It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/AsmParser/llvmAsmParser.y.cvs b/lib/AsmParser/llvmAsmParser.y.cvs
new file mode 100644
index 0000000..94aeeca
--- /dev/null
+++ b/lib/AsmParser/llvmAsmParser.y.cvs
@@ -0,0 +1,3145 @@
+//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//  This file implements the bison parser for LLVM assembly languages files.
+//
+//===----------------------------------------------------------------------===//
+
+%{
+#include "ParserInternals.h"
+#include "llvm/CallingConv.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
+#include "llvm/Module.h"
+#include "llvm/ValueSymbolTable.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Streams.h"
+#include <algorithm>
+#include <list>
+#include <map>
+#include <utility>
+#ifndef NDEBUG
+#define YYDEBUG 1
+#endif
+
+// The following is a gross hack. In order to rid the libAsmParser library of
+// exceptions, we have to have a way of getting the yyparse function to go into
+// an error situation. So, whenever we want an error to occur, the GenerateError
+// function (see bottom of file) sets TriggerError. Then, at the end of each 
+// production in the grammer we use CHECK_FOR_ERROR which will invoke YYERROR 
+// (a goto) to put YACC in error state. Furthermore, several calls to 
+// GenerateError are made from inside productions and they must simulate the
+// previous exception behavior by exiting the production immediately. We have
+// replaced these with the GEN_ERROR macro which calls GeneratError and then
+// immediately invokes YYERROR. This would be so much cleaner if it was a 
+// recursive descent parser.
+static bool TriggerError = false;
+#define CHECK_FOR_ERROR { if (TriggerError) { TriggerError = false; YYABORT; } }
+#define GEN_ERROR(msg) { GenerateError(msg); YYERROR; }
+
+int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
+int yylex();                       // declaration" of xxx warnings.
+int yyparse();
+
+namespace llvm {
+  std::string CurFilename;
+#if YYDEBUG
+static cl::opt<bool>
+Debug("debug-yacc", cl::desc("Print yacc debug state changes"), 
+      cl::Hidden, cl::init(false));
+#endif
+}
+using namespace llvm;
+
+static Module *ParserResult;
+
+// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
+// relating to upreferences in the input stream.
+//
+//#define DEBUG_UPREFS 1
+#ifdef DEBUG_UPREFS
+#define UR_OUT(X) cerr << X
+#else
+#define UR_OUT(X)
+#endif
+
+#define YYERROR_VERBOSE 1
+
+static GlobalVariable *CurGV;
+
+
+// This contains info used when building the body of a function.  It is
+// destroyed when the function is completed.
+//
+typedef std::vector<Value *> ValueList;           // Numbered defs
+
+static void 
+ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers=0);
+
+static struct PerModuleInfo {
+  Module *CurrentModule;
+  ValueList Values; // Module level numbered definitions
+  ValueList LateResolveValues;
+  std::vector<PATypeHolder>    Types;
+  std::map<ValID, PATypeHolder> LateResolveTypes;
+
+  /// PlaceHolderInfo - When temporary placeholder objects are created, remember
+  /// how they were referenced and on which line of the input they came from so
+  /// that we can resolve them later and print error messages as appropriate.
+  std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
+
+  // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
+  // references to global values.  Global values may be referenced before they
+  // are defined, and if so, the temporary object that they represent is held
+  // here.  This is used for forward references of GlobalValues.
+  //
+  typedef std::map<std::pair<const PointerType *,
+                             ValID>, GlobalValue*> GlobalRefsType;
+  GlobalRefsType GlobalRefs;
+
+  void ModuleDone() {
+    // If we could not resolve some functions at function compilation time
+    // (calls to functions before they are defined), resolve them now...  Types
+    // are resolved when the constant pool has been completely parsed.
+    //
+    ResolveDefinitions(LateResolveValues);
+    if (TriggerError)
+      return;
+
+    // Check to make sure that all global value forward references have been
+    // resolved!
+    //
+    if (!GlobalRefs.empty()) {
+      std::string UndefinedReferences = "Unresolved global references exist:\n";
+
+      for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
+           I != E; ++I) {
+        UndefinedReferences += "  " + I->first.first->getDescription() + " " +
+                               I->first.second.getName() + "\n";
+      }
+      GenerateError(UndefinedReferences);
+      return;
+    }
+
+    Values.clear();         // Clear out function local definitions
+    Types.clear();
+    CurrentModule = 0;
+  }
+
+  // GetForwardRefForGlobal - Check to see if there is a forward reference
+  // for this global.  If so, remove it from the GlobalRefs map and return it.
+  // If not, just return null.
+  GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
+    // Check to see if there is a forward reference to this global variable...
+    // if there is, eliminate it and patch the reference to use the new def'n.
+    GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
+    GlobalValue *Ret = 0;
+    if (I != GlobalRefs.end()) {
+      Ret = I->second;
+      GlobalRefs.erase(I);
+    }
+    return Ret;
+  }
+
+  bool TypeIsUnresolved(PATypeHolder* PATy) {
+    // If it isn't abstract, its resolved
+    const Type* Ty = PATy->get();
+    if (!Ty->isAbstract())
+      return false;
+    // Traverse the type looking for abstract types. If it isn't abstract then
+    // we don't need to traverse that leg of the type. 
+    std::vector<const Type*> WorkList, SeenList;
+    WorkList.push_back(Ty);
+    while (!WorkList.empty()) {
+      const Type* Ty = WorkList.back();
+      SeenList.push_back(Ty);
+      WorkList.pop_back();
+      if (const OpaqueType* OpTy = dyn_cast<OpaqueType>(Ty)) {
+        // Check to see if this is an unresolved type
+        std::map<ValID, PATypeHolder>::iterator I = LateResolveTypes.begin();
+        std::map<ValID, PATypeHolder>::iterator E = LateResolveTypes.end();
+        for ( ; I != E; ++I) {
+          if (I->second.get() == OpTy)
+            return true;
+        }
+      } else if (const SequentialType* SeqTy = dyn_cast<SequentialType>(Ty)) {
+        const Type* TheTy = SeqTy->getElementType();
+        if (TheTy->isAbstract() && TheTy != Ty) {
+          std::vector<const Type*>::iterator I = SeenList.begin(), 
+                                             E = SeenList.end();
+          for ( ; I != E; ++I)
+            if (*I == TheTy)
+              break;
+          if (I == E)
+            WorkList.push_back(TheTy);
+        }
+      } else if (const StructType* StrTy = dyn_cast<StructType>(Ty)) {
+        for (unsigned i = 0; i < StrTy->getNumElements(); ++i) {
+          const Type* TheTy = StrTy->getElementType(i);
+          if (TheTy->isAbstract() && TheTy != Ty) {
+            std::vector<const Type*>::iterator I = SeenList.begin(), 
+                                               E = SeenList.end();
+            for ( ; I != E; ++I)
+              if (*I == TheTy)
+                break;
+            if (I == E)
+              WorkList.push_back(TheTy);
+          }
+        }
+      }
+    }
+    return false;
+  }
+} CurModule;
+
+static struct PerFunctionInfo {
+  Function *CurrentFunction;     // Pointer to current function being created
+
+  ValueList Values; // Keep track of #'d definitions
+  unsigned NextValNum;
+  ValueList LateResolveValues;
+  bool isDeclare;                   // Is this function a forward declararation?
+  GlobalValue::LinkageTypes Linkage; // Linkage for forward declaration.
+  GlobalValue::VisibilityTypes Visibility;
+
+  /// BBForwardRefs - When we see forward references to basic blocks, keep
+  /// track of them here.
+  std::map<ValID, BasicBlock*> BBForwardRefs;
+
+  inline PerFunctionInfo() {
+    CurrentFunction = 0;
+    isDeclare = false;
+    Linkage = GlobalValue::ExternalLinkage;
+    Visibility = GlobalValue::DefaultVisibility;
+  }
+
+  inline void FunctionStart(Function *M) {
+    CurrentFunction = M;
+    NextValNum = 0;
+  }
+
+  void FunctionDone() {
+    // Any forward referenced blocks left?
+    if (!BBForwardRefs.empty()) {
+      GenerateError("Undefined reference to label " +
+                     BBForwardRefs.begin()->second->getName());
+      return;
+    }
+
+    // Resolve all forward references now.
+    ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
+
+    Values.clear();         // Clear out function local definitions
+    BBForwardRefs.clear();
+    CurrentFunction = 0;
+    isDeclare = false;
+    Linkage = GlobalValue::ExternalLinkage;
+    Visibility = GlobalValue::DefaultVisibility;
+  }
+} CurFun;  // Info for the current function...
+
+static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
+
+
+//===----------------------------------------------------------------------===//
+//               Code to handle definitions of all the types
+//===----------------------------------------------------------------------===//
+
+static void InsertValue(Value *V, ValueList &ValueTab = CurFun.Values) {
+  // Things that have names or are void typed don't get slot numbers
+  if (V->hasName() || (V->getType() == Type::VoidTy))
+    return;
+
+  // In the case of function values, we have to allow for the forward reference
+  // of basic blocks, which are included in the numbering. Consequently, we keep
+  // track of the next insertion location with NextValNum. When a BB gets 
+  // inserted, it could change the size of the CurFun.Values vector.
+  if (&ValueTab == &CurFun.Values) {
+    if (ValueTab.size() <= CurFun.NextValNum)
+      ValueTab.resize(CurFun.NextValNum+1);
+    ValueTab[CurFun.NextValNum++] = V;
+    return;
+  } 
+  // For all other lists, its okay to just tack it on the back of the vector.
+  ValueTab.push_back(V);
+}
+
+static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
+  switch (D.Type) {
+  case ValID::LocalID:               // Is it a numbered definition?
+    // Module constants occupy the lowest numbered slots...
+    if (D.Num < CurModule.Types.size())
+      return CurModule.Types[D.Num];
+    break;
+  case ValID::LocalName:                 // Is it a named definition?
+    if (const Type *N = CurModule.CurrentModule->getTypeByName(D.getName())) {
+      D.destroy();  // Free old strdup'd memory...
+      return N;
+    }
+    break;
+  default:
+    GenerateError("Internal parser error: Invalid symbol type reference");
+    return 0;
+  }
+
+  // If we reached here, we referenced either a symbol that we don't know about
+  // or an id number that hasn't been read yet.  We may be referencing something
+  // forward, so just create an entry to be resolved later and get to it...
+  //
+  if (DoNotImprovise) return 0;  // Do we just want a null to be returned?
+
+
+  if (inFunctionScope()) {
+    if (D.Type == ValID::LocalName) {
+      GenerateError("Reference to an undefined type: '" + D.getName() + "'");
+      return 0;
+    } else {
+      GenerateError("Reference to an undefined type: #" + utostr(D.Num));
+      return 0;
+    }
+  }
+
+  std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
+  if (I != CurModule.LateResolveTypes.end())
+    return I->second;
+
+  Type *Typ = OpaqueType::get();
+  CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
+  return Typ;
+ }
+
+// getExistingVal - Look up the value specified by the provided type and
+// the provided ValID.  If the value exists and has already been defined, return
+// it.  Otherwise return null.
+//
+static Value *getExistingVal(const Type *Ty, const ValID &D) {
+  if (isa<FunctionType>(Ty)) {
+    GenerateError("Functions are not values and "
+                   "must be referenced as pointers");
+    return 0;
+  }
+
+  switch (D.Type) {
+  case ValID::LocalID: {                 // Is it a numbered definition?
+    // Check that the number is within bounds.
+    if (D.Num >= CurFun.Values.size()) 
+      return 0;
+    Value *Result = CurFun.Values[D.Num];
+    if (Ty != Result->getType()) {
+      GenerateError("Numbered value (%" + utostr(D.Num) + ") of type '" +
+                    Result->getType()->getDescription() + "' does not match " 
+                    "expected type, '" + Ty->getDescription() + "'");
+      return 0;
+    }
+    return Result;
+  }
+  case ValID::GlobalID: {                 // Is it a numbered definition?
+    if (D.Num >= CurModule.Values.size()) 
+      return 0;
+    Value *Result = CurModule.Values[D.Num];
+    if (Ty != Result->getType()) {
+      GenerateError("Numbered value (@" + utostr(D.Num) + ") of type '" +
+                    Result->getType()->getDescription() + "' does not match " 
+                    "expected type, '" + Ty->getDescription() + "'");
+      return 0;
+    }
+    return Result;
+  }
+    
+  case ValID::LocalName: {                // Is it a named definition?
+    if (!inFunctionScope()) 
+      return 0;
+    ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable();
+    Value *N = SymTab.lookup(D.getName());
+    if (N == 0) 
+      return 0;
+    if (N->getType() != Ty)
+      return 0;
+    
+    D.destroy();  // Free old strdup'd memory...
+    return N;
+  }
+  case ValID::GlobalName: {                // Is it a named definition?
+    ValueSymbolTable &SymTab = CurModule.CurrentModule->getValueSymbolTable();
+    Value *N = SymTab.lookup(D.getName());
+    if (N == 0) 
+      return 0;
+    if (N->getType() != Ty)
+      return 0;
+
+    D.destroy();  // Free old strdup'd memory...
+    return N;
+  }
+
+  // Check to make sure that "Ty" is an integral type, and that our
+  // value will fit into the specified type...
+  case ValID::ConstSIntVal:    // Is it a constant pool reference??
+    if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
+      GenerateError("Signed integral constant '" +
+                     itostr(D.ConstPool64) + "' is invalid for type '" +
+                     Ty->getDescription() + "'");
+      return 0;
+    }
+    return ConstantInt::get(Ty, D.ConstPool64, true);
+
+  case ValID::ConstUIntVal:     // Is it an unsigned const pool reference?
+    if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) {
+      if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
+        GenerateError("Integral constant '" + utostr(D.UConstPool64) +
+                       "' is invalid or out of range");
+        return 0;
+      } else {     // This is really a signed reference.  Transmogrify.
+        return ConstantInt::get(Ty, D.ConstPool64, true);
+      }
+    } else {
+      return ConstantInt::get(Ty, D.UConstPool64);
+    }
+
+  case ValID::ConstFPVal:        // Is it a floating point const pool reference?
+    if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP)) {
+      GenerateError("FP constant invalid for type");
+      return 0;
+    }
+    return ConstantFP::get(Ty, D.ConstPoolFP);
+
+  case ValID::ConstNullVal:      // Is it a null value?
+    if (!isa<PointerType>(Ty)) {
+      GenerateError("Cannot create a a non pointer null");
+      return 0;
+    }
+    return ConstantPointerNull::get(cast<PointerType>(Ty));
+
+  case ValID::ConstUndefVal:      // Is it an undef value?
