It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Bitcode/Makefile b/lib/Bitcode/Makefile
new file mode 100644
index 0000000..1e4ab1b
--- /dev/null
+++ b/lib/Bitcode/Makefile
@@ -0,0 +1,14 @@
+##===- lib/Bitcode/Makefile --------------------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file was developed by Chris Lattner and is distributed under
+# the University of Illinois Open Source License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../..
+PARALLEL_DIRS = Reader Writer
+
+include $(LEVEL)/Makefile.common
+
diff --git a/lib/Bitcode/Reader/BitcodeReader.cpp b/lib/Bitcode/Reader/BitcodeReader.cpp
new file mode 100644
index 0000000..b040df3
--- /dev/null
+++ b/lib/Bitcode/Reader/BitcodeReader.cpp
@@ -0,0 +1,1666 @@
+//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This header defines the BitcodeReader class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Bitcode/ReaderWriter.h"
+#include "BitcodeReader.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
+#include "llvm/Module.h"
+#include "llvm/ParameterAttributes.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/MemoryBuffer.h"
+using namespace llvm;
+
+void BitcodeReader::FreeState() {
+ delete Buffer;
+ Buffer = 0;
+ std::vector<PATypeHolder>().swap(TypeList);
+ ValueList.clear();
+ std::vector<const ParamAttrsList*>().swap(ParamAttrs);
+ std::vector<BasicBlock*>().swap(FunctionBBs);
+ std::vector<Function*>().swap(FunctionsWithBodies);
+ DeferredFunctionInfo.clear();
+}
+
+//===----------------------------------------------------------------------===//
+// Helper functions to implement forward reference resolution, etc.
+//===----------------------------------------------------------------------===//
+
+/// ConvertToString - Convert a string from a record into an std::string, return
+/// true on failure.
+template<typename StrTy>
+static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
+ StrTy &Result) {
+ if (Idx > Record.size())
+ return true;
+
+ for (unsigned i = Idx, e = Record.size(); i != e; ++i)
+ Result += (char)Record[i];
+ return false;
+}
+
+static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
+ switch (Val) {
+ default: // Map unknown/new linkages to external
+ case 0: return GlobalValue::ExternalLinkage;
+ case 1: return GlobalValue::WeakLinkage;
+ case 2: return GlobalValue::AppendingLinkage;
+ case 3: return GlobalValue::InternalLinkage;
+ case 4: return GlobalValue::LinkOnceLinkage;
+ case 5: return GlobalValue::DLLImportLinkage;
+ case 6: return GlobalValue::DLLExportLinkage;
+ case 7: return GlobalValue::ExternalWeakLinkage;
+ }
+}
+
+static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
+ switch (Val) {
+ default: // Map unknown visibilities to default.
+ case 0: return GlobalValue::DefaultVisibility;
+ case 1: return GlobalValue::HiddenVisibility;
+ case 2: return GlobalValue::ProtectedVisibility;
+ }
+}
+
+static int GetDecodedCastOpcode(unsigned Val) {
+ switch (Val) {
+ default: return -1;
+ case bitc::CAST_TRUNC : return Instruction::Trunc;
+ case bitc::CAST_ZEXT : return Instruction::ZExt;
+ case bitc::CAST_SEXT : return Instruction::SExt;
+ case bitc::CAST_FPTOUI : return Instruction::FPToUI;
+ case bitc::CAST_FPTOSI : return Instruction::FPToSI;
+ case bitc::CAST_UITOFP : return Instruction::UIToFP;
+ case bitc::CAST_SITOFP : return Instruction::SIToFP;
+ case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
+ case bitc::CAST_FPEXT : return Instruction::FPExt;
+ case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
+ case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
+ case bitc::CAST_BITCAST : return Instruction::BitCast;
+ }
+}
+static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
+ switch (Val) {
+ default: return -1;
+ case bitc::BINOP_ADD: return Instruction::Add;
+ case bitc::BINOP_SUB: return Instruction::Sub;
+ case bitc::BINOP_MUL: return Instruction::Mul;
+ case bitc::BINOP_UDIV: return Instruction::UDiv;
+ case bitc::BINOP_SDIV:
+ return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
+ case bitc::BINOP_UREM: return Instruction::URem;
+ case bitc::BINOP_SREM:
+ return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
+ case bitc::BINOP_SHL: return Instruction::Shl;
+ case bitc::BINOP_LSHR: return Instruction::LShr;
+ case bitc::BINOP_ASHR: return Instruction::AShr;
+ case bitc::BINOP_AND: return Instruction::And;
+ case bitc::BINOP_OR: return Instruction::Or;
+ case bitc::BINOP_XOR: return Instruction::Xor;
+ }
+}
+
+
+namespace {
+ /// @brief A class for maintaining the slot number definition
+ /// as a placeholder for the actual definition for forward constants defs.
