVCommExprs;
+
+SCEVCommutativeExpr::~SCEVCommutativeExpr() {
+  SCEVCommExprs->erase(std::make_pair(getSCEVType(),
+                                      std::vector<SCEV*>(Operands.begin(),
+                                                         Operands.end())));
+}
+
+void SCEVCommutativeExpr::print(std::ostream &OS) const {
+  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
+  const char *OpStr = getOperationStr();
+  OS << "(" << *Operands[0];
+  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
+    OS << OpStr << *Operands[i];
+  OS << ")";
+}
+
+SCEVHandle SCEVCommutativeExpr::
+replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
+                                  const SCEVHandle &Conc) const {
+  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
+    if (H != getOperand(i)) {
+      std::vector<SCEVHandle> NewOps;
+      NewOps.reserve(getNumOperands());
+      for (unsigned j = 0; j != i; ++j)
+        NewOps.push_back(getOperand(j));
+      NewOps.push_back(H);
+      for (++i; i != e; ++i)
+        NewOps.push_back(getOperand(i)->
+                         replaceSymbolicValuesWithConcrete(Sym, Conc));
+
+      if (isa<SCEVAddExpr>(this))
+        return SCEVAddExpr::get(NewOps);
+      else if (isa<SCEVMulExpr>(this))
+        return SCEVMulExpr::get(NewOps);
+      else
+        assert(0 && "Unknown commutative expr!");
+    }
+  }
+  return this;
+}
+
+
+// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
+// input.  Don't use a SCEVHandle here, or else the object will never be
+// deleted!
+static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, 
+                     SCEVSDivExpr*> > SCEVSDivs;
+
+SCEVSDivExpr::~SCEVSDivExpr() {
+  SCEVSDivs->erase(std::make_pair(LHS, RHS));
+}
+
+void SCEVSDivExpr::print(std::ostream &OS) const {
+  OS << "(" << *LHS << " /s " << *RHS << ")";
+}
+
+const Type *SCEVSDivExpr::getType() const {
+  return LHS->getType();
+}
+
+// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
+// particular input.  Don't use a SCEVHandle here, or else the object will never
+// be deleted!
+static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
+                     SCEVAddRecExpr*> > SCEVAddRecExprs;
+
+SCEVAddRecExpr::~SCEVAddRecExpr() {
+  SCEVAddRecExprs->erase(std::make_pair(L,
+                                        std::vector<SCEV*>(Operands.begin(),
+                                                           Operands.end())));
+}
+
+SCEVHandle SCEVAddRecExpr::
+replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
+                                  const SCEVHandle &Conc) const {
+  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
+    if (H != getOperand(i)) {
+      std::vector<SCEVHandle> NewOps;
+      NewOps.reserve(getNumOperands());
+      for (unsigned j = 0; j != i; ++j)
+        NewOps.push_back(getOperand(j));
+      NewOps.push_back(H);
+      for (++i; i != e; ++i)
+        NewOps.push_back(getOperand(i)->
+                         replaceSymbolicValuesWithConcrete(Sym, Conc));
+
+      return get(NewOps, L);
+    }
+  }
+  return this;
+}
+
+
+bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
+  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
+  // contain L and if the start is invariant.
+  return !QueryLoop->contains(L->getHeader()) &&
+         getOperand(0)->isLoopInvariant(QueryLoop);
+}
+
+
+void SCEVAddRecExpr::print(std::ostream &OS) const {
+  OS << "{" << *Operands[0];
+  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
+    OS << ",+," << *Operands[i];
+  OS << "}<" << L->getHeader()->getName() + ">";
+}
+
+// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
+// value.  Don't use a SCEVHandle here, or else the object will never be
+// deleted!
+static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
+
+SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
+
+bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
+  // All non-instruction values are loop invariant.  All instructions are loop
+  // invariant if they are not contained in the specified loop.
+  if (Instruction *I = dyn_cast<Instruction>(V))
+    return !L->contains(I->getParent());
+  return true;
+}
+
+const Type *SCEVUnknown::getType() const {
+  return V->getType();
+}
+
+void SCEVUnknown::print(std::ostream &OS) const {
+  WriteAsOperand(OS, V, false);
+}
+
+//===----------------------------------------------------------------------===//
+//                               SCEV Utilities
+//===----------------------------------------------------------------------===//
+
+namespace {
+  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
+  /// than the complexity of the RHS.  This comparator is used to canonicalize
+  /// expressions.
+  struct VISIBILITY_HIDDEN SCEVComplexityCompare {
+    bool operator()(SCEV *LHS, SCEV *RHS) {
+      return LHS->getSCEVType() < RHS->getSCEVType();
+    }
+  };
+}
+
+/// GroupByComplexity - Given a list of SCEV objects, order them by their
+/// complexity, and group objects of the same complexity together by value.
+/// When this routine is finished, we know that any duplicates in the vector are
+/// consecutive and that complexity is monotonically increasing.
+///
+/// Note that we go take special precautions to ensure that we get determinstic
+/// results from this routine.  In other words, we don't want the results of
+/// this to depend on where the addresses of various SCEV objects happened to
+/// land in memory.
+///
+static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
+  if (Ops.size() < 2) return;  // Noop
+  if (Ops.size() == 2) {
+    // This is the common case, which also happens to be trivially simple.
+    // Special case it.
+    if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
+      std::swap(Ops[0], Ops[1]);
+    return;
+  }
+
+  // Do the rough sort by complexity.
+  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
+
+  // Now that we are sorted by complexity, group elements of the same
+  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
+  // be extremely short in practice.  Note that we take this approach because we
+  // do not want to depend on the addresses of the objects we are grouping.
+  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
+    SCEV *S = Ops[i];
+    unsigned Complexity = S->getSCEVType();
+
+    // If there are any objects of the same complexity and same value as this
+    // one, group them.
+    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
+      if (Ops[j] == S) { // Found a duplicate.
+        // Move it to immediately after i'th element.
+        std::swap(Ops[i+1], Ops[j]);
+        ++i;   // no need to rescan it.
+        if (i == e-2) return;  // Done!
+      }
+    }
+  }
+}
+
+
+
+//===----------------------------------------------------------------------===//
+//                      Simple SCEV method implementations
+//===----------------------------------------------------------------------===//
+
+/// getIntegerSCEV - Given an integer or FP type, create a constant for the
+/// specified signed integer value and return a SCEV for the constant.
+SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
+  Constant *C;
+  if (Val == 0)
+    C = Constant::getNullValue(Ty);
+  else if (Ty->isFloatingPoint())
+    C = ConstantFP::get(Ty, Val);
+  else 
+    C = ConstantInt::get(Ty, Val);
+  return SCEVUnknown::get(C);
+}
+
+/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
+/// input value to the specified type.  If the type must be extended, it is zero
+/// extended.
+static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
+  const Type *SrcTy = V->getType();
+  assert(SrcTy->isInteger() && Ty->isInteger() &&
+         "Cannot truncate or zero extend with non-integer arguments!");
+  if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
+    return V;  // No conversion
+  if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits())
+    return SCEVTruncateExpr::get(V, Ty);
+  return SCEVZeroExtendExpr::get(V, Ty);
+}
+
+/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
+///
+SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
+  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
+    return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
+
+  return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
+}
+
+/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
+///
+SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
+  // X - Y --> X + -Y
+  return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
+}
+
+
+/// PartialFact - Compute V!/(V-NumSteps)!
+static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
+  // Handle this case efficiently, it is common to have constant iteration
+  // counts while computing loop exit values.
+  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
+    const APInt& Val = SC->getValue()->getValue();
+    APInt Result(Val.getBitWidth(), 1);
+    for (; NumSteps; --NumSteps)
+      Result *= Val-(NumSteps-1);
+    return SCEVConstant::get(Result);
+  }
+
+  const Type *Ty = V->getType();
+  if (NumSteps == 0)
+    return SCEVUnknown::getIntegerSCEV(1, Ty);
+
+  SCEVHandle Result = V;
+  for (unsigned i = 1; i != NumSteps; ++i)
+    Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
+                                          SCEVUnknown::getIntegerSCEV(i, Ty)));
+  return Result;
+}
+
+
+/// evaluateAtIteration - Return the value of this chain of recurrences at
+/// the specified iteration number.  We can evaluate this recurrence by
+/// multiplying each element in the chain by the binomial coefficient
+/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
+///
+///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
+///
+/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
+/// Is the binomial equation safe using modular arithmetic??
+///
+SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
+  SCEVHandle Result = getStart();
+  int Divisor = 1;
+  const Type *Ty = It->getType();
+  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
+    SCEVHandle BC = PartialFact(It, i);
+    Divisor *= i;
+    SCEVHandle Val = SCEVSDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
+                                       SCEVUnknown::getIntegerSCEV(Divisor,Ty));
+    Result = SCEVAddExpr::get(Result, Val);
+  }
+  return Result;
+}
+
+
+//===----------------------------------------------------------------------===//
+//                    SCEV Expression folder implementations
+//===----------------------------------------------------------------------===//
+
+SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
+  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
+    return SCEVUnknown::get(
+        ConstantExpr::getTrunc(SC->getValue(), Ty));
+
+  // If the input value is a chrec scev made out of constants, truncate
+  // all of the constants.
+  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
+    std::vector<SCEVHandle> Operands;
+    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
+      // FIXME: This should allow truncation of other expression types!