+    return UndefValue::get(Ty);
+
+  case ValID::ConstZeroVal:      // Is it a zero value?
+    return Constant::getNullValue(Ty);
+    
+  case ValID::ConstantVal:       // Fully resolved constant?
+    if (D.ConstantValue->getType() != Ty) {
+      GenerateError("Constant expression type different from required type");
+      return 0;
+    }
+    return D.ConstantValue;
+
+  case ValID::InlineAsmVal: {    // Inline asm expression
+    const PointerType *PTy = dyn_cast<PointerType>(Ty);
+    const FunctionType *FTy =
+      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
+    if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints)) {
+      GenerateError("Invalid type for asm constraint string");
+      return 0;
+    }
+    InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
+                                   D.IAD->HasSideEffects);
+    D.destroy();   // Free InlineAsmDescriptor.
+    return IA;
+  }
+  default:
+    assert(0 && "Unhandled case!");
+    return 0;
+  }   // End of switch
+
+  assert(0 && "Unhandled case!");
+  return 0;
+}
+
+// getVal - This function is identical to getExistingVal, except that if a
+// value is not already defined, it "improvises" by creating a placeholder var
+// that looks and acts just like the requested variable.  When the value is
+// defined later, all uses of the placeholder variable are replaced with the
+// real thing.
+//
+static Value *getVal(const Type *Ty, const ValID &ID) {
+  if (Ty == Type::LabelTy) {
+    GenerateError("Cannot use a basic block here");
+    return 0;
+  }
+
+  // See if the value has already been defined.
+  Value *V = getExistingVal(Ty, ID);
+  if (V) return V;
+  if (TriggerError) return 0;
+
+  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty)) {
+    GenerateError("Invalid use of a composite type");
+    return 0;
+  }
+
+  // If we reached here, we referenced either a symbol that we don't know about
+  // or an id number that hasn't been read yet.  We may be referencing something
+  // forward, so just create an entry to be resolved later and get to it...
+  //
+  switch (ID.Type) {
+  case ValID::GlobalName:
+  case ValID::GlobalID: {
+   const PointerType *PTy = dyn_cast<PointerType>(Ty);
+   if (!PTy) {
+     GenerateError("Invalid type for reference to global" );
+     return 0;
+   }
+   const Type* ElTy = PTy->getElementType();
+   if (const FunctionType *FTy = dyn_cast<FunctionType>(ElTy))
+     V = new Function(FTy, GlobalValue::ExternalLinkage);
+   else
+     V = new GlobalVariable(ElTy, false, GlobalValue::ExternalLinkage);
+   break;
+  }
+  default:
+   V = new Argument(Ty);
+  }
+  
+  // Remember where this forward reference came from.  FIXME, shouldn't we try
+  // to recycle these things??
+  CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID,
+                                                               llvmAsmlineno)));
+
+  if (inFunctionScope())
+    InsertValue(V, CurFun.LateResolveValues);
+  else
+    InsertValue(V, CurModule.LateResolveValues);
+  return V;
+}
+
+/// defineBBVal - This is a definition of a new basic block with the specified
+/// identifier which must be the same as CurFun.NextValNum, if its numeric.
+static BasicBlock *defineBBVal(const ValID &ID) {
+  assert(inFunctionScope() && "Can't get basic block at global scope!");
+
+  BasicBlock *BB = 0;
+
+  // First, see if this was forward referenced
+
+  std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
+  if (BBI != CurFun.BBForwardRefs.end()) {
+    BB = BBI->second;
+    // The forward declaration could have been inserted anywhere in the
+    // function: insert it into the correct place now.
+    CurFun.CurrentFunction->getBasicBlockList().remove(BB);
+    CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
+
+    // We're about to erase the entry, save the key so we can clean it up.
+    ValID Tmp = BBI->first;
+
+    // Erase the forward ref from the map as its no longer "forward"
+    CurFun.BBForwardRefs.erase(ID);
+
+    // The key has been removed from the map but so we don't want to leave 
+    // strdup'd memory around so destroy it too.
+    Tmp.destroy();
+
+    // If its a numbered definition, bump the number and set the BB value.
+    if (ID.Type == ValID::LocalID) {
+      assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
+      InsertValue(BB);
+    }
+
+    ID.destroy();
+    return BB;
+  } 
+  
+  // We haven't seen this BB before and its first mention is a definition. 
+  // Just create it and return it.
+  std::string Name (ID.Type == ValID::LocalName ? ID.getName() : "");
+  BB = new BasicBlock(Name, CurFun.CurrentFunction);
+  if (ID.Type == ValID::LocalID) {
+    assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
+    InsertValue(BB);
+  }
+
+  ID.destroy(); // Free strdup'd memory
+  return BB;
+}
+
+/// getBBVal - get an existing BB value or create a forward reference for it.
+/// 
+static BasicBlock *getBBVal(const ValID &ID) {
+  assert(inFunctionScope() && "Can't get basic block at global scope!");
+
+  BasicBlock *BB =  0;
+
+  std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
+  if (BBI != CurFun.BBForwardRefs.end()) {
+    BB = BBI->second;
+  } if (ID.Type == ValID::LocalName) {
+    std::string Name = ID.getName();
+    Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name);
+    if (N)
+      if (N->getType()->getTypeID() == Type::LabelTyID)
+        BB = cast<BasicBlock>(N);
+      else
+        GenerateError("Reference to label '" + Name + "' is actually of type '"+
+          N->getType()->getDescription() + "'");
+  } else if (ID.Type == ValID::LocalID) {
+    if (ID.Num < CurFun.NextValNum && ID.Num < CurFun.Values.size()) {
+      if (CurFun.Values[ID.Num]->getType()->getTypeID() == Type::LabelTyID)
+        BB = cast<BasicBlock>(CurFun.Values[ID.Num]);
+      else
+        GenerateError("Reference to label '%" + utostr(ID.Num) + 
+          "' is actually of type '"+ 
+          CurFun.Values[ID.Num]->getType()->getDescription() + "'");
+    }
+  } else {
+    GenerateError("Illegal label reference " + ID.getName());
+    return 0;
+  }
+
+  // If its already been defined, return it now.
+  if (BB) {
+    ID.destroy(); // Free strdup'd memory.
+    return BB;
+  }
+
+  // Otherwise, this block has not been seen before, create it.
+  std::string Name;
+  if (ID.Type == ValID::LocalName)
+    Name = ID.getName();
+  BB = new BasicBlock(Name, CurFun.CurrentFunction);
+
+  // Insert it in the forward refs map.
+  CurFun.BBForwardRefs[ID] = BB;
+
+  return BB;
+}
+
+
+//===----------------------------------------------------------------------===//
+//              Code to handle forward references in instructions
+//===----------------------------------------------------------------------===//
+//
+// This code handles the late binding needed with statements that reference
+// values not defined yet... for example, a forward branch, or the PHI node for
+// a loop body.
+//
+// This keeps a table (CurFun.LateResolveValues) of all such forward references
+// and back patchs after we are done.
+//
+
+// ResolveDefinitions - If we could not resolve some defs at parsing
+// time (forward branches, phi functions for loops, etc...) resolve the
+// defs now...
+//
+static void 
+ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers) {
+  // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
+  while (!LateResolvers.empty()) {
+    Value *V = LateResolvers.back();
+    LateResolvers.pop_back();
+
+    std::map<Value*, std::pair<ValID, int> >::iterator PHI =
+      CurModule.PlaceHolderInfo.find(V);
+    assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!");
+
+    ValID &DID = PHI->second.first;
+
+    Value *TheRealValue = getExistingVal(V->getType(), DID);
+    if (TriggerError)
+      return;
+    if (TheRealValue) {
+      V->replaceAllUsesWith(TheRealValue);
+      delete V;
+      CurModule.PlaceHolderInfo.erase(PHI);
+    } else if (FutureLateResolvers) {
+      // Functions have their unresolved items forwarded to the module late
+      // resolver table
+      InsertValue(V, *FutureLateResolvers);
+    } else {
+      if (DID.Type == ValID::LocalName || DID.Type == ValID::GlobalName) {
+        GenerateError("Reference to an invalid definition: '" +DID.getName()+
+                       "' of type '" + V->getType()->getDescription() + "'",
+                       PHI->second.second);
+        return;
+      } else {
+        GenerateError("Reference to an invalid definition: #" +
+                       itostr(DID.Num) + " of type '" +
+                       V->getType()->getDescription() + "'",
+                       PHI->second.second);
+        return;
+      }
+    }
+  }
+  LateResolvers.clear();
+}
+
+// ResolveTypeTo - A brand new type was just declared.  This means that (if
+// name is not null) things referencing Name can be resolved.  Otherwise, things
+// refering to the number can be resolved.  Do this now.
+//
+static void ResolveTypeTo(std::string *Name, const Type *ToTy) {
+  ValID D;
+  if (Name)
+    D = ValID::createLocalName(*Name);
+  else      
+    D = ValID::createLocalID(CurModule.Types.size());
+
+  std::map<ValID, PATypeHolder>::iterator I =
+    CurModule.LateResolveTypes.find(D);
+  if (I != CurModule.LateResolveTypes.end()) {
+    ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
+    CurModule.LateResolveTypes.erase(I);
+  }
+}
+
+// setValueName - Set the specified value to the name given.  The name may be
+// null potentially, in which case this is a noop.  The string passed in is
+// assumed to be a malloc'd string buffer, and is free'd by this function.
+//
+static void setValueName(Value *V, std::string *NameStr) {
+  if (!NameStr) return;
+  std::string Name(*NameStr);      // Copy string
+  delete NameStr;                  // Free old string
+
+  if (V->getType() == Type::VoidTy) {
+    GenerateError("Can't assign name '" + Name+"' to value with void type");
+    return;
+  }
+
+  assert(inFunctionScope() && "Must be in function scope!");
+  ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable();
+  if (ST.lookup(Name)) {
+    GenerateError("Redefinition of value '" + Name + "' of type '" +
+                   V->getType()->getDescription() + "'");
+    return;
+  }
+
+  // Set the name.
+  V->setName(Name);
+}
+
+/// ParseGlobalVariable - Handle parsing of a global.  If Initializer is null,
+/// this is a declaration, otherwise it is a definition.
+static GlobalVariable *
+ParseGlobalVariable(std::string *NameStr,
+                    GlobalValue::LinkageTypes Linkage,
+                    GlobalValue::VisibilityTypes Visibility,
+                    bool isConstantGlobal, const Type *Ty,
+                    Constant *Initializer, bool IsThreadLocal) {
+  if (isa<FunctionType>(Ty)) {
+    GenerateError("Cannot declare global vars of function type");
+    return 0;
+  }
+
+  const PointerType *PTy = PointerType::get(Ty);
+
+  std::string Name;
+  if (NameStr) {
+    Name = *NameStr;      // Copy string
+    delete NameStr;       // Free old string
+  }
+
+  // See if this global value was forward referenced.  If so, recycle the
+  // object.
+  ValID ID;
+  if (!Name.empty()) {
+    ID = ValID::createGlobalName(Name);
+  } else {
+    ID = ValID::createGlobalID(CurModule.Values.size());
+  }
+
+  if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
+    // Move the global to the end of the list, from whereever it was
+    // previously inserted.
+    GlobalVariable *GV = cast<GlobalVariable>(FWGV);
+    CurModule.CurrentModule->getGlobalList().remove(GV);
+    CurModule.CurrentModule->getGlobalList().push_back(GV);
+    GV->setInitializer(Initializer);
+    GV->setLinkage(Linkage);
+    GV->setVisibility(Visibility);
+    GV->setConstant(isConstantGlobal);
+    GV->setThreadLocal(IsThreadLocal);
+    InsertValue(GV, CurModule.Values);
+    return GV;
+  }
+
+  // If this global has a name
+  if (!Name.empty()) {
+    // if the global we're parsing has an initializer (is a definition) and
+    // has external linkage.
+    if (Initializer && Linkage != GlobalValue::InternalLinkage)
+      // If there is already a global with external linkage with this name
+      if (CurModule.CurrentModule->getGlobalVariable(Name, false)) {
+        // If we allow this GVar to get created, it will be renamed in the
+        // symbol table because it conflicts with an existing GVar. We can't
+        // allow redefinition of GVars whose linking indicates that their name
+        // must stay the same. Issue the error.
+        GenerateError("Redefinition of global variable named '" + Name +
+                       "' of type '" + Ty->getDescription() + "'");
+        return 0;
+      }
+  }
+
+  // Otherwise there is no existing GV to use, create one now.
+  GlobalVariable *GV =
+    new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
+                       CurModule.CurrentModule, IsThreadLocal);
+  GV->setVisibility(Visibility);
+  InsertValue(GV, CurModule.Values);
+  return GV;
+}
+
+// setTypeName - Set the specified type to the name given.  The name may be
+// null potentially, in which case this is a noop.  The string passed in is
+// assumed to be a malloc'd string buffer, and is freed by this function.
+//
+// This function returns true if the type has already been defined, but is
+// allowed to be redefined in the specified context.  If the name is a new name
+// for the type plane, it is inserted and false is returned.
+static bool setTypeName(const Type *T, std::string *NameStr) {
+  assert(!inFunctionScope() && "Can't give types function-local names!");
+  if (NameStr == 0) return false;
+ 
+  std::string Name(*NameStr);      // Copy string
+  delete NameStr;                  // Free old string
+
+  // We don't allow assigning names to void type
+  if (T == Type::VoidTy) {
+    GenerateError("Can't assign name '" + Name + "' to the void type");
+    return false;
+  }
+
+  // Set the type name, checking for conflicts as we do so.
+  bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
+
+  if (AlreadyExists) {   // Inserting a name that is already defined???
+    const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
+    assert(Existing && "Conflict but no matching type?!");
+
+    // There is only one case where this is allowed: when we are refining an
+    // opaque type.  In this case, Existing will be an opaque type.
+    if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
+      // We ARE replacing an opaque type!
+      const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
+      return true;
+    }
+
+    // Otherwise, this is an attempt to redefine a type. That's okay if
+    // the redefinition is identical to the original. This will be so if
+    // Existing and T point to the same Type object. In this one case we
+    // allow the equivalent redefinition.
+    if (Existing == T) return true;  // Yes, it's equal.
+
+    // Any other kind of (non-equivalent) redefinition is an error.
+    GenerateError("Redefinition of type named '" + Name + "' of type '" +
+                   T->getDescription() + "'");
+  }
+
+  return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Code for handling upreferences in type names...
+//
+
+// TypeContains - Returns true if Ty directly contains E in it.
