It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Analysis/ScalarEvolutionExpander.cpp b/lib/Analysis/ScalarEvolutionExpander.cpp
new file mode 100644
index 0000000..3e590d6
--- /dev/null
+++ b/lib/Analysis/ScalarEvolutionExpander.cpp
@@ -0,0 +1,209 @@
+//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of the scalar evolution expander,
+// which is used to generate the code corresponding to a given scalar evolution
+// expression.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/LoopInfo.h"
+using namespace llvm;
+
+/// InsertCastOfTo - Insert a cast of V to the specified type, doing what
+/// we can to share the casts.
+Value *SCEVExpander::InsertCastOfTo(Instruction::CastOps opcode, Value *V, 
+                                    const Type *Ty) {
+  // FIXME: keep track of the cast instruction.
+  if (Constant *C = dyn_cast<Constant>(V))
+    return ConstantExpr::getCast(opcode, C, Ty);
+  
+  if (Argument *A = dyn_cast<Argument>(V)) {
+    // Check to see if there is already a cast!
+    for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
+         UI != E; ++UI) {
+      if ((*UI)->getType() == Ty)
+        if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
+          // If the cast isn't the first instruction of the function, move it.
+          if (BasicBlock::iterator(CI) != 
+              A->getParent()->getEntryBlock().begin()) {
+            CI->moveBefore(A->getParent()->getEntryBlock().begin());
+          }
+          return CI;
+        }
+    }
+    return CastInst::create(opcode, V, Ty, V->getName(), 
+                            A->getParent()->getEntryBlock().begin());
+  }
+    
+  Instruction *I = cast<Instruction>(V);
+  
+  // Check to see if there is already a cast.  If there is, use it.
+  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
+       UI != E; ++UI) {
+    if ((*UI)->getType() == Ty)
+      if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
+        BasicBlock::iterator It = I; ++It;
+        if (isa<InvokeInst>(I))
+          It = cast<InvokeInst>(I)->getNormalDest()->begin();
+        while (isa<PHINode>(It)) ++It;
+        if (It != BasicBlock::iterator(CI)) {
+          // Splice the cast immediately after the operand in question.
+          CI->moveBefore(It);
+        }
+        return CI;
+      }
+  }
+  BasicBlock::iterator IP = I; ++IP;
+  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
+    IP = II->getNormalDest()->begin();
+  while (isa<PHINode>(IP)) ++IP;
+  return CastInst::create(opcode, V, Ty, V->getName(), IP);
+}
+
+/// InsertBinop - Insert the specified binary operator, doing a small amount
+/// of work to avoid inserting an obviously redundant operation.
+Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, Value *LHS,
+                                 Value *RHS, Instruction *&InsertPt) {
+  // Fold a binop with constant operands.
+  if (Constant *CLHS = dyn_cast<Constant>(LHS))
+    if (Constant *CRHS = dyn_cast<Constant>(RHS))
+      return ConstantExpr::get(Opcode, CLHS, CRHS);
+
+  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
+  unsigned ScanLimit = 6;
+  for (BasicBlock::iterator IP = InsertPt, E = InsertPt->getParent()->begin();
+       ScanLimit; --IP, --ScanLimit) {
+    if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(IP))
+      if (BinOp->getOpcode() == Opcode && BinOp->getOperand(0) == LHS &&
+          BinOp->getOperand(1) == RHS) {
+        // If we found the instruction *at* the insert point, insert later
+        // instructions after it.
+        if (BinOp == InsertPt)
+          InsertPt = ++IP;
+        return BinOp;
+      }
+    if (IP == E) break;
+  }
+
+  // If we don't have 
+  return BinaryOperator::create(Opcode, LHS, RHS, "tmp.", InsertPt);
+}
+
+Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
+  int FirstOp = 0;  // Set if we should emit a subtract.
+  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
+    if (SC->getValue()->isAllOnesValue())
+      FirstOp = 1;
+
+  int i = S->getNumOperands()-2;
+  Value *V = expand(S->getOperand(i+1));
+
+  // Emit a bunch of multiply instructions
+  for (; i >= FirstOp; --i)
+    V = InsertBinop(Instruction::Mul, V, expand(S->getOperand(i)),
+                    InsertPt);
+  // -1 * ...  --->  0 - ...