+      if (isa<SCEVConstant>(AddRec->getOperand(i)))
+        Operands.push_back(get(AddRec->getOperand(i), Ty));
+      else
+        break;
+    if (Operands.size() == AddRec->getNumOperands())
+      return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
+  }
+
+  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
+  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
+  return Result;
+}
+
+SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
+  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
+    return SCEVUnknown::get(
+        ConstantExpr::getZExt(SC->getValue(), Ty));
+
+  // FIXME: If the input value is a chrec scev, and we can prove that the value
+  // did not overflow the old, smaller, value, we can zero extend all of the
+  // operands (often constants).  This would allow analysis of something like
+  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
+
+  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
+  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
+  return Result;
+}
+
+SCEVHandle SCEVSignExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
+  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
+    return SCEVUnknown::get(
+        ConstantExpr::getSExt(SC->getValue(), Ty));
+
+  // FIXME: If the input value is a chrec scev, and we can prove that the value
+  // did not overflow the old, smaller, value, we can sign extend all of the
+  // operands (often constants).  This would allow analysis of something like
+  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
+
+  SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
+  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
+  return Result;
+}
+
+// get - Get a canonical add expression, or something simpler if possible.
+SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
+  assert(!Ops.empty() && "Cannot get empty add!");
+  if (Ops.size() == 1) return Ops[0];
+
+  // Sort by complexity, this groups all similar expression types together.
+  GroupByComplexity(Ops);
+
+  // If there are any constants, fold them together.
+  unsigned Idx = 0;
+  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
+    ++Idx;
+    assert(Idx < Ops.size());
+    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
+      // We found two constants, fold them together!
+      Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() + 
+                                        RHSC->getValue()->getValue());
+      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
+        Ops[0] = SCEVConstant::get(CI);
+        Ops.erase(Ops.begin()+1);  // Erase the folded element
+        if (Ops.size() == 1) return Ops[0];
+        LHSC = cast<SCEVConstant>(Ops[0]);
+      } else {
+        // If we couldn't fold the expression, move to the next constant.  Note
+        // that this is impossible to happen in practice because we always
+        // constant fold constant ints to constant ints.
+        ++Idx;
+      }
+    }
+
+    // If we are left with a constant zero being added, strip it off.
+    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
+      Ops.erase(Ops.begin());
+      --Idx;
+    }
+  }
+
+  if (Ops.size() == 1) return Ops[0];
+
+  // Okay, check to see if the same value occurs in the operand list twice.  If
+  // so, merge them together into an multiply expression.  Since we sorted the
+  // list, these values are required to be adjacent.
+  const Type *Ty = Ops[0]->getType();
+  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
+    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
+      // Found a match, merge the two values into a multiply, and add any
+      // remaining values to the result.
+      SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
+      SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
+      if (Ops.size() == 2)
+        return Mul;
+      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
+      Ops.push_back(Mul);
+      return SCEVAddExpr::get(Ops);
+    }
+
+  // Now we know the first non-constant operand.  Skip past any cast SCEVs.
+  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
+    ++Idx;
+
+  // If there are add operands they would be next.
+  if (Idx < Ops.size()) {
+    bool DeletedAdd = false;
+    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
+      // If we have an add, expand the add operands onto the end of the operands
+      // list.
+      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
+      Ops.erase(Ops.begin()+Idx);
+      DeletedAdd = true;
+    }
+
+    // If we deleted at least one add, we added operands to the end of the list,
+    // and they are not necessarily sorted.  Recurse to resort and resimplify
+    // any operands we just aquired.
+    if (DeletedAdd)
+      return get(Ops);
+  }
+
+  // Skip over the add expression until we get to a multiply.
+  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
+    ++Idx;
+
+  // If we are adding something to a multiply expression, make sure the
+  // something is not already an operand of the multiply.  If so, merge it into
+  // the multiply.
+  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
+    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
+    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
+      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
+      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
+        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
+          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
+          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
+          if (Mul->getNumOperands() != 2) {
+            // If the multiply has more than two operands, we must get the
+            // Y*Z term.
+            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
+            MulOps.erase(MulOps.begin()+MulOp);
+            InnerMul = SCEVMulExpr::get(MulOps);
+          }
+          SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
+          SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
+          SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
+          if (Ops.size() == 2) return OuterMul;
+          if (AddOp < Idx) {
+            Ops.erase(Ops.begin()+AddOp);
+            Ops.erase(Ops.begin()+Idx-1);
+          } else {
+            Ops.erase(Ops.begin()+Idx);
+            Ops.erase(Ops.begin()+AddOp-1);
+          }
+          Ops.push_back(OuterMul);
+          return SCEVAddExpr::get(Ops);
+        }
+
+      // Check this multiply against other multiplies being added together.
+      for (unsigned OtherMulIdx = Idx+1;
+           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
+           ++OtherMulIdx) {
+        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
+        // If MulOp occurs in OtherMul, we can fold the two multiplies
+        // together.
+        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
+             OMulOp != e; ++OMulOp)
+          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
+            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
+            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
+            if (Mul->getNumOperands() != 2) {
+              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
+              MulOps.erase(MulOps.begin()+MulOp);
+              InnerMul1 = SCEVMulExpr::get(MulOps);
+            }
+            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
+            if (OtherMul->getNumOperands() != 2) {
+              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
+                                             OtherMul->op_end());
+              MulOps.erase(MulOps.begin()+OMulOp);
+              InnerMul2 = SCEVMulExpr::get(MulOps);
+            }
+            SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
+            SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
+            if (Ops.size() == 2) return OuterMul;
+            Ops.erase(Ops.begin()+Idx);
+            Ops.erase(Ops.begin()+OtherMulIdx-1);
+            Ops.push_back(OuterMul);
+            return SCEVAddExpr::get(Ops);
+          }
+      }
+    }
+  }
+
+  // If there are any add recurrences in the operands list, see if any other
+  // added values are loop invariant.  If so, we can fold them into the
+  // recurrence.
+  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
+    ++Idx;
+
+  // Scan over all recurrences, trying to fold loop invariants into them.
+  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
+    // Scan all of the other operands to this add and add them to the vector if
+    // they are loop invariant w.r.t. the recurrence.
+    std::vector<SCEVHandle> LIOps;
+    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
+    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
+        LIOps.push_back(Ops[i]);
+        Ops.erase(Ops.begin()+i);
+        --i; --e;
+      }
+
+    // If we found some loop invariants, fold them into the recurrence.
+    if (!LIOps.empty()) {
+      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
+      LIOps.push_back(AddRec->getStart());
+
+      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
+      AddRecOps[0] = SCEVAddExpr::get(LIOps);
+
+      SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
+      // If all of the other operands were loop invariant, we are done.
+      if (Ops.size() == 1) return NewRec;
+
+      // Otherwise, add the folded AddRec by the non-liv parts.
+      for (unsigned i = 0;; ++i)
+        if (Ops[i] == AddRec) {
+          Ops[i] = NewRec;
+          break;
+        }
+      return SCEVAddExpr::get(Ops);
+    }
+
+    // Okay, if there weren't any loop invariants to be folded, check to see if
+    // there are multiple AddRec's with the same loop induction variable being
+    // added together.  If so, we can fold them.
+    for (unsigned OtherIdx = Idx+1;
+         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
+      if (OtherIdx != Idx) {
+        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
+        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
+          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
+          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
+          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
+            if (i >= NewOps.size()) {
+              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
+                            OtherAddRec->op_end());
+              break;
+            }
+            NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
+          }
+          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
+
+          if (Ops.size() == 2) return NewAddRec;
+
+          Ops.erase(Ops.begin()+Idx);
+          Ops.erase(Ops.begin()+OtherIdx-1);
+          Ops.push_back(NewAddRec);
+          return SCEVAddExpr::get(Ops);
+        }
+      }
+
+    // Otherwise couldn't fold anything into this recurrence.  Move onto the
+    // next one.
+  }
+
+  // Okay, it looks like we really DO need an add expr.  Check to see if we
+  // already have one, otherwise create a new one.
+  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
+  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
+                                                                 SCEVOps)];
+  if (Result == 0) Result = new SCEVAddExpr(Ops);
+  return Result;
+}
+
+
+SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
+  assert(!Ops.empty() && "Cannot get empty mul!");
+
+  // Sort by complexity, this groups all similar expression types together.
+  GroupByComplexity(Ops);
+
+  // If there are any constants, fold them together.
+  unsigned Idx = 0;
+  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
+
+    // C1*(C2+V) -> C1*C2 + C1*V
+    if (Ops.size() == 2)
+      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
+        if (Add->getNumOperands() == 2 &&
+            isa<SCEVConstant>(Add->getOperand(0)))
+          return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
+                                  SCEVMulExpr::get(LHSC, Add->getOperand(1)));
+
+
+    ++Idx;
+    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
+      // We found two constants, fold them together!
+      Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 
+                                        RHSC->getValue()->getValue());
+      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
+        Ops[0] = SCEVConstant::get(CI);
+        Ops.erase(Ops.begin()+1);  // Erase the folded element
+        if (Ops.size() == 1) return Ops[0];
+        LHSC = cast<SCEVConstant>(Ops[0]);
+      } else {
+        // If we couldn't fold the expression, move to the next constant.  Note
+        // that this is impossible to happen in practice because we always
+        // constant fold constant ints to constant ints.
+        ++Idx;
+      }
+    }
+
+    // If we are left with a constant one being multiplied, strip it off.
+    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
+      Ops.erase(Ops.begin());
+      --Idx;
+    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
+      // If we have a multiply of zero, it will always be zero.
+      return Ops[0];
+    }
+  }
+
+  // Skip over the add expression until we get to a multiply.
+  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
+    ++Idx;
+
+  if (Ops.size() == 1)
+    return Ops[0];
+
+  // If there are mul operands inline them all into this expression.