+//
+static bool TypeContains(const Type *Ty, const Type *E) {
+  return std::find(Ty->subtype_begin(), Ty->subtype_end(),
+                   E) != Ty->subtype_end();
+}
+
+namespace {
+  struct UpRefRecord {
+    // NestingLevel - The number of nesting levels that need to be popped before
+    // this type is resolved.
+    unsigned NestingLevel;
+
+    // LastContainedTy - This is the type at the current binding level for the
+    // type.  Every time we reduce the nesting level, this gets updated.
+    const Type *LastContainedTy;
+
+    // UpRefTy - This is the actual opaque type that the upreference is
+    // represented with.
+    OpaqueType *UpRefTy;
+
+    UpRefRecord(unsigned NL, OpaqueType *URTy)
+      : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
+  };
+}
+
+// UpRefs - A list of the outstanding upreferences that need to be resolved.
+static std::vector<UpRefRecord> UpRefs;
+
+/// HandleUpRefs - Every time we finish a new layer of types, this function is
+/// called.  It loops through the UpRefs vector, which is a list of the
+/// currently active types.  For each type, if the up reference is contained in
+/// the newly completed type, we decrement the level count.  When the level
+/// count reaches zero, the upreferenced type is the type that is passed in:
+/// thus we can complete the cycle.
+///
+static PATypeHolder HandleUpRefs(const Type *ty) {
+  // If Ty isn't abstract, or if there are no up-references in it, then there is
+  // nothing to resolve here.
+  if (!ty->isAbstract() || UpRefs.empty()) return ty;
+  
+  PATypeHolder Ty(ty);
+  UR_OUT("Type '" << Ty->getDescription() <<
+         "' newly formed.  Resolving upreferences.\n" <<
+         UpRefs.size() << " upreferences active!\n");
+
+  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
+  // to zero), we resolve them all together before we resolve them to Ty.  At
+  // the end of the loop, if there is anything to resolve to Ty, it will be in
+  // this variable.
+  OpaqueType *TypeToResolve = 0;
+
+  for (unsigned i = 0; i != UpRefs.size(); ++i) {
+    UR_OUT("  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
+           << UpRefs[i].second->getDescription() << ") = "
+           << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
+    if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
+      // Decrement level of upreference
+      unsigned Level = --UpRefs[i].NestingLevel;
+      UpRefs[i].LastContainedTy = Ty;
+      UR_OUT("  Uplevel Ref Level = " << Level << "\n");
+      if (Level == 0) {                     // Upreference should be resolved!
+        if (!TypeToResolve) {
+          TypeToResolve = UpRefs[i].UpRefTy;
+        } else {
+          UR_OUT("  * Resolving upreference for "
+                 << UpRefs[i].second->getDescription() << "\n";
+                 std::string OldName = UpRefs[i].UpRefTy->getDescription());
+          UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
+          UR_OUT("  * Type '" << OldName << "' refined upreference to: "
+                 << (const void*)Ty << ", " << Ty->getDescription() << "\n");
+        }
+        UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list...
+        --i;                                // Do not skip the next element...
+      }
+    }
+  }
+
+  if (TypeToResolve) {
+    UR_OUT("  * Resolving upreference for "
+           << UpRefs[i].second->getDescription() << "\n";
+           std::string OldName = TypeToResolve->getDescription());
+    TypeToResolve->refineAbstractTypeTo(Ty);
+  }
+
+  return Ty;
+}
+
+//===----------------------------------------------------------------------===//
+//            RunVMAsmParser - Define an interface to this parser
+//===----------------------------------------------------------------------===//
+//
+static Module* RunParser(Module * M);
+
+Module *llvm::RunVMAsmParser(const std::string &Filename, FILE *F) {
+  set_scan_file(F);
+
+  CurFilename = Filename;
+  return RunParser(new Module(CurFilename));
+}
+
+Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) {
+  set_scan_string(AsmString);
+
+  CurFilename = "from_memory";
+  if (M == NULL) {
+    return RunParser(new Module (CurFilename));
+  } else {
+    return RunParser(M);
+  }
+}
+
+%}
+
+%union {
+  llvm::Module                           *ModuleVal;
+  llvm::Function                         *FunctionVal;
+  llvm::BasicBlock                       *BasicBlockVal;
+  llvm::TerminatorInst                   *TermInstVal;
+  llvm::Instruction                      *InstVal;
+  llvm::Constant                         *ConstVal;
+
+  const llvm::Type                       *PrimType;
+  std::list<llvm::PATypeHolder>          *TypeList;
+  llvm::PATypeHolder                     *TypeVal;
+  llvm::Value                            *ValueVal;
+  std::vector<llvm::Value*>              *ValueList;
+  llvm::ArgListType                      *ArgList;
+  llvm::TypeWithAttrs                     TypeWithAttrs;
+  llvm::TypeWithAttrsList                *TypeWithAttrsList;
+  llvm::ValueRefList                     *ValueRefList;
+
+  // Represent the RHS of PHI node
+  std::list<std::pair<llvm::Value*,
+                      llvm::BasicBlock*> > *PHIList;
+  std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
+  std::vector<llvm::Constant*>           *ConstVector;
+
+  llvm::GlobalValue::LinkageTypes         Linkage;
+  llvm::GlobalValue::VisibilityTypes      Visibility;
+  uint16_t                          ParamAttrs;
+  llvm::APInt                       *APIntVal;
+  int64_t                           SInt64Val;
+  uint64_t                          UInt64Val;
+  int                               SIntVal;
+  unsigned                          UIntVal;
+  double                            FPVal;
+  bool                              BoolVal;
+
+  std::string                      *StrVal;   // This memory must be deleted
+  llvm::ValID                       ValIDVal;
+
+  llvm::Instruction::BinaryOps      BinaryOpVal;
+  llvm::Instruction::TermOps        TermOpVal;
+  llvm::Instruction::MemoryOps      MemOpVal;
+  llvm::Instruction::CastOps        CastOpVal;
+  llvm::Instruction::OtherOps       OtherOpVal;
+  llvm::ICmpInst::Predicate         IPredicate;
+  llvm::FCmpInst::Predicate         FPredicate;
+}
+
+%type <ModuleVal>     Module 
+%type <FunctionVal>   Function FunctionProto FunctionHeader BasicBlockList
+%type <BasicBlockVal> BasicBlock InstructionList
+%type <TermInstVal>   BBTerminatorInst
+%type <InstVal>       Inst InstVal MemoryInst
+%type <ConstVal>      ConstVal ConstExpr AliaseeRef
+%type <ConstVector>   ConstVector
+%type <ArgList>       ArgList ArgListH
+%type <PHIList>       PHIList
+%type <ValueRefList>  ValueRefList      // For call param lists & GEP indices
+%type <ValueList>     IndexList         // For GEP indices
+%type <TypeList>      TypeListI 
+%type <TypeWithAttrsList> ArgTypeList ArgTypeListI
+%type <TypeWithAttrs> ArgType
+%type <JumpTable>     JumpTable
+%type <BoolVal>       GlobalType                  // GLOBAL or CONSTANT?
+%type <BoolVal>       ThreadLocal                 // 'thread_local' or not
+%type <BoolVal>       OptVolatile                 // 'volatile' or not
+%type <BoolVal>       OptTailCall                 // TAIL CALL or plain CALL.
+%type <BoolVal>       OptSideEffect               // 'sideeffect' or not.
+%type <Linkage>       GVInternalLinkage GVExternalLinkage
+%type <Linkage>       FunctionDefineLinkage FunctionDeclareLinkage
+%type <Linkage>       AliasLinkage
+%type <Visibility>    GVVisibilityStyle
+
+// ValueRef - Unresolved reference to a definition or BB
+%type <ValIDVal>      ValueRef ConstValueRef SymbolicValueRef
+%type <ValueVal>      ResolvedVal            // <type> <valref> pair
+// Tokens and types for handling constant integer values
+//
+// ESINT64VAL - A negative number within long long range
+%token <SInt64Val> ESINT64VAL
+
+// EUINT64VAL - A positive number within uns. long long range
+%token <UInt64Val> EUINT64VAL
+
+// ESAPINTVAL - A negative number with arbitrary precision 
+%token <APIntVal>  ESAPINTVAL
+
+// EUAPINTVAL - A positive number with arbitrary precision 
+%token <APIntVal>  EUAPINTVAL
+
+%token  <UIntVal>   LOCALVAL_ID GLOBALVAL_ID  // %123 @123
+%token  <FPVal>     FPVAL     // Float or Double constant
+
+// Built in types...
+%type  <TypeVal> Types ResultTypes
+%type  <PrimType> IntType FPType PrimType           // Classifications
+%token <PrimType> VOID INTTYPE 
+%token <PrimType> FLOAT DOUBLE LABEL
+%token TYPE
+
+
+%token<StrVal> LOCALVAR GLOBALVAR LABELSTR 
+%token<StrVal> STRINGCONSTANT ATSTRINGCONSTANT PCTSTRINGCONSTANT
+%type <StrVal> LocalName OptLocalName OptLocalAssign
+%type <StrVal> GlobalName OptGlobalAssign GlobalAssign
+%type <StrVal> OptSection SectionString
+
+%type <UIntVal> OptAlign OptCAlign
+
+%token ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
+%token DECLARE DEFINE GLOBAL CONSTANT SECTION ALIAS VOLATILE THREAD_LOCAL
+%token TO DOTDOTDOT NULL_TOK UNDEF INTERNAL LINKONCE WEAK APPENDING
+%token DLLIMPORT DLLEXPORT EXTERN_WEAK
+%token OPAQUE EXTERNAL TARGET TRIPLE ALIGN
+%token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
+%token CC_TOK CCC_TOK FASTCC_TOK COLDCC_TOK X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
+%token DATALAYOUT
+%type <UIntVal> OptCallingConv
+%type <ParamAttrs> OptParamAttrs ParamAttr 
+%type <ParamAttrs> OptFuncAttrs  FuncAttr
+
+// Basic Block Terminating Operators
+%token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE
+
+// Binary Operators
+%type  <BinaryOpVal> ArithmeticOps LogicalOps // Binops Subcatagories
+%token <BinaryOpVal> ADD SUB MUL UDIV SDIV FDIV UREM SREM FREM AND OR XOR
+%token <BinaryOpVal> SHL LSHR ASHR
+
+%token <OtherOpVal> ICMP FCMP
+%type  <IPredicate> IPredicates
+%type  <FPredicate> FPredicates
+%token  EQ NE SLT SGT SLE SGE ULT UGT ULE UGE 
+%token  OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE
+
+// Memory Instructions
+%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
+
+// Cast Operators
+%type <CastOpVal> CastOps
+%token <CastOpVal> TRUNC ZEXT SEXT FPTRUNC FPEXT BITCAST
+%token <CastOpVal> UITOFP SITOFP FPTOUI FPTOSI INTTOPTR PTRTOINT
+
+// Other Operators
+%token <OtherOpVal> PHI_TOK SELECT VAARG
+%token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
+
+// Function Attributes
+%token NORETURN INREG SRET NOUNWIND NOALIAS
+
+// Visibility Styles
+%token DEFAULT HIDDEN PROTECTED
+
+%start Module
+%%
+
+
+// Operations that are notably excluded from this list include:
+// RET, BR, & SWITCH because they end basic blocks and are treated specially.
+//
+ArithmeticOps: ADD | SUB | MUL | UDIV | SDIV | FDIV | UREM | SREM | FREM;
+LogicalOps   : SHL | LSHR | ASHR | AND | OR | XOR;
+CastOps      : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | BITCAST | 
+               UITOFP | SITOFP | FPTOUI | FPTOSI | INTTOPTR | PTRTOINT;
+
+IPredicates  
+  : EQ   { $$ = ICmpInst::ICMP_EQ; }  | NE   { $$ = ICmpInst::ICMP_NE; }
+  | SLT  { $$ = ICmpInst::ICMP_SLT; } | SGT  { $$ = ICmpInst::ICMP_SGT; }
+  | SLE  { $$ = ICmpInst::ICMP_SLE; } | SGE  { $$ = ICmpInst::ICMP_SGE; }
+  | ULT  { $$ = ICmpInst::ICMP_ULT; } | UGT  { $$ = ICmpInst::ICMP_UGT; }
+  | ULE  { $$ = ICmpInst::ICMP_ULE; } | UGE  { $$ = ICmpInst::ICMP_UGE; } 
+  ;
+
+FPredicates  
+  : OEQ  { $$ = FCmpInst::FCMP_OEQ; } | ONE  { $$ = FCmpInst::FCMP_ONE; }
+  | OLT  { $$ = FCmpInst::FCMP_OLT; } | OGT  { $$ = FCmpInst::FCMP_OGT; }
+  | OLE  { $$ = FCmpInst::FCMP_OLE; } | OGE  { $$ = FCmpInst::FCMP_OGE; }
+  | ORD  { $$ = FCmpInst::FCMP_ORD; } | UNO  { $$ = FCmpInst::FCMP_UNO; }
+  | UEQ  { $$ = FCmpInst::FCMP_UEQ; } | UNE  { $$ = FCmpInst::FCMP_UNE; }
+  | ULT  { $$ = FCmpInst::FCMP_ULT; } | UGT  { $$ = FCmpInst::FCMP_UGT; }
+  | ULE  { $$ = FCmpInst::FCMP_ULE; } | UGE  { $$ = FCmpInst::FCMP_UGE; }
+  | TRUETOK { $$ = FCmpInst::FCMP_TRUE; }
+  | FALSETOK { $$ = FCmpInst::FCMP_FALSE; }
+  ;
+
+// These are some types that allow classification if we only want a particular 
+// thing... for example, only a signed, unsigned, or integral type.
+IntType :  INTTYPE;
+FPType   : FLOAT | DOUBLE;
+
+LocalName : LOCALVAR | STRINGCONSTANT | PCTSTRINGCONSTANT ;
+OptLocalName : LocalName | /*empty*/ { $$ = 0; };
+
+/// OptLocalAssign - Value producing statements have an optional assignment
+/// component.