+  if (FirstOp == 1)
+    V = InsertBinop(Instruction::Sub, Constant::getNullValue(V->getType()), V,
+                    InsertPt);
+  return V;
+}
+
+Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
+  const Type *Ty = S->getType();
+  const Loop *L = S->getLoop();
+  // We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
+  assert(Ty->isInteger() && "Cannot expand fp recurrences yet!");
+
+  // {X,+,F} --> X + {0,+,F}
+  if (!isa<SCEVConstant>(S->getStart()) ||
+      !cast<SCEVConstant>(S->getStart())->getValue()->isZero()) {
+    Value *Start = expand(S->getStart());
+    std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
+    NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty);
+    Value *Rest = expand(SCEVAddRecExpr::get(NewOps, L));
+
+    // FIXME: look for an existing add to use.
+    return InsertBinop(Instruction::Add, Rest, Start, InsertPt);
+  }
+
+  // {0,+,1} --> Insert a canonical induction variable into the loop!
+  if (S->getNumOperands() == 2 &&
+      S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) {
+    // Create and insert the PHI node for the induction variable in the
+    // specified loop.
+    BasicBlock *Header = L->getHeader();
+    PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
+    PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
+
+    pred_iterator HPI = pred_begin(Header);
+    assert(HPI != pred_end(Header) && "Loop with zero preds???");
+    if (!L->contains(*HPI)) ++HPI;
+    assert(HPI != pred_end(Header) && L->contains(*HPI) &&
+           "No backedge in loop?");
+
+    // Insert a unit add instruction right before the terminator corresponding
+    // to the back-edge.
+    Constant *One = ConstantInt::get(Ty, 1);
+    Instruction *Add = BinaryOperator::createAdd(PN, One, "indvar.next",
+                                                 (*HPI)->getTerminator());
+
+    pred_iterator PI = pred_begin(Header);
+    if (*PI == L->getLoopPreheader())
+      ++PI;
+    PN->addIncoming(Add, *PI);
+    return PN;
+  }
+
+  // Get the canonical induction variable I for this loop.
+  Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
+
+  // If this is a simple linear addrec, emit it now as a special case.
+  if (S->getNumOperands() == 2) {   // {0,+,F} --> i*F
+    Value *F = expand(S->getOperand(1));
+    
+    // IF the step is by one, just return the inserted IV.
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(F))
+      if (CI->getValue() == 1)
+        return I;
+    
+    // If the insert point is directly inside of the loop, emit the multiply at
+    // the insert point.  Otherwise, L is a loop that is a parent of the insert
+    // point loop.  If we can, move the multiply to the outer most loop that it
+    // is safe to be in.
+    Instruction *MulInsertPt = InsertPt;
+    Loop *InsertPtLoop = LI.getLoopFor(MulInsertPt->getParent());
+    if (InsertPtLoop != L && InsertPtLoop &&
+        L->contains(InsertPtLoop->getHeader())) {
+      while (InsertPtLoop != L) {
+        // If we cannot hoist the multiply out of this loop, don't.
+        if (!InsertPtLoop->isLoopInvariant(F)) break;
+
+        // Otherwise, move the insert point to the preheader of the loop.
+        MulInsertPt = InsertPtLoop->getLoopPreheader()->getTerminator();
+        InsertPtLoop = InsertPtLoop->getParentLoop();
+      }
+    }
+    
+    return InsertBinop(Instruction::Mul, I, F, MulInsertPt);
+  }
+
+  // If this is a chain of recurrences, turn it into a closed form, using the
+  // folders, then expandCodeFor the closed form.  This allows the folders to
+  // simplify the expression without having to build a bunch of special code
+  // into this folder.
+  SCEVHandle IH = SCEVUnknown::get(I);   // Get I as a "symbolic" SCEV.
+
+  SCEVHandle V = S->evaluateAtIteration(IH);
+  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
+
+  return expand(V);
+}