+  if (Idx < Ops.size()) {
+    bool DeletedMul = false;
+    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
+      // If we have an mul, expand the mul operands onto the end of the operands
+      // list.
+      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
+      Ops.erase(Ops.begin()+Idx);
+      DeletedMul = true;
+    }
+
+    // If we deleted at least one mul, we added operands to the end of the list,
+    // and they are not necessarily sorted.  Recurse to resort and resimplify
+    // any operands we just aquired.
+    if (DeletedMul)
+      return get(Ops);
+  }
+
+  // If there are any add recurrences in the operands list, see if any other
+  // added values are loop invariant.  If so, we can fold them into the
+  // recurrence.
+  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
+    ++Idx;
+
+  // Scan over all recurrences, trying to fold loop invariants into them.
+  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
+    // Scan all of the other operands to this mul and add them to the vector if
+    // they are loop invariant w.r.t. the recurrence.
+    std::vector<SCEVHandle> LIOps;
+    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
+    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
+        LIOps.push_back(Ops[i]);
+        Ops.erase(Ops.begin()+i);
+        --i; --e;
+      }
+
+    // If we found some loop invariants, fold them into the recurrence.
+    if (!LIOps.empty()) {
+      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
+      std::vector<SCEVHandle> NewOps;
+      NewOps.reserve(AddRec->getNumOperands());
+      if (LIOps.size() == 1) {
+        SCEV *Scale = LIOps[0];
+        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
+          NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
+      } else {
+        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
+          std::vector<SCEVHandle> MulOps(LIOps);
+          MulOps.push_back(AddRec->getOperand(i));
+          NewOps.push_back(SCEVMulExpr::get(MulOps));
+        }
+      }
+
+      SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
+
+      // If all of the other operands were loop invariant, we are done.
+      if (Ops.size() == 1) return NewRec;
+
+      // Otherwise, multiply the folded AddRec by the non-liv parts.
+      for (unsigned i = 0;; ++i)
+        if (Ops[i] == AddRec) {
+          Ops[i] = NewRec;
+          break;
+        }
+      return SCEVMulExpr::get(Ops);
+    }
+
+    // Okay, if there weren't any loop invariants to be folded, check to see if
+    // there are multiple AddRec's with the same loop induction variable being
+    // multiplied together.  If so, we can fold them.
+    for (unsigned OtherIdx = Idx+1;
+         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
+      if (OtherIdx != Idx) {
+        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
+        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
+          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
+          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
+          SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
+                                                 G->getStart());
+          SCEVHandle B = F->getStepRecurrence();
+          SCEVHandle D = G->getStepRecurrence();
+          SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
+                                                SCEVMulExpr::get(G, B),
+                                                SCEVMulExpr::get(B, D));
+          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
+                                                     F->getLoop());
+          if (Ops.size() == 2) return NewAddRec;
+
+          Ops.erase(Ops.begin()+Idx);
+          Ops.erase(Ops.begin()+OtherIdx-1);
+          Ops.push_back(NewAddRec);
+          return SCEVMulExpr::get(Ops);
+        }
+      }
+
+    // Otherwise couldn't fold anything into this recurrence.  Move onto the
+    // next one.
+  }
+
+  // Okay, it looks like we really DO need an mul expr.  Check to see if we
+  // already have one, otherwise create a new one.
+  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
+  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
+                                                                 SCEVOps)];
+  if (Result == 0)
+    Result = new SCEVMulExpr(Ops);
+  return Result;
+}
+
+SCEVHandle SCEVSDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
+  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
+    if (RHSC->getValue()->equalsInt(1))
+      return LHS;                            // X sdiv 1 --> x
+    if (RHSC->getValue()->isAllOnesValue())
+      return SCEV::getNegativeSCEV(LHS);           // X sdiv -1  -->  -x
+
+    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
+      Constant *LHSCV = LHSC->getValue();
+      Constant *RHSCV = RHSC->getValue();
+      return SCEVUnknown::get(ConstantExpr::getSDiv(LHSCV, RHSCV));
+    }
+  }
+
+  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
+
+  SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
+  if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
+  return Result;
+}
+
+
+/// SCEVAddRecExpr::get - Get a add recurrence expression for the
+/// specified loop.  Simplify the expression as much as possible.
+SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
+                               const SCEVHandle &Step, const Loop *L) {
+  std::vector<SCEVHandle> Operands;
+  Operands.push_back(Start);
+  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
+    if (StepChrec->getLoop() == L) {
+      Operands.insert(Operands.end(), StepChrec->op_begin(),
+                      StepChrec->op_end());
+      return get(Operands, L);
+    }
+
+  Operands.push_back(Step);
+  return get(Operands, L);
+}
+
+/// SCEVAddRecExpr::get - Get a add recurrence expression for the
+/// specified loop.  Simplify the expression as much as possible.
+SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
+                               const Loop *L) {
+  if (Operands.size() == 1) return Operands[0];
+
+  if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
+    if (StepC->getValue()->isZero()) {
+      Operands.pop_back();
+      return get(Operands, L);             // { X,+,0 }  -->  X
+    }
+
+  SCEVAddRecExpr *&Result =
+    (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
+                                                            Operands.end()))];
+  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
+  return Result;
+}
+
+SCEVHandle SCEVUnknown::get(Value *V) {
+  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
+    return SCEVConstant::get(CI);
+  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
+  if (Result == 0) Result = new SCEVUnknown(V);
+  return Result;
+}
+
+
+//===----------------------------------------------------------------------===//
+//             ScalarEvolutionsImpl Definition and Implementation
+//===----------------------------------------------------------------------===//
+//
+/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
+/// evolution code.
+///
+namespace {
+  struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
+    /// F - The function we are analyzing.
+    ///
+    Function &F;
+
+    /// LI - The loop information for the function we are currently analyzing.
+    ///
+    LoopInfo &LI;
+
+    /// UnknownValue - This SCEV is used to represent unknown trip counts and
+    /// things.
+    SCEVHandle UnknownValue;
+
+    /// Scalars - This is a cache of the scalars we have analyzed so far.
+    ///
+    std::map<Value*, SCEVHandle> Scalars;
+
+    /// IterationCounts - Cache the iteration count of the loops for this
+    /// function as they are computed.
+    std::map<const Loop*, SCEVHandle> IterationCounts;
+
+    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
+    /// the PHI instructions that we attempt to compute constant evolutions for.
+    /// This allows us to avoid potentially expensive recomputation of these
+    /// properties.  An instruction maps to null if we are unable to compute its
+    /// exit value.
+    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
+
+  public:
+    ScalarEvolutionsImpl(Function &f, LoopInfo &li)
+      : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
+
+    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
+    /// expression and create a new one.
+    SCEVHandle getSCEV(Value *V);
+
+    /// hasSCEV - Return true if the SCEV for this value has already been
+    /// computed.
+    bool hasSCEV(Value *V) const {
+      return Scalars.count(V);
+    }
+
+    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
+    /// the specified value.
+    void setSCEV(Value *V, const SCEVHandle &H) {
+      bool isNew = Scalars.insert(std::make_pair(V, H)).second;
+      assert(isNew && "This entry already existed!");
+    }
+
+
+    /// getSCEVAtScope - Compute the value of the specified expression within
+    /// the indicated loop (which may be null to indicate in no loop).  If the
+    /// expression cannot be evaluated, return UnknownValue itself.
+    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
+
+
+    /// hasLoopInvariantIterationCount - Return true if the specified loop has
+    /// an analyzable loop-invariant iteration count.
+    bool hasLoopInvariantIterationCount(const Loop *L);
+
+    /// getIterationCount - If the specified loop has a predictable iteration
+    /// count, return it.  Note that it is not valid to call this method on a
+    /// loop without a loop-invariant iteration count.
+    SCEVHandle getIterationCount(const Loop *L);
+
+    /// deleteValueFromRecords - This method should be called by the
+    /// client before it removes a value from the program, to make sure
+    /// that no dangling references are left around.
+    void deleteValueFromRecords(Value *V);
+
+  private:
+    /// createSCEV - We know that there is no SCEV for the specified value.
+    /// Analyze the expression.
+    SCEVHandle createSCEV(Value *V);
+
+    /// createNodeForPHI - Provide the special handling we need to analyze PHI
+    /// SCEVs.
+    SCEVHandle createNodeForPHI(PHINode *PN);
+
+    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
+    /// for the specified instruction and replaces any references to the
+    /// symbolic value SymName with the specified value.  This is used during
+    /// PHI resolution.
+    void ReplaceSymbolicValueWithConcrete(Instruction *I,
+                                          const SCEVHandle &SymName,
+                                          const SCEVHandle &NewVal);
+
+    /// ComputeIterationCount - Compute the number of times the specified loop
+    /// will iterate.
+    SCEVHandle ComputeIterationCount(const Loop *L);
+
+    /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
+    /// 'setcc load X, cst', try to see if we can compute the trip count.
+    SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
+                                                        Constant *RHS,
+                                                        const Loop *L,
+                                                        ICmpInst::Predicate p);
+
+    /// ComputeIterationCountExhaustively - If the trip is known to execute a
+    /// constant number of times (the condition evolves only from constants),
+    /// try to evaluate a few iterations of the loop until we get the exit
+    /// condition gets a value of ExitWhen (true or false).  If we cannot
+    /// evaluate the trip count of the loop, return UnknownValue.
+    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
+                                                 bool ExitWhen);
+
+    /// HowFarToZero - Return the number of times a backedge comparing the
+    /// specified value to zero will execute.  If not computable, return
+    /// UnknownValue.