+OptLocalAssign : LocalName '=' {
+    $$ = $1;
+    CHECK_FOR_ERROR
+  }
+  | /*empty*/ {
+    $$ = 0;
+    CHECK_FOR_ERROR
+  };
+
+GlobalName : GLOBALVAR | ATSTRINGCONSTANT ;
+
+OptGlobalAssign : GlobalAssign
+  | /*empty*/ {
+    $$ = 0;
+    CHECK_FOR_ERROR
+  };
+
+GlobalAssign : GlobalName '=' {
+    $$ = $1;
+    CHECK_FOR_ERROR
+  };
+
+GVInternalLinkage 
+  : INTERNAL    { $$ = GlobalValue::InternalLinkage; } 
+  | WEAK        { $$ = GlobalValue::WeakLinkage; } 
+  | LINKONCE    { $$ = GlobalValue::LinkOnceLinkage; }
+  | APPENDING   { $$ = GlobalValue::AppendingLinkage; }
+  | DLLEXPORT   { $$ = GlobalValue::DLLExportLinkage; } 
+  ;
+
+GVExternalLinkage
+  : DLLIMPORT   { $$ = GlobalValue::DLLImportLinkage; }
+  | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
+  | EXTERNAL    { $$ = GlobalValue::ExternalLinkage; }
+  ;
+
+GVVisibilityStyle
+  : /*empty*/ { $$ = GlobalValue::DefaultVisibility;   }
+  | DEFAULT   { $$ = GlobalValue::DefaultVisibility;   }
+  | HIDDEN    { $$ = GlobalValue::HiddenVisibility;    }
+  | PROTECTED { $$ = GlobalValue::ProtectedVisibility; }
+  ;
+
+FunctionDeclareLinkage
+  : /*empty*/   { $$ = GlobalValue::ExternalLinkage; }
+  | DLLIMPORT   { $$ = GlobalValue::DLLImportLinkage; } 
+  | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
+  ;
+  
+FunctionDefineLinkage
+  : /*empty*/   { $$ = GlobalValue::ExternalLinkage; }
+  | INTERNAL    { $$ = GlobalValue::InternalLinkage; }
+  | LINKONCE    { $$ = GlobalValue::LinkOnceLinkage; }
+  | WEAK        { $$ = GlobalValue::WeakLinkage; }
+  | DLLEXPORT   { $$ = GlobalValue::DLLExportLinkage; } 
+  ; 
+
+AliasLinkage
+  : /*empty*/   { $$ = GlobalValue::ExternalLinkage; }
+  | WEAK        { $$ = GlobalValue::WeakLinkage; }
+  | INTERNAL    { $$ = GlobalValue::InternalLinkage; }
+  ;
+
+OptCallingConv : /*empty*/          { $$ = CallingConv::C; } |
+                 CCC_TOK            { $$ = CallingConv::C; } |
+                 FASTCC_TOK         { $$ = CallingConv::Fast; } |
+                 COLDCC_TOK         { $$ = CallingConv::Cold; } |
+                 X86_STDCALLCC_TOK  { $$ = CallingConv::X86_StdCall; } |
+                 X86_FASTCALLCC_TOK { $$ = CallingConv::X86_FastCall; } |
+                 CC_TOK EUINT64VAL  {
+                   if ((unsigned)$2 != $2)
+                     GEN_ERROR("Calling conv too large");
+                   $$ = $2;
+                  CHECK_FOR_ERROR
+                 };
+
+ParamAttr     : ZEXT    { $$ = ParamAttr::ZExt;      }
+              | SEXT    { $$ = ParamAttr::SExt;      }
+              | INREG   { $$ = ParamAttr::InReg;     }
+              | SRET    { $$ = ParamAttr::StructRet; }
+              | NOALIAS { $$ = ParamAttr::NoAlias;   }
+              ;
+
+OptParamAttrs : /* empty */  { $$ = ParamAttr::None; }
+              | OptParamAttrs ParamAttr {
+                $$ = $1 | $2;
+              }
+              ;
+
+FuncAttr      : NORETURN { $$ = ParamAttr::NoReturn; }
+              | NOUNWIND { $$ = ParamAttr::NoUnwind; }
+              | ParamAttr
+              ;
+
+OptFuncAttrs  : /* empty */ { $$ = ParamAttr::None; }
+              | OptFuncAttrs FuncAttr {
+                $$ = $1 | $2;
+              }
+              ;
+
+// OptAlign/OptCAlign - An optional alignment, and an optional alignment with
+// a comma before it.
+OptAlign : /*empty*/        { $$ = 0; } |
+           ALIGN EUINT64VAL {
+  $$ = $2;
+  if ($$ != 0 && !isPowerOf2_32($$))
+    GEN_ERROR("Alignment must be a power of two");
+  CHECK_FOR_ERROR
+};
+OptCAlign : /*empty*/            { $$ = 0; } |
+            ',' ALIGN EUINT64VAL {
+  $$ = $3;
+  if ($$ != 0 && !isPowerOf2_32($$))
+    GEN_ERROR("Alignment must be a power of two");
+  CHECK_FOR_ERROR
+};
+
+
+SectionString : SECTION STRINGCONSTANT {
+  for (unsigned i = 0, e = $2->length(); i != e; ++i)
+    if ((*$2)[i] == '"' || (*$2)[i] == '\\')
+      GEN_ERROR("Invalid character in section name");
+  $$ = $2;
+  CHECK_FOR_ERROR
+};
+
+OptSection : /*empty*/ { $$ = 0; } |
+             SectionString { $$ = $1; };
+
+// GlobalVarAttributes - Used to pass the attributes string on a global.  CurGV
+// is set to be the global we are processing.
+//
+GlobalVarAttributes : /* empty */ {} |
+                     ',' GlobalVarAttribute GlobalVarAttributes {};
+GlobalVarAttribute : SectionString {
+    CurGV->setSection(*$1);
+    delete $1;
+    CHECK_FOR_ERROR
+  } 
+  | ALIGN EUINT64VAL {
+    if ($2 != 0 && !isPowerOf2_32($2))
+      GEN_ERROR("Alignment must be a power of two");
+    CurGV->setAlignment($2);
+    CHECK_FOR_ERROR
+  };
+
+//===----------------------------------------------------------------------===//
+// Types includes all predefined types... except void, because it can only be
+// used in specific contexts (function returning void for example).  
+
+// Derived types are added later...
+//
+PrimType : INTTYPE | FLOAT | DOUBLE | LABEL ;
+
+Types 
+  : OPAQUE {
+    $$ = new PATypeHolder(OpaqueType::get());
+    CHECK_FOR_ERROR
+  }
+  | PrimType {
+    $$ = new PATypeHolder($1);
+    CHECK_FOR_ERROR
+  }
+  | Types '*' {                             // Pointer type?
+    if (*$1 == Type::LabelTy)
+      GEN_ERROR("Cannot form a pointer to a basic block");
+    $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
+    delete $1;
+    CHECK_FOR_ERROR
+  }
+  | SymbolicValueRef {            // Named types are also simple types...
+    const Type* tmp = getTypeVal($1);
+    CHECK_FOR_ERROR
+    $$ = new PATypeHolder(tmp);
+  }
+  | '\\' EUINT64VAL {                   // Type UpReference
+    if ($2 > (uint64_t)~0U) GEN_ERROR("Value out of range");
+    OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder
+    UpRefs.push_back(UpRefRecord((unsigned)$2, OT));  // Add to vector...
+    $$ = new PATypeHolder(OT);
+    UR_OUT("New Upreference!\n");
+    CHECK_FOR_ERROR
+  }
+  | Types '(' ArgTypeListI ')' OptFuncAttrs {
+    std::vector<const Type*> Params;
+    ParamAttrsVector Attrs;
+    if ($5 != ParamAttr::None) {
+      ParamAttrsWithIndex X; X.index = 0; X.attrs = $5;
+      Attrs.push_back(X);
+    }
+    unsigned index = 1;
+    TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
+    for (; I != E; ++I, ++index) {
+      const Type *Ty = I->Ty->get();
+      Params.push_back(Ty);
+      if (Ty != Type::VoidTy)
+        if (I->Attrs != ParamAttr::None) {
+          ParamAttrsWithIndex X; X.index = index; X.attrs = I->Attrs;
+          Attrs.push_back(X);
+        }
+    }
+    bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
+    if (isVarArg) Params.pop_back();
+
+    ParamAttrsList *ActualAttrs = 0;
+    if (!Attrs.empty())
+      ActualAttrs = ParamAttrsList::get(Attrs);
+    FunctionType *FT = FunctionType::get(*$1, Params, isVarArg, ActualAttrs);
+    delete $3;   // Delete the argument list
+    delete $1;   // Delete the return type handle
+    $$ = new PATypeHolder(HandleUpRefs(FT)); 
+    CHECK_FOR_ERROR
+  }
+  | VOID '(' ArgTypeListI ')' OptFuncAttrs {
+    std::vector<const Type*> Params;
+    ParamAttrsVector Attrs;
+    if ($5 != ParamAttr::None) {
+      ParamAttrsWithIndex X; X.index = 0; X.attrs = $5;
+      Attrs.push_back(X);
+    }
+    TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
+    unsigned index = 1;
+    for ( ; I != E; ++I, ++index) {
+      const Type* Ty = I->Ty->get();
+      Params.push_back(Ty);
+      if (Ty != Type::VoidTy)
+        if (I->Attrs != ParamAttr::None) {
+          ParamAttrsWithIndex X; X.index = index; X.attrs = I->Attrs;
+          Attrs.push_back(X);
+        }
+    }
+    bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
+    if (isVarArg) Params.pop_back();
+
+    ParamAttrsList *ActualAttrs = 0;
+    if (!Attrs.empty())
+      ActualAttrs = ParamAttrsList::get(Attrs);
+
+    FunctionType *FT = FunctionType::get($1, Params, isVarArg, ActualAttrs);
+    delete $3;      // Delete the argument list
+    $$ = new PATypeHolder(HandleUpRefs(FT)); 
+    CHECK_FOR_ERROR
+  }
+
+  | '[' EUINT64VAL 'x' Types ']' {          // Sized array type?
+    $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
+    delete $4;
+    CHECK_FOR_ERROR
+  }
+  | '<' EUINT64VAL 'x' Types '>' {          // Vector type?
+     const llvm::Type* ElemTy = $4->get();
+     if ((unsigned)$2 != $2)
+        GEN_ERROR("Unsigned result not equal to signed result");
+     if (!ElemTy->isFloatingPoint() && !ElemTy->isInteger())
+        GEN_ERROR("Element type of a VectorType must be primitive");
+     if (!isPowerOf2_32($2))
+       GEN_ERROR("Vector length should be a power of 2");
+     $$ = new PATypeHolder(HandleUpRefs(VectorType::get(*$4, (unsigned)$2)));
+     delete $4;
+     CHECK_FOR_ERROR
+  }
+  | '{' TypeListI '}' {                        // Structure type?
+    std::vector<const Type*> Elements;
+    for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(),
+           E = $2->end(); I != E; ++I)
+      Elements.push_back(*I);
+
+    $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
+    delete $2;
+    CHECK_FOR_ERROR
+  }
+  | '{' '}' {                                  // Empty structure type?
+    $$ = new PATypeHolder(StructType::get(std::vector<const Type*>()));
+    CHECK_FOR_ERROR
+  }
+  | '<' '{' TypeListI '}' '>' {
+    std::vector<const Type*> Elements;
+    for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(),
+           E = $3->end(); I != E; ++I)
+      Elements.push_back(*I);
+
+    $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true)));
+    delete $3;
+    CHECK_FOR_ERROR
+  }
+  | '<' '{' '}' '>' {                         // Empty structure type?
+    $$ = new PATypeHolder(StructType::get(std::vector<const Type*>(), true));
+    CHECK_FOR_ERROR
+  }
+  ;
+
+ArgType 
+  : Types OptParamAttrs { 
+    $$.Ty = $1; 
+    $$.Attrs = $2; 
+  }
+  ;
+
+ResultTypes
+  : Types {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+    if (!(*$1)->isFirstClassType())
+      GEN_ERROR("LLVM functions cannot return aggregate types");
+    $$ = $1;
+  }
+  | VOID {
+    $$ = new PATypeHolder(Type::VoidTy);
+  }
+  ;
+
+ArgTypeList : ArgType {
+    $$ = new TypeWithAttrsList();
+    $$->push_back($1);
+    CHECK_FOR_ERROR
+  }
+  | ArgTypeList ',' ArgType {
+    ($$=$1)->push_back($3);
+    CHECK_FOR_ERROR
+  }
+  ;
+
+ArgTypeListI 
+  : ArgTypeList
+  | ArgTypeList ',' DOTDOTDOT {
+    $$=$1;
+    TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None;
+    TWA.Ty = new PATypeHolder(Type::VoidTy);
+    $$->push_back(TWA);
+    CHECK_FOR_ERROR
+  }
+  | DOTDOTDOT {
+    $$ = new TypeWithAttrsList;
+    TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None;
+    TWA.Ty = new PATypeHolder(Type::VoidTy);
+    $$->push_back(TWA);
+    CHECK_FOR_ERROR
+  }
+  | /*empty*/ {
+    $$ = new TypeWithAttrsList();
+    CHECK_FOR_ERROR
+  };
+
+// TypeList - Used for struct declarations and as a basis for function type 
+// declaration type lists
+//
+TypeListI : Types {
+    $$ = new std::list<PATypeHolder>();
+    $$->push_back(*$1); 
+    delete $1;
+    CHECK_FOR_ERROR
+  }
+  | TypeListI ',' Types {
+    ($$=$1)->push_back(*$3); 
+    delete $3;
+    CHECK_FOR_ERROR
+  };
+
+// ConstVal - The various declarations that go into the constant pool.  This
+// production is used ONLY to represent constants that show up AFTER a 'const',
+// 'constant' or 'global' token at global scope.  Constants that can be inlined
+// into other expressions (such as integers and constexprs) are handled by the
+// ResolvedVal, ValueRef and ConstValueRef productions.
+//
+ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+    const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
+    if (ATy == 0)
+      GEN_ERROR("Cannot make array constant with type: '" + 
+                     (*$1)->getDescription() + "'");
+    const Type *ETy = ATy->getElementType();
+    int NumElements = ATy->getNumElements();
+
+    // Verify that we have the correct size...
+    if (NumElements != -1 && NumElements != (int)$3->size())
+      GEN_ERROR("Type mismatch: constant sized array initialized with " +
+                     utostr($3->size()) +  " arguments, but has size of " + 
+                     itostr(NumElements) + "");
+
+    // Verify all elements are correct type!