+ class ConstantPlaceHolder : public ConstantExpr {
+ ConstantPlaceHolder(); // DO NOT IMPLEMENT
+ void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
+ public:
+ Use Op;
+ ConstantPlaceHolder(const Type *Ty)
+ : ConstantExpr(Ty, Instruction::UserOp1, &Op, 1),
+ Op(UndefValue::get(Type::Int32Ty), this) {
+ }
+ };
+}
+
+Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
+ const Type *Ty) {
+ if (Idx >= size()) {
+ // Insert a bunch of null values.
+ Uses.resize(Idx+1);
+ OperandList = &Uses[0];
+ NumOperands = Idx+1;
+ }
+
+ if (Value *V = Uses[Idx]) {
+ assert(Ty == V->getType() && "Type mismatch in constant table!");
+ return cast<Constant>(V);
+ }
+
+ // Create and return a placeholder, which will later be RAUW'd.
+ Constant *C = new ConstantPlaceHolder(Ty);
+ Uses[Idx].init(C, this);
+ return C;
+}
+
+Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
+ if (Idx >= size()) {
+ // Insert a bunch of null values.
+ Uses.resize(Idx+1);
+ OperandList = &Uses[0];
+ NumOperands = Idx+1;
+ }
+
+ if (Value *V = Uses[Idx]) {
+ assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
+ return V;
+ }
+
+ // No type specified, must be invalid reference.
+ if (Ty == 0) return 0;
+
+ // Create and return a placeholder, which will later be RAUW'd.
+ Value *V = new Argument(Ty);
+ Uses[Idx].init(V, this);
+ return V;
+}
+
+
+const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
+ // If the TypeID is in range, return it.
+ if (ID < TypeList.size())
+ return TypeList[ID].get();
+ if (!isTypeTable) return 0;
+
+ // The type table allows forward references. Push as many Opaque types as
+ // needed to get up to ID.
+ while (TypeList.size() <= ID)
+ TypeList.push_back(OpaqueType::get());
+ return TypeList.back().get();
+}
+
+//===----------------------------------------------------------------------===//
+// Functions for parsing blocks from the bitcode file
+//===----------------------------------------------------------------------===//
+
+bool BitcodeReader::ParseParamAttrBlock() {
+ if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
+ return Error("Malformed block record");
+
+ if (!ParamAttrs.empty())
+ return Error("Multiple PARAMATTR blocks found!");
+
+ SmallVector<uint64_t, 64> Record;
+
+ ParamAttrsVector Attrs;
+
+ // Read all the records.
+ while (1) {
+ unsigned Code = Stream.ReadCode();
+ if (Code == bitc::END_BLOCK) {
+ if (Stream.ReadBlockEnd())
+ return Error("Error at end of PARAMATTR block");
+ return false;
+ }
+
+ if (Code == bitc::ENTER_SUBBLOCK) {
+ // No known subblocks, always skip them.
+ Stream.ReadSubBlockID();
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ continue;
+ }
+
+ if (Code == bitc::DEFINE_ABBREV) {
+ Stream.ReadAbbrevRecord();
+ continue;
+ }
+
+ // Read a record.
+ Record.clear();
+ switch (Stream.ReadRecord(Code, Record)) {
+ default: // Default behavior: ignore.
+ break;
+ case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
+ if (Record.size() & 1)
+ return Error("Invalid ENTRY record");
+
+ ParamAttrsWithIndex PAWI;
+ for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
+ PAWI.index = Record[i];
+ PAWI.attrs = Record[i+1];
+ Attrs.push_back(PAWI);
+ }
+ ParamAttrs.push_back(ParamAttrsList::get(Attrs));
+ Attrs.clear();
+ break;
+ }
+ }
+ }
+}
+
+
+bool BitcodeReader::ParseTypeTable() {
+ if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
+ return Error("Malformed block record");
+
+ if (!TypeList.empty())
+ return Error("Multiple TYPE_BLOCKs found!");
+
+ SmallVector<uint64_t, 64> Record;
+ unsigned NumRecords = 0;
+
+ // Read all the records for this type table.