+    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
+
+    /// HowFarToNonZero - Return the number of times a backedge checking the
+    /// specified value for nonzero will execute.  If not computable, return
+    /// UnknownValue.
+    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
+
+    /// HowManyLessThans - Return the number of times a backedge containing the
+    /// specified less-than comparison will execute.  If not computable, return
+    /// UnknownValue.
+    SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L);
+
+    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
+    /// in the header of its containing loop, we know the loop executes a
+    /// constant number of times, and the PHI node is just a recurrence
+    /// involving constants, fold it.
+    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its,
+                                                const Loop *L);
+  };
+}
+
+//===----------------------------------------------------------------------===//
+//            Basic SCEV Analysis and PHI Idiom Recognition Code
+//
+
+/// deleteValueFromRecords - This method should be called by the
+/// client before it removes an instruction from the program, to make sure
+/// that no dangling references are left around.
+void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) {
+  SmallVector<Value *, 16> Worklist;
+
+  if (Scalars.erase(V)) {
+    if (PHINode *PN = dyn_cast<PHINode>(V))
+      ConstantEvolutionLoopExitValue.erase(PN);
+    Worklist.push_back(V);
+  }
+
+  while (!Worklist.empty()) {
+    Value *VV = Worklist.back();
+    Worklist.pop_back();
+
+    for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
+         UI != UE; ++UI) {
+      Instruction *Inst = cast<Instruction>(*UI);
+      if (Scalars.erase(Inst)) {
+        if (PHINode *PN = dyn_cast<PHINode>(VV))
+          ConstantEvolutionLoopExitValue.erase(PN);
+        Worklist.push_back(Inst);
+      }
+    }
+  }
+}
+
+
+/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
+/// expression and create a new one.
+SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
+  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
+
+  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
+  if (I != Scalars.end()) return I->second;
+  SCEVHandle S = createSCEV(V);
+  Scalars.insert(std::make_pair(V, S));
+  return S;
+}
+
+/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
+/// the specified instruction and replaces any references to the symbolic value
+/// SymName with the specified value.  This is used during PHI resolution.
+void ScalarEvolutionsImpl::
+ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
+                                 const SCEVHandle &NewVal) {
+  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
+  if (SI == Scalars.end()) return;
+
+  SCEVHandle NV =
+    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
+  if (NV == SI->second) return;  // No change.
+
+  SI->second = NV;       // Update the scalars map!
+
+  // Any instruction values that use this instruction might also need to be
+  // updated!
+  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
+       UI != E; ++UI)
+    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
+}
+
+/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
+/// a loop header, making it a potential recurrence, or it doesn't.
+///
+SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
+  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
+    if (const Loop *L = LI.getLoopFor(PN->getParent()))
+      if (L->getHeader() == PN->getParent()) {
+        // If it lives in the loop header, it has two incoming values, one
+        // from outside the loop, and one from inside.
+        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
+        unsigned BackEdge     = IncomingEdge^1;
+
+        // While we are analyzing this PHI node, handle its value symbolically.
+        SCEVHandle SymbolicName = SCEVUnknown::get(PN);
+        assert(Scalars.find(PN) == Scalars.end() &&
+               "PHI node already processed?");
+        Scalars.insert(std::make_pair(PN, SymbolicName));
+
+        // Using this symbolic name for the PHI, analyze the value coming around
+        // the back-edge.
+        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
+
+        // NOTE: If BEValue is loop invariant, we know that the PHI node just
+        // has a special value for the first iteration of the loop.
+
+        // If the value coming around the backedge is an add with the symbolic
+        // value we just inserted, then we found a simple induction variable!
+        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
+          // If there is a single occurrence of the symbolic value, replace it
+          // with a recurrence.
+          unsigned FoundIndex = Add->getNumOperands();
+          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
+            if (Add->getOperand(i) == SymbolicName)
+              if (FoundIndex == e) {
+                FoundIndex = i;
+                break;
+              }
+
+          if (FoundIndex != Add->getNumOperands()) {
+            // Create an add with everything but the specified operand.
+            std::vector<SCEVHandle> Ops;
+            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
+              if (i != FoundIndex)
+                Ops.push_back(Add->getOperand(i));
+            SCEVHandle Accum = SCEVAddExpr::get(Ops);
+
+            // This is not a valid addrec if the step amount is varying each
+            // loop iteration, but is not itself an addrec in this loop.
+            if (Accum->isLoopInvariant(L) ||
+                (isa<SCEVAddRecExpr>(Accum) &&
+                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
+              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
+              SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);
+
+              // Okay, for the entire analysis of this edge we assumed the PHI
+              // to be symbolic.  We now need to go back and update all of the
+              // entries for the scalars that use the PHI (except for the PHI
+              // itself) to use the new analyzed value instead of the "symbolic"
+              // value.
+              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
+              return PHISCEV;
+            }
+          }
+        } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
+          // Otherwise, this could be a loop like this:
+          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
+          // In this case, j = {1,+,1}  and BEValue is j.
+          // Because the other in-value of i (0) fits the evolution of BEValue
+          // i really is an addrec evolution.
+          if (AddRec->getLoop() == L && AddRec->isAffine()) {
+            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
+
+            // If StartVal = j.start - j.stride, we can use StartVal as the
+            // initial step of the addrec evolution.
+            if (StartVal == SCEV::getMinusSCEV(AddRec->getOperand(0),
+                                               AddRec->getOperand(1))) {
+              SCEVHandle PHISCEV = 
+                 SCEVAddRecExpr::get(StartVal, AddRec->getOperand(1), L);
+
+              // Okay, for the entire analysis of this edge we assumed the PHI
+              // to be symbolic.  We now need to go back and update all of the
+              // entries for the scalars that use the PHI (except for the PHI
+              // itself) to use the new analyzed value instead of the "symbolic"
+              // value.
+              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
+              return PHISCEV;
+            }
+          }
+        }
+
+        return SymbolicName;
+      }
+
+  // If it's not a loop phi, we can't handle it yet.
+  return SCEVUnknown::get(PN);
+}
+
+/// GetConstantFactor - Determine the largest constant factor that S has.  For
+/// example, turn {4,+,8} -> 4.    (S umod result) should always equal zero.
+static APInt GetConstantFactor(SCEVHandle S) {
+  if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
+    const APInt& V = C->getValue()->getValue();
+    if (!V.isMinValue())
+      return V;
+    else   // Zero is a multiple of everything.
+      return APInt(C->getBitWidth(), 1).shl(C->getBitWidth()-1);
+  }
+
+  if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) {
+    return GetConstantFactor(T->getOperand()).trunc(
+                               cast<IntegerType>(T->getType())->getBitWidth());
+  }
+  if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S))
+    return GetConstantFactor(E->getOperand()).zext(
+                               cast<IntegerType>(E->getType())->getBitWidth());
+  if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S))
+    return GetConstantFactor(E->getOperand()).sext(
+                               cast<IntegerType>(E->getType())->getBitWidth());
+  
+  if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
+    // The result is the min of all operands.
+    APInt Res(GetConstantFactor(A->getOperand(0)));
+    for (unsigned i = 1, e = A->getNumOperands(); 
+         i != e && Res.ugt(APInt(Res.getBitWidth(),1)); ++i) {
+      APInt Tmp(GetConstantFactor(A->getOperand(i)));
+      Res = APIntOps::umin(Res, Tmp);
+    }
+    return Res;
+  }
+
+  if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
+    // The result is the product of all the operands.
+    APInt Res(GetConstantFactor(M->getOperand(0)));
+    for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i) {
+      APInt Tmp(GetConstantFactor(M->getOperand(i)));
+      Res *= Tmp;
+    }
+    return Res;
+  }
+    
+  if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
+    // For now, we just handle linear expressions.
+    if (A->getNumOperands() == 2) {
+      // We want the GCD between the start and the stride value.
+      APInt Start(GetConstantFactor(A->getOperand(0)));
+      if (Start == 1) 
+        return Start;
+      APInt Stride(GetConstantFactor(A->getOperand(1)));
+      return APIntOps::GreatestCommonDivisor(Start, Stride);
+    }
+  }
+  
+  // SCEVSDivExpr, SCEVUnknown.
+  return APInt(S->getBitWidth(), 1);
+}
+
+/// createSCEV - We know that there is no SCEV for the specified value.
+/// Analyze the expression.
+///
+SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
+  if (Instruction *I = dyn_cast<Instruction>(V)) {
+    switch (I->getOpcode()) {
+    case Instruction::Add:
+      return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
+                              getSCEV(I->getOperand(1)));
+    case Instruction::Mul:
+      return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
+                              getSCEV(I->getOperand(1)));
+    case Instruction::SDiv:
+      return SCEVSDivExpr::get(getSCEV(I->getOperand(0)),
+                              getSCEV(I->getOperand(1)));
+      break;
+
+    case Instruction::Sub:
+      return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
+                                getSCEV(I->getOperand(1)));
+    case Instruction::Or:
+      // If the RHS of the Or is a constant, we may have something like:
+      // X*4+1 which got turned into X*4|1.  Handle this as an add so loop
+      // optimizations will transparently handle this case.
+      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
+        SCEVHandle LHS = getSCEV(I->getOperand(0));
+        APInt CommonFact(GetConstantFactor(LHS));
+        assert(!CommonFact.isMinValue() &&
+               "Common factor should at least be 1!");
+        if (CommonFact.ugt(CI->getValue())) {
+          // If the LHS is a multiple that is larger than the RHS, use +.