+    for (unsigned i = 0; i < $3->size(); i++) {
+      if (ETy != (*$3)[i]->getType())
+        GEN_ERROR("Element #" + utostr(i) + " is not of type '" + 
+                       ETy->getDescription() +"' as required!\nIt is of type '"+
+                       (*$3)[i]->getType()->getDescription() + "'.");
+    }
+
+    $$ = ConstantArray::get(ATy, *$3);
+    delete $1; delete $3;
+    CHECK_FOR_ERROR
+  }
+  | Types '[' ']' {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+    const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
+    if (ATy == 0)
+      GEN_ERROR("Cannot make array constant with type: '" + 
+                     (*$1)->getDescription() + "'");
+
+    int NumElements = ATy->getNumElements();
+    if (NumElements != -1 && NumElements != 0) 
+      GEN_ERROR("Type mismatch: constant sized array initialized with 0"
+                     " arguments, but has size of " + itostr(NumElements) +"");
+    $$ = ConstantArray::get(ATy, std::vector<Constant*>());
+    delete $1;
+    CHECK_FOR_ERROR
+  }
+  | Types 'c' STRINGCONSTANT {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+    const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
+    if (ATy == 0)
+      GEN_ERROR("Cannot make array constant with type: '" + 
+                     (*$1)->getDescription() + "'");
+
+    int NumElements = ATy->getNumElements();
+    const Type *ETy = ATy->getElementType();
+    if (NumElements != -1 && NumElements != int($3->length()))
+      GEN_ERROR("Can't build string constant of size " + 
+                     itostr((int)($3->length())) +
+                     " when array has size " + itostr(NumElements) + "");
+    std::vector<Constant*> Vals;
+    if (ETy == Type::Int8Ty) {
+      for (unsigned i = 0; i < $3->length(); ++i)
+        Vals.push_back(ConstantInt::get(ETy, (*$3)[i]));
+    } else {
+      delete $3;
+      GEN_ERROR("Cannot build string arrays of non byte sized elements");
+    }
+    delete $3;
+    $$ = ConstantArray::get(ATy, Vals);
+    delete $1;
+    CHECK_FOR_ERROR
+  }
+  | Types '<' ConstVector '>' { // Nonempty unsized arr
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+    const VectorType *PTy = dyn_cast<VectorType>($1->get());
+    if (PTy == 0)
+      GEN_ERROR("Cannot make packed constant with type: '" + 
+                     (*$1)->getDescription() + "'");
+    const Type *ETy = PTy->getElementType();
+    int NumElements = PTy->getNumElements();
+
+    // Verify that we have the correct size...
+    if (NumElements != -1 && NumElements != (int)$3->size())
+      GEN_ERROR("Type mismatch: constant sized packed initialized with " +
+                     utostr($3->size()) +  " arguments, but has size of " + 
+                     itostr(NumElements) + "");
+
+    // Verify all elements are correct type!
+    for (unsigned i = 0; i < $3->size(); i++) {
+      if (ETy != (*$3)[i]->getType())
+        GEN_ERROR("Element #" + utostr(i) + " is not of type '" + 
+           ETy->getDescription() +"' as required!\nIt is of type '"+
+           (*$3)[i]->getType()->getDescription() + "'.");
+    }
+
+    $$ = ConstantVector::get(PTy, *$3);
+    delete $1; delete $3;
+    CHECK_FOR_ERROR
+  }
+  | Types '{' ConstVector '}' {
+    const StructType *STy = dyn_cast<StructType>($1->get());
+    if (STy == 0)
+      GEN_ERROR("Cannot make struct constant with type: '" + 
+                     (*$1)->getDescription() + "'");
+
+    if ($3->size() != STy->getNumContainedTypes())
+      GEN_ERROR("Illegal number of initializers for structure type");
+
+    // Check to ensure that constants are compatible with the type initializer!
+    for (unsigned i = 0, e = $3->size(); i != e; ++i)
+      if ((*$3)[i]->getType() != STy->getElementType(i))
+        GEN_ERROR("Expected type '" +
+                       STy->getElementType(i)->getDescription() +
+                       "' for element #" + utostr(i) +
+                       " of structure initializer");
+
+    // Check to ensure that Type is not packed
+    if (STy->isPacked())
+      GEN_ERROR("Unpacked Initializer to vector type '" +
+                STy->getDescription() + "'");
+
+    $$ = ConstantStruct::get(STy, *$3);
+    delete $1; delete $3;
+    CHECK_FOR_ERROR
+  }
+  | Types '{' '}' {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+    const StructType *STy = dyn_cast<StructType>($1->get());
+    if (STy == 0)
+      GEN_ERROR("Cannot make struct constant with type: '" + 
+                     (*$1)->getDescription() + "'");
+
+    if (STy->getNumContainedTypes() != 0)
+      GEN_ERROR("Illegal number of initializers for structure type");
+
+    // Check to ensure that Type is not packed
+    if (STy->isPacked())
+      GEN_ERROR("Unpacked Initializer to vector type '" +
+                STy->getDescription() + "'");
+
+    $$ = ConstantStruct::get(STy, std::vector<Constant*>());
+    delete $1;
+    CHECK_FOR_ERROR
+  }
+  | Types '<' '{' ConstVector '}' '>' {
+    const StructType *STy = dyn_cast<StructType>($1->get());
+    if (STy == 0)
+      GEN_ERROR("Cannot make struct constant with type: '" + 
+                     (*$1)->getDescription() + "'");
+
+    if ($4->size() != STy->getNumContainedTypes())
+      GEN_ERROR("Illegal number of initializers for structure type");
+
+    // Check to ensure that constants are compatible with the type initializer!
+    for (unsigned i = 0, e = $4->size(); i != e; ++i)
+      if ((*$4)[i]->getType() != STy->getElementType(i))
+        GEN_ERROR("Expected type '" +
+                       STy->getElementType(i)->getDescription() +
+                       "' for element #" + utostr(i) +
+                       " of structure initializer");
+
+    // Check to ensure that Type is packed
+    if (!STy->isPacked())
+      GEN_ERROR("Vector initializer to non-vector type '" + 
+                STy->getDescription() + "'");
+
+    $$ = ConstantStruct::get(STy, *$4);
+    delete $1; delete $4;
+    CHECK_FOR_ERROR
+  }
+  | Types '<' '{' '}' '>' {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+    const StructType *STy = dyn_cast<StructType>($1->get());
+    if (STy == 0)
+      GEN_ERROR("Cannot make struct constant with type: '" + 
+                     (*$1)->getDescription() + "'");
+
+    if (STy->getNumContainedTypes() != 0)
+      GEN_ERROR("Illegal number of initializers for structure type");
+
+    // Check to ensure that Type is packed
+    if (!STy->isPacked())
+      GEN_ERROR("Vector initializer to non-vector type '" + 
+                STy->getDescription() + "'");
+
+    $$ = ConstantStruct::get(STy, std::vector<Constant*>());
+    delete $1;
+    CHECK_FOR_ERROR
+  }
+  | Types NULL_TOK {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+    const PointerType *PTy = dyn_cast<PointerType>($1->get());
+    if (PTy == 0)
+      GEN_ERROR("Cannot make null pointer constant with type: '" + 
+                     (*$1)->getDescription() + "'");
+
+    $$ = ConstantPointerNull::get(PTy);
+    delete $1;
+    CHECK_FOR_ERROR
+  }
+  | Types UNDEF {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+    $$ = UndefValue::get($1->get());
+    delete $1;
+    CHECK_FOR_ERROR
+  }
+  | Types SymbolicValueRef {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+    const PointerType *Ty = dyn_cast<PointerType>($1->get());
+    if (Ty == 0)
+      GEN_ERROR("Global const reference must be a pointer type");
+
+    // ConstExprs can exist in the body of a function, thus creating
+    // GlobalValues whenever they refer to a variable.  Because we are in
+    // the context of a function, getExistingVal will search the functions
+    // symbol table instead of the module symbol table for the global symbol,
+    // which throws things all off.  To get around this, we just tell
+    // getExistingVal that we are at global scope here.
+    //
+    Function *SavedCurFn = CurFun.CurrentFunction;
+    CurFun.CurrentFunction = 0;
+
+    Value *V = getExistingVal(Ty, $2);
+    CHECK_FOR_ERROR
+
+    CurFun.CurrentFunction = SavedCurFn;
+
+    // If this is an initializer for a constant pointer, which is referencing a
+    // (currently) undefined variable, create a stub now that shall be replaced
+    // in the future with the right type of variable.
+    //
+    if (V == 0) {
+      assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
+      const PointerType *PT = cast<PointerType>(Ty);
+
+      // First check to see if the forward references value is already created!
+      PerModuleInfo::GlobalRefsType::iterator I =
+        CurModule.GlobalRefs.find(std::make_pair(PT, $2));
+    
+      if (I != CurModule.GlobalRefs.end()) {
+        V = I->second;             // Placeholder already exists, use it...
+        $2.destroy();
+      } else {
+        std::string Name;
+        if ($2.Type == ValID::GlobalName)
+          Name = $2.getName();
+        else if ($2.Type != ValID::GlobalID)
+          GEN_ERROR("Invalid reference to global");
+
+        // Create the forward referenced global.
+        GlobalValue *GV;
+        if (const FunctionType *FTy = 
+                 dyn_cast<FunctionType>(PT->getElementType())) {
+          GV = new Function(FTy, GlobalValue::ExternalWeakLinkage, Name,
+                            CurModule.CurrentModule);
+        } else {
+          GV = new GlobalVariable(PT->getElementType(), false,
+                                  GlobalValue::ExternalWeakLinkage, 0,
+                                  Name, CurModule.CurrentModule);
+        }
+
+        // Keep track of the fact that we have a forward ref to recycle it
+        CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
+        V = GV;
+      }
+    }
+
+    $$ = cast<GlobalValue>(V);
+    delete $1;            // Free the type handle
+    CHECK_FOR_ERROR
+  }
+  | Types ConstExpr {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+    if ($1->get() != $2->getType())
+      GEN_ERROR("Mismatched types for constant expression: " + 
+        (*$1)->getDescription() + " and " + $2->getType()->getDescription());
+    $$ = $2;
+    delete $1;
+    CHECK_FOR_ERROR
+  }
+  | Types ZEROINITIALIZER {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+    const Type *Ty = $1->get();
+    if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
+      GEN_ERROR("Cannot create a null initialized value of this type");
+    $$ = Constant::getNullValue(Ty);
+    delete $1;
+    CHECK_FOR_ERROR
+  }
+  | IntType ESINT64VAL {      // integral constants
+    if (!ConstantInt::isValueValidForType($1, $2))
+      GEN_ERROR("Constant value doesn't fit in type");
+    $$ = ConstantInt::get($1, $2, true);
+    CHECK_FOR_ERROR
+  }
+  | IntType ESAPINTVAL {      // arbitrary precision integer constants
+    uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
+    if ($2->getBitWidth() > BitWidth) {
+      GEN_ERROR("Constant value does not fit in type");
+    }
+    $2->sextOrTrunc(BitWidth);
+    $$ = ConstantInt::get(*$2);
+    delete $2;
+    CHECK_FOR_ERROR
+  }
+  | IntType EUINT64VAL {      // integral constants
+    if (!ConstantInt::isValueValidForType($1, $2))
+      GEN_ERROR("Constant value doesn't fit in type");
+    $$ = ConstantInt::get($1, $2, false);
+    CHECK_FOR_ERROR
+  }
+  | IntType EUAPINTVAL {      // arbitrary precision integer constants
+    uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
+    if ($2->getBitWidth() > BitWidth) {
+      GEN_ERROR("Constant value does not fit in type");
+    } 
+    $2->zextOrTrunc(BitWidth);
+    $$ = ConstantInt::get(*$2);
+    delete $2;
+    CHECK_FOR_ERROR
+  }
+  | INTTYPE TRUETOK {                      // Boolean constants
+    assert(cast<IntegerType>($1)->getBitWidth() == 1 && "Not Bool?");
+    $$ = ConstantInt::getTrue();
+    CHECK_FOR_ERROR
+  }
+  | INTTYPE FALSETOK {                     // Boolean constants
+    assert(cast<IntegerType>($1)->getBitWidth() == 1 && "Not Bool?");
+    $$ = ConstantInt::getFalse();
+    CHECK_FOR_ERROR
+  }
+  | FPType FPVAL {                   // Float & Double constants
+    if (!ConstantFP::isValueValidForType($1, $2))
+      GEN_ERROR("Floating point constant invalid for type");
+    $$ = ConstantFP::get($1, $2);
+    CHECK_FOR_ERROR
+  };
+
+
+ConstExpr: CastOps '(' ConstVal TO Types ')' {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
+    Constant *Val = $3;
+    const Type *DestTy = $5->get();
+    if (!CastInst::castIsValid($1, $3, DestTy))
+      GEN_ERROR("invalid cast opcode for cast from '" +
+                Val->getType()->getDescription() + "' to '" +
+                DestTy->getDescription() + "'"); 
+    $$ = ConstantExpr::getCast($1, $3, DestTy);
+    delete $5;
+  }
+  | GETELEMENTPTR '(' ConstVal IndexList ')' {
+    if (!isa<PointerType>($3->getType()))
+      GEN_ERROR("GetElementPtr requires a pointer operand");
+
+    const Type *IdxTy =
+      GetElementPtrInst::getIndexedType($3->getType(), &(*$4)[0], $4->size(),
+                                        true);
+    if (!IdxTy)
+      GEN_ERROR("Index list invalid for constant getelementptr");
+
+    SmallVector<Constant*, 8> IdxVec;
+    for (unsigned i = 0, e = $4->size(); i != e; ++i)
+      if (Constant *C = dyn_cast<Constant>((*$4)[i]))
+        IdxVec.push_back(C);
+      else
+        GEN_ERROR("Indices to constant getelementptr must be constants");
+
+    delete $4;
+
+    $$ = ConstantExpr::getGetElementPtr($3, &IdxVec[0], IdxVec.size());
+    CHECK_FOR_ERROR
+  }
+  | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
+    if ($3->getType() != Type::Int1Ty)
+      GEN_ERROR("Select condition must be of boolean type");
+    if ($5->getType() != $7->getType())
+      GEN_ERROR("Select operand types must match");
+    $$ = ConstantExpr::getSelect($3, $5, $7);
+    CHECK_FOR_ERROR
+  }
+  | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
+    if ($3->getType() != $5->getType())
+      GEN_ERROR("Binary operator types must match");
+    CHECK_FOR_ERROR;
+    $$ = ConstantExpr::get($1, $3, $5);
+  }
+  | LogicalOps '(' ConstVal ',' ConstVal ')' {
+    if ($3->getType() != $5->getType())
+      GEN_ERROR("Logical operator types must match");
+    if (!$3->getType()->isInteger()) {
+      if (Instruction::isShift($1) || !isa<VectorType>($3->getType()) || 
+          !cast<VectorType>($3->getType())->getElementType()->isInteger())
+        GEN_ERROR("Logical operator requires integral operands");
+    }
+    $$ = ConstantExpr::get($1, $3, $5);
+    CHECK_FOR_ERROR
+  }
+  | ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
+    if ($4->getType() != $6->getType())
+      GEN_ERROR("icmp operand types must match");
+    $$ = ConstantExpr::getICmp($2, $4, $6);
+  }
+  | FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
+    if ($4->getType() != $6->getType())
+      GEN_ERROR("fcmp operand types must match");
+    $$ = ConstantExpr::getFCmp($2, $4, $6);
+  }
+  | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
+    if (!ExtractElementInst::isValidOperands($3, $5))
+      GEN_ERROR("Invalid extractelement operands");
+    $$ = ConstantExpr::getExtractElement($3, $5);
+    CHECK_FOR_ERROR
+  }
+  | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
+    if (!InsertElementInst::isValidOperands($3, $5, $7))
+      GEN_ERROR("Invalid insertelement operands");
+    $$ = ConstantExpr::getInsertElement($3, $5, $7);
+    CHECK_FOR_ERROR
+  }
+  | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
+    if (!ShuffleVectorInst::isValidOperands($3, $5, $7))
+      GEN_ERROR("Invalid shufflevector operands");
+    $$ = ConstantExpr::getShuffleVector($3, $5, $7);
+    CHECK_FOR_ERROR
+  };
+
+
+// ConstVector - A list of comma separated constants.