+ while (1) {
+ unsigned Code = Stream.ReadCode();
+ if (Code == bitc::END_BLOCK) {
+ if (NumRecords != TypeList.size())
+ return Error("Invalid type forward reference in TYPE_BLOCK");
+ if (Stream.ReadBlockEnd())
+ return Error("Error at end of type table block");
+ return false;
+ }
+
+ if (Code == bitc::ENTER_SUBBLOCK) {
+ // No known subblocks, always skip them.
+ Stream.ReadSubBlockID();
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ continue;
+ }
+
+ if (Code == bitc::DEFINE_ABBREV) {
+ Stream.ReadAbbrevRecord();
+ continue;
+ }
+
+ // Read a record.
+ Record.clear();
+ const Type *ResultTy = 0;
+ switch (Stream.ReadRecord(Code, Record)) {
+ default: // Default behavior: unknown type.
+ ResultTy = 0;
+ break;
+ case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
+ // TYPE_CODE_NUMENTRY contains a count of the number of types in the
+ // type list. This allows us to reserve space.
+ if (Record.size() < 1)
+ return Error("Invalid TYPE_CODE_NUMENTRY record");
+ TypeList.reserve(Record[0]);
+ continue;
+ case bitc::TYPE_CODE_VOID: // VOID
+ ResultTy = Type::VoidTy;
+ break;
+ case bitc::TYPE_CODE_FLOAT: // FLOAT
+ ResultTy = Type::FloatTy;
+ break;
+ case bitc::TYPE_CODE_DOUBLE: // DOUBLE
+ ResultTy = Type::DoubleTy;
+ break;
+ case bitc::TYPE_CODE_LABEL: // LABEL
+ ResultTy = Type::LabelTy;
+ break;
+ case bitc::TYPE_CODE_OPAQUE: // OPAQUE
+ ResultTy = 0;
+ break;
+ case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
+ if (Record.size() < 1)
+ return Error("Invalid Integer type record");
+
+ ResultTy = IntegerType::get(Record[0]);
+ break;
+ case bitc::TYPE_CODE_POINTER: // POINTER: [pointee type]
+ if (Record.size() < 1)
+ return Error("Invalid POINTER type record");
+ ResultTy = PointerType::get(getTypeByID(Record[0], true));
+ break;
+ case bitc::TYPE_CODE_FUNCTION: {
+ // FUNCTION: [vararg, attrid, retty, paramty x N]
+ if (Record.size() < 3)
+ return Error("Invalid FUNCTION type record");
+ std::vector<const Type*> ArgTys;
+ for (unsigned i = 3, e = Record.size(); i != e; ++i)
+ ArgTys.push_back(getTypeByID(Record[i], true));
+
+ ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
+ Record[0], getParamAttrs(Record[1]));
+ break;
+ }
+ case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N]
+ if (Record.size() < 1)
+ return Error("Invalid STRUCT type record");
+ std::vector<const Type*> EltTys;
+ for (unsigned i = 1, e = Record.size(); i != e; ++i)
+ EltTys.push_back(getTypeByID(Record[i], true));
+ ResultTy = StructType::get(EltTys, Record[0]);
+ break;
+ }
+ case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
+ if (Record.size() < 2)
+ return Error("Invalid ARRAY type record");
+ ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
+ break;
+ case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
+ if (Record.size() < 2)
+ return Error("Invalid VECTOR type record");
+ ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
+ break;
+ }
+
+ if (NumRecords == TypeList.size()) {
+ // If this is a new type slot, just append it.
+ TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get());
+ ++NumRecords;
+ } else if (ResultTy == 0) {
+ // Otherwise, this was forward referenced, so an opaque type was created,
+ // but the result type is actually just an opaque. Leave the one we
+ // created previously.
+ ++NumRecords;
+ } else {
+ // Otherwise, this was forward referenced, so an opaque type was created.
+ // Resolve the opaque type to the real type now.
+ assert(NumRecords < TypeList.size() && "Typelist imbalance");
+ const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
+
+ // Don't directly push the new type on the Tab. Instead we want to replace
+ // the opaque type we previously inserted with the new concrete value. The
+ // refinement from the abstract (opaque) type to the new type causes all
+ // uses of the abstract type to use the concrete type (NewTy). This will
+ // also cause the opaque type to be deleted.