+          return SCEVAddExpr::get(LHS,
+                                  getSCEV(I->getOperand(1)));
+        }
+      }
+      break;
+    case Instruction::Xor:
+      // If the RHS of the xor is a signbit, then this is just an add.
+      // Instcombine turns add of signbit into xor as a strength reduction step.
+      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
+        if (CI->getValue().isSignBit())
+          return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
+                                  getSCEV(I->getOperand(1)));
+      }
+      break;
+
+    case Instruction::Shl:
+      // Turn shift left of a constant amount into a multiply.
+      if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+        uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
+        Constant *X = ConstantInt::get(
+          APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
+        return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
+      }
+      break;
+
+    case Instruction::Trunc:
+      return SCEVTruncateExpr::get(getSCEV(I->getOperand(0)), I->getType());
+
+    case Instruction::ZExt:
+      return SCEVZeroExtendExpr::get(getSCEV(I->getOperand(0)), I->getType());
+
+    case Instruction::SExt:
+      return SCEVSignExtendExpr::get(getSCEV(I->getOperand(0)), I->getType());
+
+    case Instruction::BitCast:
+      // BitCasts are no-op casts so we just eliminate the cast.
+      if (I->getType()->isInteger() &&
+          I->getOperand(0)->getType()->isInteger())
+        return getSCEV(I->getOperand(0));
+      break;
+
+    case Instruction::PHI:
+      return createNodeForPHI(cast<PHINode>(I));
+
+    default: // We cannot analyze this expression.
+      break;
+    }
+  }
+
+  return SCEVUnknown::get(V);
+}
+
+
+
+//===----------------------------------------------------------------------===//
+//                   Iteration Count Computation Code
+//
+
+/// getIterationCount - If the specified loop has a predictable iteration
+/// count, return it.  Note that it is not valid to call this method on a
+/// loop without a loop-invariant iteration count.
+SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
+  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
+  if (I == IterationCounts.end()) {
+    SCEVHandle ItCount = ComputeIterationCount(L);
+    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
+    if (ItCount != UnknownValue) {
+      assert(ItCount->isLoopInvariant(L) &&
+             "Computed trip count isn't loop invariant for loop!");
+      ++NumTripCountsComputed;
+    } else if (isa<PHINode>(L->getHeader()->begin())) {
+      // Only count loops that have phi nodes as not being computable.
+      ++NumTripCountsNotComputed;
+    }
+  }
+  return I->second;
+}
+
+/// ComputeIterationCount - Compute the number of times the specified loop
+/// will iterate.
+SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
+  // If the loop has a non-one exit block count, we can't analyze it.
+  std::vector<BasicBlock*> ExitBlocks;
+  L->getExitBlocks(ExitBlocks);
+  if (ExitBlocks.size() != 1) return UnknownValue;
+
+  // Okay, there is one exit block.  Try to find the condition that causes the
+  // loop to be exited.
+  BasicBlock *ExitBlock = ExitBlocks[0];
+
+  BasicBlock *ExitingBlock = 0;
+  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
+       PI != E; ++PI)
+    if (L->contains(*PI)) {
+      if (ExitingBlock == 0)
+        ExitingBlock = *PI;
+      else
+        return UnknownValue;   // More than one block exiting!
+    }
+  assert(ExitingBlock && "No exits from loop, something is broken!");
+
+  // Okay, we've computed the exiting block.  See what condition causes us to
+  // exit.
+  //
+  // FIXME: we should be able to handle switch instructions (with a single exit)
+  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
+  if (ExitBr == 0) return UnknownValue;
+  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
+  
+  // At this point, we know we have a conditional branch that determines whether
+  // the loop is exited.  However, we don't know if the branch is executed each
+  // time through the loop.  If not, then the execution count of the branch will
+  // not be equal to the trip count of the loop.
+  //
+  // Currently we check for this by checking to see if the Exit branch goes to
+  // the loop header.  If so, we know it will always execute the same number of
+  // times as the loop.  We also handle the case where the exit block *is* the
+  // loop header.  This is common for un-rotated loops.  More extensive analysis
+  // could be done to handle more cases here.
+  if (ExitBr->getSuccessor(0) != L->getHeader() &&
+      ExitBr->getSuccessor(1) != L->getHeader() &&
+      ExitBr->getParent() != L->getHeader())
+    return UnknownValue;
+  
+  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
+
+  // If its not an integer comparison then compute it the hard way. 
+  // Note that ICmpInst deals with pointer comparisons too so we must check
+  // the type of the operand.
+  if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
+    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
+                                          ExitBr->getSuccessor(0) == ExitBlock);
+
+  // If the condition was exit on true, convert the condition to exit on false
+  ICmpInst::Predicate Cond;
+  if (ExitBr->getSuccessor(1) == ExitBlock)
+    Cond = ExitCond->getPredicate();
+  else
+    Cond = ExitCond->getInversePredicate();
+
+  // Handle common loops like: for (X = "string"; *X; ++X)
+  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
+    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
+      SCEVHandle ItCnt =
+        ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
+      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
+    }
+
+  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
+  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
+
+  // Try to evaluate any dependencies out of the loop.
+  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
+  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
+  Tmp = getSCEVAtScope(RHS, L);
+  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
+
+  // At this point, we would like to compute how many iterations of the 
+  // loop the predicate will return true for these inputs.
+  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
+    // If there is a constant, force it into the RHS.
+    std::swap(LHS, RHS);
+    Cond = ICmpInst::getSwappedPredicate(Cond);
+  }
+
+  // FIXME: think about handling pointer comparisons!  i.e.:
+  // while (P != P+100) ++P;
+
+  // If we have a comparison of a chrec against a constant, try to use value
+  // ranges to answer this query.
+  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
+    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
+      if (AddRec->getLoop() == L) {
+        // Form the comparison range using the constant of the correct type so
+        // that the ConstantRange class knows to do a signed or unsigned
+        // comparison.
+        ConstantInt *CompVal = RHSC->getValue();
+        const Type *RealTy = ExitCond->getOperand(0)->getType();
+        CompVal = dyn_cast<ConstantInt>(
+          ConstantExpr::getBitCast(CompVal, RealTy));
+        if (CompVal) {
+          // Form the constant range.
+          ConstantRange CompRange(
+              ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
+
+          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
+          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
+        }
+      }
+
+  switch (Cond) {
+  case ICmpInst::ICMP_NE: {                     // while (X != Y)
+    // Convert to: while (X-Y != 0)
+    SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
+    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
+    break;
+  }
+  case ICmpInst::ICMP_EQ: {
+    // Convert to: while (X-Y == 0)           // while (X == Y)
+    SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
+    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
+    break;
+  }
+  case ICmpInst::ICMP_SLT: {
+    SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
+    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
+    break;
+  }
+  case ICmpInst::ICMP_SGT: {
+    SCEVHandle TC = HowManyLessThans(SCEV::getNegativeSCEV(LHS),
+                                     SCEV::getNegativeSCEV(RHS), L);
+    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
+    break;
+  }
+  default:
+#if 0
+    cerr << "ComputeIterationCount ";
+    if (ExitCond->getOperand(0)->getType()->isUnsigned())
+      cerr << "[unsigned] ";
+    cerr << *LHS << "   "
+         << Instruction::getOpcodeName(Instruction::ICmp) 
+         << "   " << *RHS << "\n";
+#endif
+    break;
+  }
+  return ComputeIterationCountExhaustively(L, ExitCond,
+                                       ExitBr->getSuccessor(0) == ExitBlock);
+}
+
+static ConstantInt *
+EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C) {
+  SCEVHandle InVal = SCEVConstant::get(C);
+  SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
+  assert(isa<SCEVConstant>(Val) &&
+         "Evaluation of SCEV at constant didn't fold correctly?");
+  return cast<SCEVConstant>(Val)->getValue();
+}
+
+/// GetAddressedElementFromGlobal - Given a global variable with an initializer
+/// and a GEP expression (missing the pointer index) indexing into it, return
+/// the addressed element of the initializer or null if the index expression is
+/// invalid.
+static Constant *
+GetAddressedElementFromGlobal(GlobalVariable *GV,
+                              const std::vector<ConstantInt*> &Indices) {
+  Constant *Init = GV->getInitializer();
+  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
+    uint64_t Idx = Indices[i]->getZExtValue();
+    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
+      assert(Idx < CS->getNumOperands() && "Bad struct index!");
+      Init = cast<Constant>(CS->getOperand(Idx));
+    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
+      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
+      Init = cast<Constant>(CA->getOperand(Idx));
+    } else if (isa<ConstantAggregateZero>(Init)) {
+      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
+        assert(Idx < STy->getNumElements() && "Bad struct index!");
+        Init = Constant::getNullValue(STy->getElementType(Idx));
+      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
+        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
+        Init = Constant::getNullValue(ATy->getElementType());
+      } else {
+        assert(0 && "Unknown constant aggregate type!");
+      }
+      return 0;
+    } else {
+      return 0; // Unknown initializer type
+    }
+  }
+  return Init;
+}
+
+/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
+/// 'setcc load X, cst', try to se if we can compute the trip count.
+SCEVHandle ScalarEvolutionsImpl::
+ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
+                                         const Loop *L, 
+                                         ICmpInst::Predicate predicate) {
+  if (LI->isVolatile()) return UnknownValue;
+
+  // Check to see if the loaded pointer is a getelementptr of a global.
+  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
+  if (!GEP) return UnknownValue;
+
+  // Make sure that it is really a constant global we are gepping, with an
+  // initializer, and make sure the first IDX is really 0.