+ConstVector : ConstVector ',' ConstVal {
+    ($$ = $1)->push_back($3);
+    CHECK_FOR_ERROR
+  }
+  | ConstVal {
+    $$ = new std::vector<Constant*>();
+    $$->push_back($1);
+    CHECK_FOR_ERROR
+  };
+
+
+// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
+GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
+
+// ThreadLocal 
+ThreadLocal : THREAD_LOCAL { $$ = true; } | { $$ = false; };
+
+// AliaseeRef - Match either GlobalValue or bitcast to GlobalValue.
+AliaseeRef : ResultTypes SymbolicValueRef {
+    const Type* VTy = $1->get();
+    Value *V = getVal(VTy, $2);
+    GlobalValue* Aliasee = dyn_cast<GlobalValue>(V);
+    if (!Aliasee)
+      GEN_ERROR("Aliases can be created only to global values");
+
+    $$ = Aliasee;
+    CHECK_FOR_ERROR
+    delete $1;
+   }
+   | BITCAST '(' AliaseeRef TO Types ')' {
+    Constant *Val = $3;
+    const Type *DestTy = $5->get();
+    if (!CastInst::castIsValid($1, $3, DestTy))
+      GEN_ERROR("invalid cast opcode for cast from '" +
+                Val->getType()->getDescription() + "' to '" +
+                DestTy->getDescription() + "'");
+    
+    $$ = ConstantExpr::getCast($1, $3, DestTy);
+    CHECK_FOR_ERROR
+    delete $5;
+   };
+
+//===----------------------------------------------------------------------===//
+//                             Rules to match Modules
+//===----------------------------------------------------------------------===//
+
+// Module rule: Capture the result of parsing the whole file into a result
+// variable...
+//
+Module 
+  : DefinitionList {
+    $$ = ParserResult = CurModule.CurrentModule;
+    CurModule.ModuleDone();
+    CHECK_FOR_ERROR;
+  }
+  | /*empty*/ {
+    $$ = ParserResult = CurModule.CurrentModule;
+    CurModule.ModuleDone();
+    CHECK_FOR_ERROR;
+  }
+  ;
+
+DefinitionList
+  : Definition
+  | DefinitionList Definition
+  ;
+
+Definition 
+  : DEFINE { CurFun.isDeclare = false; } Function {
+    CurFun.FunctionDone();
+    CHECK_FOR_ERROR
+  }
+  | DECLARE { CurFun.isDeclare = true; } FunctionProto {
+    CHECK_FOR_ERROR
+  }
+  | MODULE ASM_TOK AsmBlock {
+    CHECK_FOR_ERROR
+  }  
+  | OptLocalAssign TYPE Types {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
+    // Eagerly resolve types.  This is not an optimization, this is a
+    // requirement that is due to the fact that we could have this:
+    //
+    // %list = type { %list * }
+    // %list = type { %list * }    ; repeated type decl
+    //
+    // If types are not resolved eagerly, then the two types will not be
+    // determined to be the same type!
+    //
+    ResolveTypeTo($1, *$3);
+
+    if (!setTypeName(*$3, $1) && !$1) {
+      CHECK_FOR_ERROR
+      // If this is a named type that is not a redefinition, add it to the slot
+      // table.
+      CurModule.Types.push_back(*$3);
+    }
+
+    delete $3;
+    CHECK_FOR_ERROR
+  }
+  | OptLocalAssign TYPE VOID {
+    ResolveTypeTo($1, $3);
+
+    if (!setTypeName($3, $1) && !$1) {
+      CHECK_FOR_ERROR
+      // If this is a named type that is not a redefinition, add it to the slot
+      // table.
+      CurModule.Types.push_back($3);
+    }
+    CHECK_FOR_ERROR
+  }
+  | OptGlobalAssign GVVisibilityStyle ThreadLocal GlobalType ConstVal { 
+    /* "Externally Visible" Linkage */
+    if ($5 == 0) 
+      GEN_ERROR("Global value initializer is not a constant");
+    CurGV = ParseGlobalVariable($1, GlobalValue::ExternalLinkage,
+                                $2, $4, $5->getType(), $5, $3);
+    CHECK_FOR_ERROR
+  } GlobalVarAttributes {
+    CurGV = 0;
+  }
+  | OptGlobalAssign GVInternalLinkage GVVisibilityStyle ThreadLocal GlobalType
+    ConstVal {
+    if ($6 == 0) 
+      GEN_ERROR("Global value initializer is not a constant");
+    CurGV = ParseGlobalVariable($1, $2, $3, $5, $6->getType(), $6, $4);
+    CHECK_FOR_ERROR
+  } GlobalVarAttributes {
+    CurGV = 0;
+  }
+  | OptGlobalAssign GVExternalLinkage GVVisibilityStyle ThreadLocal GlobalType
+    Types {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$6)->getDescription());
+    CurGV = ParseGlobalVariable($1, $2, $3, $5, *$6, 0, $4);
+    CHECK_FOR_ERROR
+    delete $6;
+  } GlobalVarAttributes {
+    CurGV = 0;
+    CHECK_FOR_ERROR
+  }
+  | OptGlobalAssign GVVisibilityStyle ALIAS AliasLinkage AliaseeRef {
+    std::string Name;
+    if ($1) {
+      Name = *$1;
+      delete $1;
+    }
+    if (Name.empty())
+      GEN_ERROR("Alias name cannot be empty");
+    
+    Constant* Aliasee = $5;
+    if (Aliasee == 0)
+      GEN_ERROR(std::string("Invalid aliasee for alias: ") + Name);
+
+    GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), $4, Name, Aliasee,
+                                      CurModule.CurrentModule);
+    GA->setVisibility($2);
+    InsertValue(GA, CurModule.Values);
+    CHECK_FOR_ERROR
+  }
+  | TARGET TargetDefinition { 
+    CHECK_FOR_ERROR
+  }
+  | DEPLIBS '=' LibrariesDefinition {
+    CHECK_FOR_ERROR
+  }
+  ;
+
+
+AsmBlock : STRINGCONSTANT {
+  const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
+  if (AsmSoFar.empty())
+    CurModule.CurrentModule->setModuleInlineAsm(*$1);
+  else
+    CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+*$1);
+  delete $1;
+  CHECK_FOR_ERROR
+};
+
+TargetDefinition : TRIPLE '=' STRINGCONSTANT {
+    CurModule.CurrentModule->setTargetTriple(*$3);
+    delete $3;
+  }
+  | DATALAYOUT '=' STRINGCONSTANT {
+    CurModule.CurrentModule->setDataLayout(*$3);
+    delete $3;
+  };
+
+LibrariesDefinition : '[' LibList ']';
+
+LibList : LibList ',' STRINGCONSTANT {
+          CurModule.CurrentModule->addLibrary(*$3);
+          delete $3;
+          CHECK_FOR_ERROR
+        }
+        | STRINGCONSTANT {
+          CurModule.CurrentModule->addLibrary(*$1);
+          delete $1;
+          CHECK_FOR_ERROR
+        }
+        | /* empty: end of list */ {
+          CHECK_FOR_ERROR
+        }
+        ;
+
+//===----------------------------------------------------------------------===//
+//                       Rules to match Function Headers
+//===----------------------------------------------------------------------===//
+
+ArgListH : ArgListH ',' Types OptParamAttrs OptLocalName {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
+    if (*$3 == Type::VoidTy)
+      GEN_ERROR("void typed arguments are invalid");
+    ArgListEntry E; E.Attrs = $4; E.Ty = $3; E.Name = $5;
+    $$ = $1;
+    $1->push_back(E);
+    CHECK_FOR_ERROR
+  }
+  | Types OptParamAttrs OptLocalName {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+    if (*$1 == Type::VoidTy)
+      GEN_ERROR("void typed arguments are invalid");
+    ArgListEntry E; E.Attrs = $2; E.Ty = $1; E.Name = $3;
+    $$ = new ArgListType;
+    $$->push_back(E);
+    CHECK_FOR_ERROR
+  };
+
+ArgList : ArgListH {
+    $$ = $1;
+    CHECK_FOR_ERROR
+  }
+  | ArgListH ',' DOTDOTDOT {
+    $$ = $1;
+    struct ArgListEntry E;
+    E.Ty = new PATypeHolder(Type::VoidTy);
+    E.Name = 0;
+    E.Attrs = ParamAttr::None;
+    $$->push_back(E);
+    CHECK_FOR_ERROR
+  }
+  | DOTDOTDOT {
+    $$ = new ArgListType;
+    struct ArgListEntry E;
+    E.Ty = new PATypeHolder(Type::VoidTy);
+    E.Name = 0;
+    E.Attrs = ParamAttr::None;
+    $$->push_back(E);
+    CHECK_FOR_ERROR
+  }
+  | /* empty */ {
+    $$ = 0;
+    CHECK_FOR_ERROR
+  };
+
+FunctionHeaderH : OptCallingConv ResultTypes GlobalName '(' ArgList ')' 
+                  OptFuncAttrs OptSection OptAlign {
+  std::string FunctionName(*$3);
+  delete $3;  // Free strdup'd memory!
+  
+  // Check the function result for abstractness if this is a define. We should
+  // have no abstract types at this point
+  if (!CurFun.isDeclare && CurModule.TypeIsUnresolved($2))
+    GEN_ERROR("Reference to abstract result: "+ $2->get()->getDescription());
+
+  std::vector<const Type*> ParamTypeList;
+  ParamAttrsVector Attrs;
+  if ($7 != ParamAttr::None) {
+    ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $7;
+    Attrs.push_back(PAWI);
+  }
+  if ($5) {   // If there are arguments...
+    unsigned index = 1;
+    for (ArgListType::iterator I = $5->begin(); I != $5->end(); ++I, ++index) {
+      const Type* Ty = I->Ty->get();
+      if (!CurFun.isDeclare && CurModule.TypeIsUnresolved(I->Ty))
+        GEN_ERROR("Reference to abstract argument: " + Ty->getDescription());
+      ParamTypeList.push_back(Ty);
+      if (Ty != Type::VoidTy)
+        if (I->Attrs != ParamAttr::None) {
+          ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
+          Attrs.push_back(PAWI);
+        }
+    }
+  }
+
+  bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
+  if (isVarArg) ParamTypeList.pop_back();
+
+  ParamAttrsList *PAL = 0;
+  if (!Attrs.empty())
+    PAL = ParamAttrsList::get(Attrs);
+
+  FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg, PAL);
+  const PointerType *PFT = PointerType::get(FT);
+  delete $2;
+
+  ValID ID;
+  if (!FunctionName.empty()) {
+    ID = ValID::createGlobalName((char*)FunctionName.c_str());
+  } else {
+    ID = ValID::createGlobalID(CurModule.Values.size());
+  }
+
+  Function *Fn = 0;
+  // See if this function was forward referenced.  If so, recycle the object.
+  if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
+    // Move the function to the end of the list, from whereever it was 
+    // previously inserted.
+    Fn = cast<Function>(FWRef);
+    CurModule.CurrentModule->getFunctionList().remove(Fn);
+    CurModule.CurrentModule->getFunctionList().push_back(Fn);
+  } else if (!FunctionName.empty() &&     // Merge with an earlier prototype?
+             (Fn = CurModule.CurrentModule->getFunction(FunctionName))) {
+    if (Fn->getFunctionType() != FT) {
+      // The existing function doesn't have the same type. This is an overload
+      // error.
+      GEN_ERROR("Overload of function '" + FunctionName + "' not permitted.");
+    } else if (!CurFun.isDeclare && !Fn->isDeclaration()) {
+      // Neither the existing or the current function is a declaration and they
+      // have the same name and same type. Clearly this is a redefinition.
+      GEN_ERROR("Redefinition of function '" + FunctionName + "'");
+    } if (Fn->isDeclaration()) {
+      // Make sure to strip off any argument names so we can't get conflicts.
+      for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
+           AI != AE; ++AI)
+        AI->setName("");
+    }
+  } else  {  // Not already defined?
+    Fn = new Function(FT, GlobalValue::ExternalWeakLinkage, FunctionName,
+                      CurModule.CurrentModule);
+
+    InsertValue(Fn, CurModule.Values);
+  }
+
+  CurFun.FunctionStart(Fn);
+
+  if (CurFun.isDeclare) {
+    // If we have declaration, always overwrite linkage.  This will allow us to
+    // correctly handle cases, when pointer to function is passed as argument to
+    // another function.
+    Fn->setLinkage(CurFun.Linkage);
+    Fn->setVisibility(CurFun.Visibility);
+  }
+  Fn->setCallingConv($1);
+  Fn->setAlignment($9);
+  if ($8) {
+    Fn->setSection(*$8);
+    delete $8;
+  }
+
+  // Add all of the arguments we parsed to the function...
+  if ($5) {                     // Is null if empty...
+    if (isVarArg) {  // Nuke the last entry
+      assert($5->back().Ty->get() == Type::VoidTy && $5->back().Name == 0 &&
+             "Not a varargs marker!");
+      delete $5->back().Ty;
+      $5->pop_back();  // Delete the last entry
+    }
+    Function::arg_iterator ArgIt = Fn->arg_begin();
+    Function::arg_iterator ArgEnd = Fn->arg_end();
+    unsigned Idx = 1;
+    for (ArgListType::iterator I = $5->begin(); 
+         I != $5->end() && ArgIt != ArgEnd; ++I, ++ArgIt) {
+      delete I->Ty;                          // Delete the typeholder...
+      setValueName(ArgIt, I->Name);       // Insert arg into symtab...