+ const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
+
+ // This should have replaced the old opaque type with the new type in the
+ // value table... or with a preexisting type that was already in the
+ // system. Let's just make sure it did.
+ assert(TypeList[NumRecords-1].get() != OldTy &&
+ "refineAbstractType didn't work!");
+ }
+ }
+}
+
+
+bool BitcodeReader::ParseTypeSymbolTable() {
+ if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
+ return Error("Malformed block record");
+
+ SmallVector<uint64_t, 64> Record;
+
+ // Read all the records for this type table.
+ std::string TypeName;
+ while (1) {
+ unsigned Code = Stream.ReadCode();
+ if (Code == bitc::END_BLOCK) {
+ if (Stream.ReadBlockEnd())
+ return Error("Error at end of type symbol table block");
+ return false;
+ }
+
+ if (Code == bitc::ENTER_SUBBLOCK) {
+ // No known subblocks, always skip them.
+ Stream.ReadSubBlockID();
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ continue;
+ }
+
+ if (Code == bitc::DEFINE_ABBREV) {
+ Stream.ReadAbbrevRecord();
+ continue;
+ }
+
+ // Read a record.
+ Record.clear();
+ switch (Stream.ReadRecord(Code, Record)) {
+ default: // Default behavior: unknown type.
+ break;
+ case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N]
+ if (ConvertToString(Record, 1, TypeName))
+ return Error("Invalid TST_ENTRY record");
+ unsigned TypeID = Record[0];
+ if (TypeID >= TypeList.size())
+ return Error("Invalid Type ID in TST_ENTRY record");
+
+ TheModule->addTypeName(TypeName, TypeList[TypeID].get());
+ TypeName.clear();
+ break;
+ }
+ }
+}
+
+bool BitcodeReader::ParseValueSymbolTable() {
+ if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
+ return Error("Malformed block record");
+
+ SmallVector<uint64_t, 64> Record;
+
+ // Read all the records for this value table.
+ SmallString<128> ValueName;
+ while (1) {
+ unsigned Code = Stream.ReadCode();
+ if (Code == bitc::END_BLOCK) {
+ if (Stream.ReadBlockEnd())
+ return Error("Error at end of value symbol table block");
+ return false;
+ }
+ if (Code == bitc::ENTER_SUBBLOCK) {
+ // No known subblocks, always skip them.
+ Stream.ReadSubBlockID();
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ continue;
+ }
+
+ if (Code == bitc::DEFINE_ABBREV) {
+ Stream.ReadAbbrevRecord();
+ continue;
+ }
+
+ // Read a record.
+ Record.clear();
+ switch (Stream.ReadRecord(Code, Record)) {
+ default: // Default behavior: unknown type.
+ break;
+ case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
+ if (ConvertToString(Record, 1, ValueName))
+ return Error("Invalid TST_ENTRY record");
+ unsigned ValueID = Record[0];
+ if (ValueID >= ValueList.size())
+ return Error("Invalid Value ID in VST_ENTRY record");
+ Value *V = ValueList[ValueID];
+
+ V->setName(&ValueName[0], ValueName.size());
+ ValueName.clear();
+ break;
+ }
+ case bitc::VST_CODE_BBENTRY: {
+ if (ConvertToString(Record, 1, ValueName))
+ return Error("Invalid VST_BBENTRY record");
+ BasicBlock *BB = getBasicBlock(Record[0]);
+ if (BB == 0)
+ return Error("Invalid BB ID in VST_BBENTRY record");
+
+ BB->setName(&ValueName[0], ValueName.size());
+ ValueName.clear();
+ break;
+ }
+ }
+ }
+}
+
+/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
+/// the LSB for dense VBR encoding.
+static uint64_t DecodeSignRotatedValue(uint64_t V) {
+ if ((V & 1) == 0)
+ return V >> 1;
+ if (V != 1)
+ return -(V >> 1);
+ // There is no such thing as -0 with integers. "-0" really means MININT.
+ return 1ULL << 63;
+}
+
+/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
+/// values and aliases that we can.
+bool BitcodeReader::ResolveGlobalAndAliasInits() {
+ std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
+ std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
+
+ GlobalInitWorklist.swap(GlobalInits);
+ AliasInitWorklist.swap(AliasInits);
+
+ while (!GlobalInitWorklist.empty()) {
+ unsigned ValID = GlobalInitWorklist.back().second;
+ if (ValID >= ValueList.size()) {
+ // Not ready to resolve this yet, it requires something later in the file.