+  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
+  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
+      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
+      !cast<Constant>(GEP->getOperand(1))->isNullValue())
+    return UnknownValue;
+
+  // Okay, we allow one non-constant index into the GEP instruction.
+  Value *VarIdx = 0;
+  std::vector<ConstantInt*> Indexes;
+  unsigned VarIdxNum = 0;
+  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
+      Indexes.push_back(CI);
+    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
+      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
+      VarIdx = GEP->getOperand(i);
+      VarIdxNum = i-2;
+      Indexes.push_back(0);
+    }
+
+  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
+  // Check to see if X is a loop variant variable value now.
+  SCEVHandle Idx = getSCEV(VarIdx);
+  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
+  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
+
+  // We can only recognize very limited forms of loop index expressions, in
+  // particular, only affine AddRec's like {C1,+,C2}.
+  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
+  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
+      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
+      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
+    return UnknownValue;
+
+  unsigned MaxSteps = MaxBruteForceIterations;
+  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
+    ConstantInt *ItCst =
+      ConstantInt::get(IdxExpr->getType(), IterationNum);
+    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
+
+    // Form the GEP offset.
+    Indexes[VarIdxNum] = Val;
+
+    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
+    if (Result == 0) break;  // Cannot compute!
+
+    // Evaluate the condition for this iteration.
+    Result = ConstantExpr::getICmp(predicate, Result, RHS);
+    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
+    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
+#if 0
+      cerr << "\n***\n*** Computed loop count " << *ItCst
+           << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
+           << "***\n";
+#endif
+      ++NumArrayLenItCounts;
+      return SCEVConstant::get(ItCst);   // Found terminating iteration!
+    }
+  }
+  return UnknownValue;
+}
+
+
+/// CanConstantFold - Return true if we can constant fold an instruction of the
+/// specified type, assuming that all operands were constants.
+static bool CanConstantFold(const Instruction *I) {
+  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
+      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
+    return true;
+
+  if (const CallInst *CI = dyn_cast<CallInst>(I))
+    if (const Function *F = CI->getCalledFunction())
+      return canConstantFoldCallTo((Function*)F);  // FIXME: elim cast
+  return false;
+}
+
+/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
+/// in the loop that V is derived from.  We allow arbitrary operations along the
+/// way, but the operands of an operation must either be constants or a value
+/// derived from a constant PHI.  If this expression does not fit with these
+/// constraints, return null.
+static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
+  // If this is not an instruction, or if this is an instruction outside of the
+  // loop, it can't be derived from a loop PHI.
+  Instruction *I = dyn_cast<Instruction>(V);
+  if (I == 0 || !L->contains(I->getParent())) return 0;
+
+  if (PHINode *PN = dyn_cast<PHINode>(I))
+    if (L->getHeader() == I->getParent())
+      return PN;
+    else
+      // We don't currently keep track of the control flow needed to evaluate
+      // PHIs, so we cannot handle PHIs inside of loops.
+      return 0;
+
+  // If we won't be able to constant fold this expression even if the operands
+  // are constants, return early.
+  if (!CanConstantFold(I)) return 0;
+
+  // Otherwise, we can evaluate this instruction if all of its operands are
+  // constant or derived from a PHI node themselves.
+  PHINode *PHI = 0;
+  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
+    if (!(isa<Constant>(I->getOperand(Op)) ||
+          isa<GlobalValue>(I->getOperand(Op)))) {
+      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
+      if (P == 0) return 0;  // Not evolving from PHI
+      if (PHI == 0)
+        PHI = P;
+      else if (PHI != P)
+        return 0;  // Evolving from multiple different PHIs.
+    }
+
+  // This is a expression evolving from a constant PHI!
+  return PHI;
+}
+
+/// EvaluateExpression - Given an expression that passes the
+/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
+/// in the loop has the value PHIVal.  If we can't fold this expression for some
+/// reason, return null.
+static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
+  if (isa<PHINode>(V)) return PHIVal;
+  if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
+    return GV;
+  if (Constant *C = dyn_cast<Constant>(V)) return C;
+  Instruction *I = cast<Instruction>(V);
+
+  std::vector<Constant*> Operands;
+  Operands.resize(I->getNumOperands());
+
+  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
+    if (Operands[i] == 0) return 0;
+  }
+
+  return ConstantFoldInstOperands(I, &Operands[0], Operands.size());
+}
+
+/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
+/// in the header of its containing loop, we know the loop executes a
+/// constant number of times, and the PHI node is just a recurrence
+/// involving constants, fold it.
+Constant *ScalarEvolutionsImpl::
+getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){
+  std::map<PHINode*, Constant*>::iterator I =
+    ConstantEvolutionLoopExitValue.find(PN);
+  if (I != ConstantEvolutionLoopExitValue.end())
+    return I->second;
+
+  if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations)))
+    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
+
+  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
+
+  // Since the loop is canonicalized, the PHI node must have two entries.  One
+  // entry must be a constant (coming in from outside of the loop), and the
+  // second must be derived from the same PHI.
+  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
+  Constant *StartCST =
+    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
+  if (StartCST == 0)
+    return RetVal = 0;  // Must be a constant.
+
+  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
+  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
+  if (PN2 != PN)
+    return RetVal = 0;  // Not derived from same PHI.
+
+  // Execute the loop symbolically to determine the exit value.
+  if (Its.getActiveBits() >= 32)
+    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
+
+  unsigned NumIterations = Its.getZExtValue(); // must be in range
+  unsigned IterationNum = 0;
+  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
+    if (IterationNum == NumIterations)
+      return RetVal = PHIVal;  // Got exit value!
+
+    // Compute the value of the PHI node for the next iteration.
+    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
+    if (NextPHI == PHIVal)
+      return RetVal = NextPHI;  // Stopped evolving!
+    if (NextPHI == 0)
+      return 0;        // Couldn't evaluate!
+    PHIVal = NextPHI;
+  }
+}
+
+/// ComputeIterationCountExhaustively - If the trip is known to execute a
+/// constant number of times (the condition evolves only from constants),
+/// try to evaluate a few iterations of the loop until we get the exit
+/// condition gets a value of ExitWhen (true or false).  If we cannot
+/// evaluate the trip count of the loop, return UnknownValue.
+SCEVHandle ScalarEvolutionsImpl::
+ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
+  PHINode *PN = getConstantEvolvingPHI(Cond, L);
+  if (PN == 0) return UnknownValue;
+
+  // Since the loop is canonicalized, the PHI node must have two entries.  One
+  // entry must be a constant (coming in from outside of the loop), and the
+  // second must be derived from the same PHI.
+  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
+  Constant *StartCST =
+    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
+  if (StartCST == 0) return UnknownValue;  // Must be a constant.
+
+  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
+  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
+  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
+
+  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
+  // the loop symbolically to determine when the condition gets a value of
+  // "ExitWhen".
+  unsigned IterationNum = 0;
+  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
+  for (Constant *PHIVal = StartCST;
+       IterationNum != MaxIterations; ++IterationNum) {
+    ConstantInt *CondVal =
+      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
+
+    // Couldn't symbolically evaluate.
+    if (!CondVal) return UnknownValue;
+
+    if (CondVal->getValue() == uint64_t(ExitWhen)) {
+      ConstantEvolutionLoopExitValue[PN] = PHIVal;
+      ++NumBruteForceTripCountsComputed;
+      return SCEVConstant::get(ConstantInt::get(Type::Int32Ty, IterationNum));
+    }
+
+    // Compute the value of the PHI node for the next iteration.
+    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
+    if (NextPHI == 0 || NextPHI == PHIVal)
+      return UnknownValue;  // Couldn't evaluate or not making progress...
+    PHIVal = NextPHI;
+  }
+
+  // Too many iterations were needed to evaluate.
+  return UnknownValue;
+}
+
+/// getSCEVAtScope - Compute the value of the specified expression within the
+/// indicated loop (which may be null to indicate in no loop).  If the
+/// expression cannot be evaluated, return UnknownValue.
+SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
+  // FIXME: this should be turned into a virtual method on SCEV!
+
+  if (isa<SCEVConstant>(V)) return V;
+
+  // If this instruction is evolves from a constant-evolving PHI, compute the
+  // exit value from the loop without using SCEVs.
+  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
+    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
+      const Loop *LI = this->LI[I->getParent()];
+      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
+        if (PHINode *PN = dyn_cast<PHINode>(I))
+          if (PN->getParent() == LI->getHeader()) {
+            // Okay, there is no closed form solution for the PHI node.  Check
+            // to see if the loop that contains it has a known iteration count.
+            // If so, we may be able to force computation of the exit value.
+            SCEVHandle IterationCount = getIterationCount(LI);
+            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
+              // Okay, we know how many times the containing loop executes.  If
+              // this is a constant evolving PHI node, get the final value at
+              // the specified iteration number.
+              Constant *RV = getConstantEvolutionLoopExitValue(PN,
+                                                    ICC->getValue()->getValue(),
+                                                               LI);
+              if (RV) return SCEVUnknown::get(RV);
+            }
+          }
+
+      // Okay, this is an expression that we cannot symbolically evaluate
+      // into a SCEV.  Check to see if it's possible to symbolically evaluate
+      // the arguments into constants, and if so, try to constant propagate the
+      // result.  This is particularly useful for computing loop exit values.