+      CHECK_FOR_ERROR
+      InsertValue(ArgIt);
+      Idx++;
+    }
+
+    delete $5;                     // We're now done with the argument list
+  }
+  CHECK_FOR_ERROR
+};
+
+BEGIN : BEGINTOK | '{';                // Allow BEGIN or '{' to start a function
+
+FunctionHeader : FunctionDefineLinkage GVVisibilityStyle FunctionHeaderH BEGIN {
+  $$ = CurFun.CurrentFunction;
+
+  // Make sure that we keep track of the linkage type even if there was a
+  // previous "declare".
+  $$->setLinkage($1);
+  $$->setVisibility($2);
+};
+
+END : ENDTOK | '}';                    // Allow end of '}' to end a function
+
+Function : BasicBlockList END {
+  $$ = $1;
+  CHECK_FOR_ERROR
+};
+
+FunctionProto : FunctionDeclareLinkage GVVisibilityStyle FunctionHeaderH {
+    CurFun.CurrentFunction->setLinkage($1);
+    CurFun.CurrentFunction->setVisibility($2);
+    $$ = CurFun.CurrentFunction;
+    CurFun.FunctionDone();
+    CHECK_FOR_ERROR
+  };
+
+//===----------------------------------------------------------------------===//
+//                        Rules to match Basic Blocks
+//===----------------------------------------------------------------------===//
+
+OptSideEffect : /* empty */ {
+    $$ = false;
+    CHECK_FOR_ERROR
+  }
+  | SIDEEFFECT {
+    $$ = true;
+    CHECK_FOR_ERROR
+  };
+
+ConstValueRef : ESINT64VAL {    // A reference to a direct constant
+    $$ = ValID::create($1);
+    CHECK_FOR_ERROR
+  }
+  | EUINT64VAL {
+    $$ = ValID::create($1);
+    CHECK_FOR_ERROR
+  }
+  | FPVAL {                     // Perhaps it's an FP constant?
+    $$ = ValID::create($1);
+    CHECK_FOR_ERROR
+  }
+  | TRUETOK {
+    $$ = ValID::create(ConstantInt::getTrue());
+    CHECK_FOR_ERROR
+  } 
+  | FALSETOK {
+    $$ = ValID::create(ConstantInt::getFalse());
+    CHECK_FOR_ERROR
+  }
+  | NULL_TOK {
+    $$ = ValID::createNull();
+    CHECK_FOR_ERROR
+  }
+  | UNDEF {
+    $$ = ValID::createUndef();
+    CHECK_FOR_ERROR
+  }
+  | ZEROINITIALIZER {     // A vector zero constant.
+    $$ = ValID::createZeroInit();
+    CHECK_FOR_ERROR
+  }
+  | '<' ConstVector '>' { // Nonempty unsized packed vector
+    const Type *ETy = (*$2)[0]->getType();
+    int NumElements = $2->size(); 
+    
+    VectorType* pt = VectorType::get(ETy, NumElements);
+    PATypeHolder* PTy = new PATypeHolder(
+                                         HandleUpRefs(
+                                            VectorType::get(
+                                                ETy, 
+                                                NumElements)
+                                            )
+                                         );
+    
+    // Verify all elements are correct type!
+    for (unsigned i = 0; i < $2->size(); i++) {
+      if (ETy != (*$2)[i]->getType())
+        GEN_ERROR("Element #" + utostr(i) + " is not of type '" + 
+                     ETy->getDescription() +"' as required!\nIt is of type '" +
+                     (*$2)[i]->getType()->getDescription() + "'.");
+    }
+
+    $$ = ValID::create(ConstantVector::get(pt, *$2));
+    delete PTy; delete $2;
+    CHECK_FOR_ERROR
+  }
+  | ConstExpr {
+    $$ = ValID::create($1);
+    CHECK_FOR_ERROR
+  }
+  | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
+    $$ = ValID::createInlineAsm(*$3, *$5, $2);
+    delete $3;
+    delete $5;
+    CHECK_FOR_ERROR
+  };
+
+// SymbolicValueRef - Reference to one of two ways of symbolically refering to
+// another value.
+//
+SymbolicValueRef : LOCALVAL_ID {  // Is it an integer reference...?
+    $$ = ValID::createLocalID($1);
+    CHECK_FOR_ERROR
+  }
+  | GLOBALVAL_ID {
+    $$ = ValID::createGlobalID($1);
+    CHECK_FOR_ERROR
+  }
+  | LocalName {                   // Is it a named reference...?
+    $$ = ValID::createLocalName(*$1);
+    delete $1;
+    CHECK_FOR_ERROR
+  }
+  | GlobalName {                   // Is it a named reference...?
+    $$ = ValID::createGlobalName(*$1);
+    delete $1;
+    CHECK_FOR_ERROR
+  };
+
+// ValueRef - A reference to a definition... either constant or symbolic
+ValueRef : SymbolicValueRef | ConstValueRef;
+
+
+// ResolvedVal - a <type> <value> pair.  This is used only in cases where the
+// type immediately preceeds the value reference, and allows complex constant
+// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
+ResolvedVal : Types ValueRef {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+    $$ = getVal(*$1, $2); 
+    delete $1;
+    CHECK_FOR_ERROR
+  }
+  ;
+
+BasicBlockList : BasicBlockList BasicBlock {
+    $$ = $1;
+    CHECK_FOR_ERROR
+  }
+  | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks   
+    $$ = $1;
+    CHECK_FOR_ERROR
+  };
+
+
+// Basic blocks are terminated by branching instructions: 
+// br, br/cc, switch, ret
+//
+BasicBlock : InstructionList OptLocalAssign BBTerminatorInst  {
+    setValueName($3, $2);
+    CHECK_FOR_ERROR
+    InsertValue($3);
+    $1->getInstList().push_back($3);
+    $$ = $1;
+    CHECK_FOR_ERROR
+  };
+
+InstructionList : InstructionList Inst {
+    if (CastInst *CI1 = dyn_cast<CastInst>($2))
+      if (CastInst *CI2 = dyn_cast<CastInst>(CI1->getOperand(0)))
+        if (CI2->getParent() == 0)
+          $1->getInstList().push_back(CI2);
+    $1->getInstList().push_back($2);
+    $$ = $1;
+    CHECK_FOR_ERROR
+  }
+  | /* empty */ {          // Empty space between instruction lists
+    $$ = defineBBVal(ValID::createLocalID(CurFun.NextValNum));
+    CHECK_FOR_ERROR
+  }
+  | LABELSTR {             // Labelled (named) basic block
+    $$ = defineBBVal(ValID::createLocalName(*$1));
+    delete $1;
+    CHECK_FOR_ERROR
+
+  };
+
+BBTerminatorInst : RET ResolvedVal {              // Return with a result...
+    $$ = new ReturnInst($2);
+    CHECK_FOR_ERROR
+  }
+  | RET VOID {                                    // Return with no result...
+    $$ = new ReturnInst();
+    CHECK_FOR_ERROR
+  }
+  | BR LABEL ValueRef {                           // Unconditional Branch...
+    BasicBlock* tmpBB = getBBVal($3);
+    CHECK_FOR_ERROR
+    $$ = new BranchInst(tmpBB);
+  }                                               // Conditional Branch...
+  | BR INTTYPE ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {  
+    assert(cast<IntegerType>($2)->getBitWidth() == 1 && "Not Bool?");
+    BasicBlock* tmpBBA = getBBVal($6);
+    CHECK_FOR_ERROR
+    BasicBlock* tmpBBB = getBBVal($9);
+    CHECK_FOR_ERROR
+    Value* tmpVal = getVal(Type::Int1Ty, $3);
+    CHECK_FOR_ERROR
+    $$ = new BranchInst(tmpBBA, tmpBBB, tmpVal);
+  }
+  | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
+    Value* tmpVal = getVal($2, $3);
+    CHECK_FOR_ERROR
+    BasicBlock* tmpBB = getBBVal($6);
+    CHECK_FOR_ERROR
+    SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size());
+    $$ = S;
+
+    std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
+      E = $8->end();
+    for (; I != E; ++I) {
+      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
+          S->addCase(CI, I->second);
+      else
+        GEN_ERROR("Switch case is constant, but not a simple integer");
+    }
+    delete $8;
+    CHECK_FOR_ERROR
+  }
+  | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
+    Value* tmpVal = getVal($2, $3);
+    CHECK_FOR_ERROR
+    BasicBlock* tmpBB = getBBVal($6);
+    CHECK_FOR_ERROR
+    SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0);
+    $$ = S;
+    CHECK_FOR_ERROR
+  }
+  | INVOKE OptCallingConv ResultTypes ValueRef '(' ValueRefList ')' OptFuncAttrs
+    TO LABEL ValueRef UNWIND LABEL ValueRef {
+
+    // Handle the short syntax
+    const PointerType *PFTy = 0;
+    const FunctionType *Ty = 0;
+    if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
+        !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
+      // Pull out the types of all of the arguments...
+      std::vector<const Type*> ParamTypes;
+      ParamAttrsVector Attrs;
+      if ($8 != ParamAttr::None) {
+        ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $8;
+        Attrs.push_back(PAWI);
+      }
+      ValueRefList::iterator I = $6->begin(), E = $6->end();
+      unsigned index = 1;
+      for (; I != E; ++I, ++index) {
+        const Type *Ty = I->Val->getType();
+        if (Ty == Type::VoidTy)
+          GEN_ERROR("Short call syntax cannot be used with varargs");
+        ParamTypes.push_back(Ty);
+        if (I->Attrs != ParamAttr::None) {
+          ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
+          Attrs.push_back(PAWI);
+        }
+      }
+
+      ParamAttrsList *PAL = 0;
+      if (!Attrs.empty())
+        PAL = ParamAttrsList::get(Attrs);
+      Ty = FunctionType::get($3->get(), ParamTypes, false, PAL);
+      PFTy = PointerType::get(Ty);
+    }
+
+    delete $3;
+
+    Value *V = getVal(PFTy, $4);   // Get the function we're calling...
+    CHECK_FOR_ERROR
+    BasicBlock *Normal = getBBVal($11);
+    CHECK_FOR_ERROR
+    BasicBlock *Except = getBBVal($14);
+    CHECK_FOR_ERROR
+
+    // Check the arguments
+    ValueList Args;
+    if ($6->empty()) {                                   // Has no arguments?
+      // Make sure no arguments is a good thing!
+      if (Ty->getNumParams() != 0)
+        GEN_ERROR("No arguments passed to a function that "
+                       "expects arguments");
+    } else {                                     // Has arguments?
+      // Loop through FunctionType's arguments and ensure they are specified
+      // correctly!
+      FunctionType::param_iterator I = Ty->param_begin();
+      FunctionType::param_iterator E = Ty->param_end();
+      ValueRefList::iterator ArgI = $6->begin(), ArgE = $6->end();
+
+      for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
+        if (ArgI->Val->getType() != *I)
+          GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
+                         (*I)->getDescription() + "'");
+        Args.push_back(ArgI->Val);
+      }
+
+      if (Ty->isVarArg()) {
+        if (I == E)
+          for (; ArgI != ArgE; ++ArgI)
+            Args.push_back(ArgI->Val); // push the remaining varargs
+      } else if (I != E || ArgI != ArgE)
+        GEN_ERROR("Invalid number of parameters detected");
+    }
+
+    // Create the InvokeInst
+    InvokeInst *II = new InvokeInst(V, Normal, Except, &Args[0], Args.size());
+    II->setCallingConv($2);
+    $$ = II;
+    delete $6;
+    CHECK_FOR_ERROR
+  }
+  | UNWIND {
+    $$ = new UnwindInst();
+    CHECK_FOR_ERROR
+  }
+  | UNREACHABLE {
+    $$ = new UnreachableInst();
+    CHECK_FOR_ERROR
+  };
+
+
+
+JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
+    $$ = $1;
+    Constant *V = cast<Constant>(getExistingVal($2, $3));
+    CHECK_FOR_ERROR
+    if (V == 0)
+      GEN_ERROR("May only switch on a constant pool value");
+
+    BasicBlock* tmpBB = getBBVal($6);
+    CHECK_FOR_ERROR
+    $$->push_back(std::make_pair(V, tmpBB));
+  }
+  | IntType ConstValueRef ',' LABEL ValueRef {
+    $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
+    Constant *V = cast<Constant>(getExistingVal($1, $2));
+    CHECK_FOR_ERROR
+
+    if (V == 0)
+      GEN_ERROR("May only switch on a constant pool value");
+
+    BasicBlock* tmpBB = getBBVal($5);
+    CHECK_FOR_ERROR
+    $$->push_back(std::make_pair(V, tmpBB)); 
+  };
+
+Inst : OptLocalAssign InstVal {
+    // Is this definition named?? if so, assign the name...