+      if (CanConstantFold(I)) {
+        std::vector<Constant*> Operands;
+        Operands.reserve(I->getNumOperands());
+        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+          Value *Op = I->getOperand(i);
+          if (Constant *C = dyn_cast<Constant>(Op)) {
+            Operands.push_back(C);
+          } else {
+            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
+            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
+              Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(), 
+                                                              Op->getType(), 
+                                                              false));
+            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
+              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
+                Operands.push_back(ConstantExpr::getIntegerCast(C, 
+                                                                Op->getType(), 
+                                                                false));
+              else
+                return V;
+            } else {
+              return V;
+            }
+          }
+        }
+        Constant *C =ConstantFoldInstOperands(I, &Operands[0], Operands.size());
+        return SCEVUnknown::get(C);
+      }
+    }
+
+    // This is some other type of SCEVUnknown, just return it.
+    return V;
+  }
+
+  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
+    // Avoid performing the look-up in the common case where the specified
+    // expression has no loop-variant portions.
+    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
+      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
+      if (OpAtScope != Comm->getOperand(i)) {
+        if (OpAtScope == UnknownValue) return UnknownValue;
+        // Okay, at least one of these operands is loop variant but might be
+        // foldable.  Build a new instance of the folded commutative expression.
+        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
+        NewOps.push_back(OpAtScope);
+
+        for (++i; i != e; ++i) {
+          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
+          if (OpAtScope == UnknownValue) return UnknownValue;
+          NewOps.push_back(OpAtScope);
+        }
+        if (isa<SCEVAddExpr>(Comm))
+          return SCEVAddExpr::get(NewOps);
+        assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
+        return SCEVMulExpr::get(NewOps);
+      }
+    }
+    // If we got here, all operands are loop invariant.
+    return Comm;
+  }
+
+  if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
+    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
+    if (LHS == UnknownValue) return LHS;
+    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
+    if (RHS == UnknownValue) return RHS;
+    if (LHS == Div->getLHS() && RHS == Div->getRHS())
+      return Div;   // must be loop invariant
+    return SCEVSDivExpr::get(LHS, RHS);
+  }
+
+  // If this is a loop recurrence for a loop that does not contain L, then we
+  // are dealing with the final value computed by the loop.
+  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
+    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
+      // To evaluate this recurrence, we need to know how many times the AddRec
+      // loop iterates.  Compute this now.
+      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
+      if (IterationCount == UnknownValue) return UnknownValue;
+      IterationCount = getTruncateOrZeroExtend(IterationCount,
+                                               AddRec->getType());
+
+      // If the value is affine, simplify the expression evaluation to just
+      // Start + Step*IterationCount.
+      if (AddRec->isAffine())
+        return SCEVAddExpr::get(AddRec->getStart(),
+                                SCEVMulExpr::get(IterationCount,
+                                                 AddRec->getOperand(1)));
+
+      // Otherwise, evaluate it the hard way.
+      return AddRec->evaluateAtIteration(IterationCount);
+    }
+    return UnknownValue;
+  }
+
+  //assert(0 && "Unknown SCEV type!");
+  return UnknownValue;
+}
+
+
+/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
+/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
+/// might be the same) or two SCEVCouldNotCompute objects.
+///
+static std::pair<SCEVHandle,SCEVHandle>
+SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
+  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
+  SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
+  SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
+  SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
+
+  // We currently can only solve this if the coefficients are constants.
+  if (!LC || !MC || !NC) {
+    SCEV *CNC = new SCEVCouldNotCompute();
+    return std::make_pair(CNC, CNC);
+  }
+
+  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
+  const APInt &L = LC->getValue()->getValue();
+  const APInt &M = MC->getValue()->getValue();
+  const APInt &N = NC->getValue()->getValue();
+  APInt Two(BitWidth, 2);
+  APInt Four(BitWidth, 4);
+
+  { 
+    using namespace APIntOps;
+    const APInt& C = L;
+    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
+    // The B coefficient is M-N/2
+    APInt B(M);
+    B -= sdiv(N,Two);
+
+    // The A coefficient is N/2
+    APInt A(N.sdiv(Two));
+
+    // Compute the B^2-4ac term.
+    APInt SqrtTerm(B);
+    SqrtTerm *= B;
+    SqrtTerm -= Four * (A * C);
+
+    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
+    // integer value or else APInt::sqrt() will assert.
+    APInt SqrtVal(SqrtTerm.sqrt());
+
+    // Compute the two solutions for the quadratic formula. 
+    // The divisions must be performed as signed divisions.
+    APInt NegB(-B);
+    APInt TwoA( A << 1 );
+    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
+    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
+
+    return std::make_pair(SCEVConstant::get(Solution1), 
+                          SCEVConstant::get(Solution2));
+    } // end APIntOps namespace
+}
+
+/// HowFarToZero - Return the number of times a backedge comparing the specified
+/// value to zero will execute.  If not computable, return UnknownValue
+SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
+  // If the value is a constant
+  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
+    // If the value is already zero, the branch will execute zero times.
+    if (C->getValue()->isZero()) return C;
+    return UnknownValue;  // Otherwise it will loop infinitely.
+  }
+
+  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
+  if (!AddRec || AddRec->getLoop() != L)
+    return UnknownValue;
+
+  if (AddRec->isAffine()) {
+    // If this is an affine expression the execution count of this branch is
+    // equal to:
+    //
+    //     (0 - Start/Step)    iff   Start % Step == 0
+    //
+    // Get the initial value for the loop.
+    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
+    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
+    SCEVHandle Step = AddRec->getOperand(1);
+
+    Step = getSCEVAtScope(Step, L->getParentLoop());
+
+    // Figure out if Start % Step == 0.
+    // FIXME: We should add DivExpr and RemExpr operations to our AST.
+    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
+      if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
+        return SCEV::getNegativeSCEV(Start);  // 0 - Start/1 == -Start
+      if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
+        return Start;                   // 0 - Start/-1 == Start
+
+      // Check to see if Start is divisible by SC with no remainder.
+      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
+        ConstantInt *StartCC = StartC->getValue();
+        Constant *StartNegC = ConstantExpr::getNeg(StartCC);
+        Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue());
+        if (Rem->isNullValue()) {
+          Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue());
+          return SCEVUnknown::get(Result);
+        }
+      }
+    }
+  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
+    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
+    // the quadratic equation to solve it.
+    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
+    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
+    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
+    if (R1) {
+#if 0
+      cerr << "HFTZ: " << *V << " - sol#1: " << *R1
+           << "  sol#2: " << *R2 << "\n";
+#endif
+      // Pick the smallest positive root value.
+      if (ConstantInt *CB =
+          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 
+                                   R1->getValue(), R2->getValue()))) {
+        if (CB->getZExtValue() == false)
+          std::swap(R1, R2);   // R1 is the minimum root now.
+
+        // We can only use this value if the chrec ends up with an exact zero
+        // value at this index.  When solving for "X*X != 5", for example, we
+        // should not accept a root of 2.
+        SCEVHandle Val = AddRec->evaluateAtIteration(R1);
+        if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
+          if (EvalVal->getValue()->isZero())
+            return R1;  // We found a quadratic root!
+      }
+    }
+  }
+
+  return UnknownValue;
+}
+
+/// HowFarToNonZero - Return the number of times a backedge checking the
+/// specified value for nonzero will execute.  If not computable, return
+/// UnknownValue
+SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
+  // Loops that look like: while (X == 0) are very strange indeed.  We don't
+  // handle them yet except for the trivial case.  This could be expanded in the
+  // future as needed.
+
+  // If the value is a constant, check to see if it is known to be non-zero
+  // already.  If so, the backedge will execute zero times.
+  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
+    Constant *Zero = Constant::getNullValue(C->getValue()->getType());
+    Constant *NonZero = 
+      ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero);
+    if (NonZero == ConstantInt::getTrue())
+      return getSCEV(Zero);
+    return UnknownValue;  // Otherwise it will loop infinitely.
+  }
+
+  // We could implement others, but I really doubt anyone writes loops like
+  // this, and if they did, they would already be constant folded.
+  return UnknownValue;
+}
+
+/// HowManyLessThans - Return the number of times a backedge containing the
+/// specified less-than comparison will execute.  If not computable, return
+/// UnknownValue.
+SCEVHandle ScalarEvolutionsImpl::
+HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) {
+  // Only handle:  "ADDREC < LoopInvariant".
+  if (!RHS->isLoopInvariant(L)) return UnknownValue;
+
+  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
+  if (!AddRec || AddRec->getLoop() != L)
+    return UnknownValue;
+
+  if (AddRec->isAffine()) {
+    // FORNOW: We only support unit strides.
+    SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType());
+    if (AddRec->getOperand(1) != One)
+      return UnknownValue;
+
+    // The number of iterations for "[n,+,1] < m", is m-n.  However, we don't
+    // know that m is >= n on input to the loop.  If it is, the condition return
+    // true zero times.  What we really should return, for full generality, is
+    // SMAX(0, m-n).  Since we cannot check this, we will instead check for a
+    // canonical loop form: most do-loops will have a check that dominates the
+    // loop, that only enters the loop if [n-1]<m.  If we can find this check,
+    // we know that the SMAX will evaluate to m-n, because we know that m >= n.
+
+    // Search for the check.
+    BasicBlock *Preheader = L->getLoopPreheader();
+    BasicBlock *PreheaderDest = L->getHeader();
+    if (Preheader == 0) return UnknownValue;
+
+    BranchInst *LoopEntryPredicate =
+      dyn_cast<BranchInst>(Preheader->getTerminator());
+    if (!LoopEntryPredicate) return UnknownValue;
+
+    // This might be a critical edge broken out.  If the loop preheader ends in
+    // an unconditional branch to the loop, check to see if the preheader has a
+    // single predecessor, and if so, look for its terminator.