+    setValueName($2, $1);
+    CHECK_FOR_ERROR
+    InsertValue($2);
+    $$ = $2;
+    CHECK_FOR_ERROR
+  };
+
+
+PHIList : Types '[' ValueRef ',' ValueRef ']' {    // Used for PHI nodes
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+    $$ = new std::list<std::pair<Value*, BasicBlock*> >();
+    Value* tmpVal = getVal(*$1, $3);
+    CHECK_FOR_ERROR
+    BasicBlock* tmpBB = getBBVal($5);
+    CHECK_FOR_ERROR
+    $$->push_back(std::make_pair(tmpVal, tmpBB));
+    delete $1;
+  }
+  | PHIList ',' '[' ValueRef ',' ValueRef ']' {
+    $$ = $1;
+    Value* tmpVal = getVal($1->front().first->getType(), $4);
+    CHECK_FOR_ERROR
+    BasicBlock* tmpBB = getBBVal($6);
+    CHECK_FOR_ERROR
+    $1->push_back(std::make_pair(tmpVal, tmpBB));
+  };
+
+
+ValueRefList : Types ValueRef OptParamAttrs {    
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+    // Used for call and invoke instructions
+    $$ = new ValueRefList();
+    ValueRefListEntry E; E.Attrs = $3; E.Val = getVal($1->get(), $2);
+    $$->push_back(E);
+    delete $1;
+  }
+  | ValueRefList ',' Types ValueRef OptParamAttrs {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
+    $$ = $1;
+    ValueRefListEntry E; E.Attrs = $5; E.Val = getVal($3->get(), $4);
+    $$->push_back(E);
+    delete $3;
+    CHECK_FOR_ERROR
+  }
+  | /*empty*/ { $$ = new ValueRefList(); };
+
+IndexList       // Used for gep instructions and constant expressions
+  : /*empty*/ { $$ = new std::vector<Value*>(); }
+  | IndexList ',' ResolvedVal {
+    $$ = $1;
+    $$->push_back($3);
+    CHECK_FOR_ERROR
+  }
+  ;
+
+OptTailCall : TAIL CALL {
+    $$ = true;
+    CHECK_FOR_ERROR
+  }
+  | CALL {
+    $$ = false;
+    CHECK_FOR_ERROR
+  };
+
+InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
+    if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() && 
+        !isa<VectorType>((*$2).get()))
+      GEN_ERROR(
+        "Arithmetic operator requires integer, FP, or packed operands");
+    if (isa<VectorType>((*$2).get()) && 
+        ($1 == Instruction::URem || 
+         $1 == Instruction::SRem ||
+         $1 == Instruction::FRem))
+      GEN_ERROR("Remainder not supported on vector types");
+    Value* val1 = getVal(*$2, $3); 
+    CHECK_FOR_ERROR
+    Value* val2 = getVal(*$2, $5);
+    CHECK_FOR_ERROR
+    $$ = BinaryOperator::create($1, val1, val2);
+    if ($$ == 0)
+      GEN_ERROR("binary operator returned null");
+    delete $2;
+  }
+  | LogicalOps Types ValueRef ',' ValueRef {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
+    if (!(*$2)->isInteger()) {
+      if (Instruction::isShift($1) || !isa<VectorType>($2->get()) ||
+          !cast<VectorType>($2->get())->getElementType()->isInteger())
+        GEN_ERROR("Logical operator requires integral operands");
+    }
+    Value* tmpVal1 = getVal(*$2, $3);
+    CHECK_FOR_ERROR
+    Value* tmpVal2 = getVal(*$2, $5);
+    CHECK_FOR_ERROR
+    $$ = BinaryOperator::create($1, tmpVal1, tmpVal2);
+    if ($$ == 0)
+      GEN_ERROR("binary operator returned null");
+    delete $2;
+  }
+  | ICMP IPredicates Types ValueRef ',' ValueRef  {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
+    if (isa<VectorType>((*$3).get()))
+      GEN_ERROR("Vector types not supported by icmp instruction");
+    Value* tmpVal1 = getVal(*$3, $4);
+    CHECK_FOR_ERROR
+    Value* tmpVal2 = getVal(*$3, $6);
+    CHECK_FOR_ERROR
+    $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
+    if ($$ == 0)
+      GEN_ERROR("icmp operator returned null");
+    delete $3;
+  }
+  | FCMP FPredicates Types ValueRef ',' ValueRef  {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
+    if (isa<VectorType>((*$3).get()))
+      GEN_ERROR("Vector types not supported by fcmp instruction");
+    Value* tmpVal1 = getVal(*$3, $4);
+    CHECK_FOR_ERROR
+    Value* tmpVal2 = getVal(*$3, $6);
+    CHECK_FOR_ERROR
+    $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
+    if ($$ == 0)
+      GEN_ERROR("fcmp operator returned null");
+    delete $3;
+  }
+  | CastOps ResolvedVal TO Types {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
+    Value* Val = $2;
+    const Type* DestTy = $4->get();
+    if (!CastInst::castIsValid($1, Val, DestTy))
+      GEN_ERROR("invalid cast opcode for cast from '" +
+                Val->getType()->getDescription() + "' to '" +
+                DestTy->getDescription() + "'"); 
+    $$ = CastInst::create($1, Val, DestTy);
+    delete $4;
+  }
+  | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
+    if ($2->getType() != Type::Int1Ty)
+      GEN_ERROR("select condition must be boolean");
+    if ($4->getType() != $6->getType())
+      GEN_ERROR("select value types should match");
+    $$ = new SelectInst($2, $4, $6);
+    CHECK_FOR_ERROR
+  }
+  | VAARG ResolvedVal ',' Types {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
+    $$ = new VAArgInst($2, *$4);
+    delete $4;
+    CHECK_FOR_ERROR
+  }
+  | EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
+    if (!ExtractElementInst::isValidOperands($2, $4))
+      GEN_ERROR("Invalid extractelement operands");
+    $$ = new ExtractElementInst($2, $4);
+    CHECK_FOR_ERROR
+  }
+  | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
+    if (!InsertElementInst::isValidOperands($2, $4, $6))
+      GEN_ERROR("Invalid insertelement operands");
+    $$ = new InsertElementInst($2, $4, $6);
+    CHECK_FOR_ERROR
+  }
+  | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
+    if (!ShuffleVectorInst::isValidOperands($2, $4, $6))
+      GEN_ERROR("Invalid shufflevector operands");
+    $$ = new ShuffleVectorInst($2, $4, $6);
+    CHECK_FOR_ERROR
+  }
+  | PHI_TOK PHIList {
+    const Type *Ty = $2->front().first->getType();
+    if (!Ty->isFirstClassType())
+      GEN_ERROR("PHI node operands must be of first class type");
+    $$ = new PHINode(Ty);
+    ((PHINode*)$$)->reserveOperandSpace($2->size());
+    while ($2->begin() != $2->end()) {
+      if ($2->front().first->getType() != Ty) 
+        GEN_ERROR("All elements of a PHI node must be of the same type");
+      cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
+      $2->pop_front();
+    }
+    delete $2;  // Free the list...
+    CHECK_FOR_ERROR
+  }
+  | OptTailCall OptCallingConv ResultTypes ValueRef '(' ValueRefList ')' 
+    OptFuncAttrs {
+
+    // Handle the short syntax
+    const PointerType *PFTy = 0;
+    const FunctionType *Ty = 0;
+    if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
+        !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
+      // Pull out the types of all of the arguments...
+      std::vector<const Type*> ParamTypes;
+      ParamAttrsVector Attrs;
+      if ($8 != ParamAttr::None) {
+        ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $8;
+        Attrs.push_back(PAWI);
+      }
+      unsigned index = 1;
+      ValueRefList::iterator I = $6->begin(), E = $6->end();
+      for (; I != E; ++I, ++index) {
+        const Type *Ty = I->Val->getType();
+        if (Ty == Type::VoidTy)
+          GEN_ERROR("Short call syntax cannot be used with varargs");
+        ParamTypes.push_back(Ty);
+        if (I->Attrs != ParamAttr::None) {
+          ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
+          Attrs.push_back(PAWI);
+        }
+      }
+
+      ParamAttrsList *PAL = 0;
+      if (!Attrs.empty())
+        PAL = ParamAttrsList::get(Attrs);
+
+      Ty = FunctionType::get($3->get(), ParamTypes, false, PAL);
+      PFTy = PointerType::get(Ty);
+    }
+
+    Value *V = getVal(PFTy, $4);   // Get the function we're calling...
+    CHECK_FOR_ERROR
+
+    // Check for call to invalid intrinsic to avoid crashing later.
+    if (Function *theF = dyn_cast<Function>(V)) {
+      if (theF->hasName() && (theF->getValueName()->getKeyLength() >= 5) &&
+          (0 == strncmp(theF->getValueName()->getKeyData(), "llvm.", 5)) &&
+          !theF->getIntrinsicID(true))
+        GEN_ERROR("Call to invalid LLVM intrinsic function '" +
+                  theF->getName() + "'");
+    }
+
+    // Check the arguments 
+    ValueList Args;
+    if ($6->empty()) {                                   // Has no arguments?
+      // Make sure no arguments is a good thing!
+      if (Ty->getNumParams() != 0)
+        GEN_ERROR("No arguments passed to a function that "
+                       "expects arguments");
+    } else {                                     // Has arguments?
+      // Loop through FunctionType's arguments and ensure they are specified
+      // correctly!
+      //
+      FunctionType::param_iterator I = Ty->param_begin();
+      FunctionType::param_iterator E = Ty->param_end();
+      ValueRefList::iterator ArgI = $6->begin(), ArgE = $6->end();
+
+      for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
+        if (ArgI->Val->getType() != *I)
+          GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
+                         (*I)->getDescription() + "'");
+        Args.push_back(ArgI->Val);
+      }
+      if (Ty->isVarArg()) {
+        if (I == E)
+          for (; ArgI != ArgE; ++ArgI)
+            Args.push_back(ArgI->Val); // push the remaining varargs
+      } else if (I != E || ArgI != ArgE)
+        GEN_ERROR("Invalid number of parameters detected");
+    }
+    // Create the call node
+    CallInst *CI = new CallInst(V, &Args[0], Args.size());
+    CI->setTailCall($1);
+    CI->setCallingConv($2);
+    $$ = CI;
+    delete $6;
+    delete $3;
+    CHECK_FOR_ERROR
+  }
+  | MemoryInst {
+    $$ = $1;
+    CHECK_FOR_ERROR
+  };
+
+OptVolatile : VOLATILE {
+    $$ = true;
+    CHECK_FOR_ERROR
+  }
+  | /* empty */ {
+    $$ = false;
+    CHECK_FOR_ERROR
+  };
+
+
+
+MemoryInst : MALLOC Types OptCAlign {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
+    $$ = new MallocInst(*$2, 0, $3);
+    delete $2;
+    CHECK_FOR_ERROR
+  }
+  | MALLOC Types ',' INTTYPE ValueRef OptCAlign {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
+    Value* tmpVal = getVal($4, $5);
+    CHECK_FOR_ERROR
+    $$ = new MallocInst(*$2, tmpVal, $6);
+    delete $2;
+  }
+  | ALLOCA Types OptCAlign {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
+    $$ = new AllocaInst(*$2, 0, $3);
+    delete $2;
+    CHECK_FOR_ERROR
+  }
+  | ALLOCA Types ',' INTTYPE ValueRef OptCAlign {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
+    Value* tmpVal = getVal($4, $5);
+    CHECK_FOR_ERROR
+    $$ = new AllocaInst(*$2, tmpVal, $6);
+    delete $2;
+  }
+  | FREE ResolvedVal {
+    if (!isa<PointerType>($2->getType()))
+      GEN_ERROR("Trying to free nonpointer type " + 
+                     $2->getType()->getDescription() + "");
+    $$ = new FreeInst($2);
+    CHECK_FOR_ERROR
+  }
+
+  | OptVolatile LOAD Types ValueRef OptCAlign {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
+    if (!isa<PointerType>($3->get()))
+      GEN_ERROR("Can't load from nonpointer type: " +
+                     (*$3)->getDescription());
+    if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType())
+      GEN_ERROR("Can't load from pointer of non-first-class type: " +
+                     (*$3)->getDescription());
+    Value* tmpVal = getVal(*$3, $4);
+    CHECK_FOR_ERROR
+    $$ = new LoadInst(tmpVal, "", $1, $5);
+    delete $3;
+  }
+  | OptVolatile STORE ResolvedVal ',' Types ValueRef OptCAlign {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
+    const PointerType *PT = dyn_cast<PointerType>($5->get());
+    if (!PT)
+      GEN_ERROR("Can't store to a nonpointer type: " +
+                     (*$5)->getDescription());
+    const Type *ElTy = PT->getElementType();
+    if (ElTy != $3->getType())
+      GEN_ERROR("Can't store '" + $3->getType()->getDescription() +
+                     "' into space of type '" + ElTy->getDescription() + "'");
+
+    Value* tmpVal = getVal(*$5, $6);
+    CHECK_FOR_ERROR
+    $$ = new StoreInst($3, tmpVal, $1, $7);
+    delete $5;
+  }
+  | GETELEMENTPTR Types ValueRef IndexList {
+    if (!UpRefs.empty())
+      GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
+    if (!isa<PointerType>($2->get()))
+      GEN_ERROR("getelementptr insn requires pointer operand");
+
+    if (!GetElementPtrInst::getIndexedType(*$2, &(*$4)[0], $4->size(), true))
+      GEN_ERROR("Invalid getelementptr indices for type '" +
+                     (*$2)->getDescription()+ "'");
+    Value* tmpVal = getVal(*$2, $3);
+    CHECK_FOR_ERROR
+    $$ = new GetElementPtrInst(tmpVal, &(*$4)[0], $4->size());
+    delete $2; 
+    delete $4;
+  };
+
+
+%%
+
+// common code from the two 'RunVMAsmParser' functions
+static Module* RunParser(Module * M) {
+
+  llvmAsmlineno = 1;      // Reset the current line number...
+  CurModule.CurrentModule = M;
+#if YYDEBUG
+  yydebug = Debug;
+#endif
+
+  // Check to make sure the parser succeeded
+  if (yyparse()) {
+    if (ParserResult)
+      delete ParserResult;
+    return 0;
+  }
+
+  // Emit an error if there are any unresolved types left.
+  if (!CurModule.LateResolveTypes.empty()) {
+    const ValID &DID = CurModule.LateResolveTypes.begin()->first;
+    if (DID.Type == ValID::LocalName) {
+      GenerateError("Undefined type remains at eof: '"+DID.getName() + "'");
+    } else {
+      GenerateError("Undefined type remains at eof: #" + itostr(DID.Num));
+    }
+    if (ParserResult)
+      delete ParserResult;
+    return 0;
+  }
+
+  // Emit an error if there are any unresolved values left.
+  if (!CurModule.LateResolveValues.empty()) {
+    Value *V = CurModule.LateResolveValues.back();
+    std::map<Value*, std::pair<ValID, int> >::iterator I =
+      CurModule.PlaceHolderInfo.find(V);
+
+    if (I != CurModule.PlaceHolderInfo.end()) {
+      ValID &DID = I->second.first;
+      if (DID.Type == ValID::LocalName) {
+        GenerateError("Undefined value remains at eof: "+DID.getName() + "'");
+      } else {
+        GenerateError("Undefined value remains at eof: #" + itostr(DID.Num));
+      }
+      if (ParserResult)
+        delete ParserResult;
+      return 0;
+    }
+  }
+
+  // Check to make sure that parsing produced a result
+  if (!ParserResult)
+    return 0;
+
+  // Reset ParserResult variable while saving its value for the result.
+  Module *Result = ParserResult;
+  ParserResult = 0;
+
+  return Result;
+}
+
+void llvm::GenerateError(const std::string &message, int LineNo) {
+  if (LineNo == -1) LineNo = llvmAsmlineno;
+  // TODO: column number in exception
+  if (TheParseError)
+    TheParseError->setError(CurFilename, message, LineNo);
+  TriggerError = 1;
+}
+
+int yyerror(const char *ErrorMsg) {
+  std::string where 
+    = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
+                  + ":" + utostr((unsigned) llvmAsmlineno) + ": ";
+  std::string errMsg = where + "error: " + std::string(ErrorMsg);
+  if (yychar != YYEMPTY && yychar != 0)
+    errMsg += " while reading token: '" + std::string(llvmAsmtext, llvmAsmleng)+
+              "'";
+  GenerateError(errMsg);
+  return 0;
+}