+    while (LoopEntryPredicate->isUnconditional()) {
+      PreheaderDest = Preheader;
+      Preheader = Preheader->getSinglePredecessor();
+      if (!Preheader) return UnknownValue;  // Multiple preds.
+      
+      LoopEntryPredicate =
+        dyn_cast<BranchInst>(Preheader->getTerminator());
+      if (!LoopEntryPredicate) return UnknownValue;
+    }
+
+    // Now that we found a conditional branch that dominates the loop, check to
+    // see if it is the comparison we are looking for.
+    if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){
+      Value *PreCondLHS = ICI->getOperand(0);
+      Value *PreCondRHS = ICI->getOperand(1);
+      ICmpInst::Predicate Cond;
+      if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
+        Cond = ICI->getPredicate();
+      else
+        Cond = ICI->getInversePredicate();
+    
+      switch (Cond) {
+      case ICmpInst::ICMP_UGT:
+        std::swap(PreCondLHS, PreCondRHS);
+        Cond = ICmpInst::ICMP_ULT;
+        break;
+      case ICmpInst::ICMP_SGT:
+        std::swap(PreCondLHS, PreCondRHS);
+        Cond = ICmpInst::ICMP_SLT;
+        break;
+      default: break;
+      }
+
+      if (Cond == ICmpInst::ICMP_SLT) {
+        if (PreCondLHS->getType()->isInteger()) {
+          if (RHS != getSCEV(PreCondRHS))
+            return UnknownValue;  // Not a comparison against 'm'.
+
+          if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
+                      != getSCEV(PreCondLHS))
+            return UnknownValue;  // Not a comparison against 'n-1'.
+        }
+        else return UnknownValue;
+      } else if (Cond == ICmpInst::ICMP_ULT)
+        return UnknownValue;
+
+      // cerr << "Computed Loop Trip Count as: " 
+      //      << //  *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
+      return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
+    }
+    else 
+      return UnknownValue;
+  }
+
+  return UnknownValue;
+}
+
+/// getNumIterationsInRange - Return the number of iterations of this loop that
+/// produce values in the specified constant range.  Another way of looking at
+/// this is that it returns the first iteration number where the value is not in
+/// the condition, thus computing the exit count. If the iteration count can't
+/// be computed, an instance of SCEVCouldNotCompute is returned.
+SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
+  if (Range.isFullSet())  // Infinite loop.
+    return new SCEVCouldNotCompute();
+
+  // If the start is a non-zero constant, shift the range to simplify things.
+  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
+    if (!SC->getValue()->isZero()) {
+      std::vector<SCEVHandle> Operands(op_begin(), op_end());
+      Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
+      SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
+      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
+        return ShiftedAddRec->getNumIterationsInRange(
+                           Range.subtract(SC->getValue()->getValue()));
+      // This is strange and shouldn't happen.
+      return new SCEVCouldNotCompute();
+    }
+
+  // The only time we can solve this is when we have all constant indices.
+  // Otherwise, we cannot determine the overflow conditions.
+  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+    if (!isa<SCEVConstant>(getOperand(i)))
+      return new SCEVCouldNotCompute();
+
+
+  // Okay at this point we know that all elements of the chrec are constants and
+  // that the start element is zero.
+
+  // First check to see if the range contains zero.  If not, the first
+  // iteration exits.
+  if (!Range.contains(APInt(getBitWidth(),0))) 
+    return SCEVConstant::get(ConstantInt::get(getType(),0));
+
+  if (isAffine()) {
+    // If this is an affine expression then we have this situation:
+    //   Solve {0,+,A} in Range  ===  Ax in Range
+
+    // We know that zero is in the range.  If A is positive then we know that
+    // the upper value of the range must be the first possible exit value.
+    // If A is negative then the lower of the range is the last possible loop
+    // value.  Also note that we already checked for a full range.
+    APInt One(getBitWidth(),1);
+    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
+    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
+
+    // The exit value should be (End+A)/A.
+    APInt ExitVal = (End + A).sdiv(A);
+    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
+
+    // Evaluate at the exit value.  If we really did fall out of the valid
+    // range, then we computed our trip count, otherwise wrap around or other
+    // things must have happened.
+    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
+    if (Range.contains(Val->getValue()))
+      return new SCEVCouldNotCompute();  // Something strange happened
+
+    // Ensure that the previous value is in the range.  This is a sanity check.
+    assert(Range.contains(
+           EvaluateConstantChrecAtConstant(this, 
+           ConstantInt::get(ExitVal - One))->getValue()) &&
+           "Linear scev computation is off in a bad way!");
+    return SCEVConstant::get(ExitValue);
+  } else if (isQuadratic()) {
+    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
+    // quadratic equation to solve it.  To do this, we must frame our problem in
+    // terms of figuring out when zero is crossed, instead of when
+    // Range.getUpper() is crossed.
+    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
+    NewOps[0] = SCEV::getNegativeSCEV(SCEVConstant::get(Range.getUpper()));
+    SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
+
+    // Next, solve the constructed addrec
+    std::pair<SCEVHandle,SCEVHandle> Roots =
+      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
+    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
+    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
+    if (R1) {
+      // Pick the smallest positive root value.
+      if (ConstantInt *CB =
+          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 
+                                   R1->getValue(), R2->getValue()))) {
+        if (CB->getZExtValue() == false)
+          std::swap(R1, R2);   // R1 is the minimum root now.
+
+        // Make sure the root is not off by one.  The returned iteration should
+        // not be in the range, but the previous one should be.  When solving
+        // for "X*X < 5", for example, we should not return a root of 2.
+        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
+                                                             R1->getValue());
+        if (Range.contains(R1Val->getValue())) {
+          // The next iteration must be out of the range...
+          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
+
+          R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
+          if (!Range.contains(R1Val->getValue()))
+            return SCEVConstant::get(NextVal);
+          return new SCEVCouldNotCompute();  // Something strange happened
+        }
+
+        // If R1 was not in the range, then it is a good return value.  Make
+        // sure that R1-1 WAS in the range though, just in case.
+        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
+        R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
+        if (Range.contains(R1Val->getValue()))
+          return R1;
+        return new SCEVCouldNotCompute();  // Something strange happened
+      }
+    }
+  }
+
+  // Fallback, if this is a general polynomial, figure out the progression
+  // through brute force: evaluate until we find an iteration that fails the
+  // test.  This is likely to be slow, but getting an accurate trip count is
+  // incredibly important, we will be able to simplify the exit test a lot, and
+  // we are almost guaranteed to get a trip count in this case.
+  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
+  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
+  do {
+    ++NumBruteForceEvaluations;
+    SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
+    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
+      return new SCEVCouldNotCompute();
+
+    // Check to see if we found the value!
+    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue()))
+      return SCEVConstant::get(TestVal);
+
+    // Increment to test the next index.
+    TestVal = ConstantInt::get(TestVal->getValue()+1);
+  } while (TestVal != EndVal);
+
+  return new SCEVCouldNotCompute();
+}
+
+
+
+//===----------------------------------------------------------------------===//
+//                   ScalarEvolution Class Implementation
+//===----------------------------------------------------------------------===//
+
+bool ScalarEvolution::runOnFunction(Function &F) {
+  Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
+  return false;
+}
+
+void ScalarEvolution::releaseMemory() {
+  delete (ScalarEvolutionsImpl*)Impl;
+  Impl = 0;
+}
+
+void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
+  AU.setPreservesAll();
+  AU.addRequiredTransitive<LoopInfo>();
+}
+
+SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
+  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
+}
+
+/// hasSCEV - Return true if the SCEV for this value has already been
+/// computed.
+bool ScalarEvolution::hasSCEV(Value *V) const {
+  return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
+}
+
+
+/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
+/// the specified value.
+void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
+  ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
+}
+
+
+SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
+  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
+}
+
+bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
+  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
+}
+
+SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
+  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
+}
+
+void ScalarEvolution::deleteValueFromRecords(Value *V) const {
+  return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V);
+}
+
+static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
+                          const Loop *L) {
+  // Print all inner loops first
+  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
+    PrintLoopInfo(OS, SE, *I);
+
+  cerr << "Loop " << L->getHeader()->getName() << ": ";
+
+  std::vector<BasicBlock*> ExitBlocks;
+  L->getExitBlocks(ExitBlocks);
+  if (ExitBlocks.size() != 1)
+    cerr << "<multiple exits> ";
+
+  if (SE->hasLoopInvariantIterationCount(L)) {
+    cerr << *SE->getIterationCount(L) << " iterations! ";
+  } else {
+    cerr << "Unpredictable iteration count. ";
+  }
+
+  cerr << "\n";
+}
+
+void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
+  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
+  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
+
+  OS << "Classifying expressions for: " << F.getName() << "\n";
+  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
+    if (I->getType()->isInteger()) {
+      OS << *I;
+      OS << "  --> ";
+      SCEVHandle SV = getSCEV(&*I);
+      SV->print(OS);
+      OS << "\t\t";
+
+      if ((*I).getType()->isInteger()) {
+        ConstantRange Bounds = SV->getValueRange();
+        if (!Bounds.isFullSet())
+          OS << "Bounds: " << Bounds << " ";
+      }
+
+      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
+        OS << "Exits: ";
+        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
+        if (isa<SCEVCouldNotCompute>(ExitValue)) {
+          OS << "<<Unknown>>";
+        } else {
+          OS << *ExitValue;
+        }
+      }
+
+
+      OS << "\n";
+    }
+
+  OS << "Determining loop execution counts for: " << F.getName() << "\n";
+  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
+    PrintLoopInfo(OS, this, *I);
+}
+