+ GlobalInits.push_back(GlobalInitWorklist.back());
+ } else {
+ if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
+ GlobalInitWorklist.back().first->setInitializer(C);
+ else
+ return Error("Global variable initializer is not a constant!");
+ }
+ GlobalInitWorklist.pop_back();
+ }
+
+ while (!AliasInitWorklist.empty()) {
+ unsigned ValID = AliasInitWorklist.back().second;
+ if (ValID >= ValueList.size()) {
+ AliasInits.push_back(AliasInitWorklist.back());
+ } else {
+ if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
+ AliasInitWorklist.back().first->setAliasee(C);
+ else
+ return Error("Alias initializer is not a constant!");
+ }
+ AliasInitWorklist.pop_back();
+ }
+ return false;
+}
+
+
+bool BitcodeReader::ParseConstants() {
+ if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
+ return Error("Malformed block record");
+
+ SmallVector<uint64_t, 64> Record;
+
+ // Read all the records for this value table.
+ const Type *CurTy = Type::Int32Ty;
+ unsigned NextCstNo = ValueList.size();
+ while (1) {
+ unsigned Code = Stream.ReadCode();
+ if (Code == bitc::END_BLOCK) {
+ if (NextCstNo != ValueList.size())
+ return Error("Invalid constant reference!");
+
+ if (Stream.ReadBlockEnd())
+ return Error("Error at end of constants block");
+ return false;
+ }
+
+ if (Code == bitc::ENTER_SUBBLOCK) {
+ // No known subblocks, always skip them.
+ Stream.ReadSubBlockID();
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ continue;
+ }
+
+ if (Code == bitc::DEFINE_ABBREV) {
+ Stream.ReadAbbrevRecord();
+ continue;
+ }
+
+ // Read a record.
+ Record.clear();
+ Value *V = 0;
+ switch (Stream.ReadRecord(Code, Record)) {
+ default: // Default behavior: unknown constant
+ case bitc::CST_CODE_UNDEF: // UNDEF
+ V = UndefValue::get(CurTy);
+ break;
+ case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
+ if (Record.empty())
+ return Error("Malformed CST_SETTYPE record");
+ if (Record[0] >= TypeList.size())
+ return Error("Invalid Type ID in CST_SETTYPE record");
+ CurTy = TypeList[Record[0]];
+ continue; // Skip the ValueList manipulation.
+ case bitc::CST_CODE_NULL: // NULL
+ V = Constant::getNullValue(CurTy);
+ break;
+ case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
+ if (!isa<IntegerType>(CurTy) || Record.empty())
+ return Error("Invalid CST_INTEGER record");
+ V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
+ break;
+ case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
+ if (!isa<IntegerType>(CurTy) || Record.empty())
+ return Error("Invalid WIDE_INTEGER record");
+
+ unsigned NumWords = Record.size();
+ SmallVector<uint64_t, 8> Words;
+ Words.resize(NumWords);
+ for (unsigned i = 0; i != NumWords; ++i)
+ Words[i] = DecodeSignRotatedValue(Record[i]);
+ V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
+ NumWords, &Words[0]));
+ break;
+ }
+ case bitc::CST_CODE_FLOAT: // FLOAT: [fpval]
+ if (Record.empty())
+ return Error("Invalid FLOAT record");
+ if (CurTy == Type::FloatTy)
+ V = ConstantFP::get(CurTy, BitsToFloat(Record[0]));
+ else if (CurTy == Type::DoubleTy)
+ V = ConstantFP::get(CurTy, BitsToDouble(Record[0]));
+ else
+ V = UndefValue::get(CurTy);
+ break;
+
+ case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
+ if (Record.empty())
+ return Error("Invalid CST_AGGREGATE record");
+
+ unsigned Size = Record.size();
+ std::vector<Constant*> Elts;
+
+ if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
+ for (unsigned i = 0; i != Size; ++i)
+ Elts.push_back(ValueList.getConstantFwdRef(Record[i],
+ STy->getElementType(i)));
+ V = ConstantStruct::get(STy, Elts);
+ } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
+ const Type *EltTy = ATy->getElementType();
+ for (unsigned i = 0; i != Size; ++i)
+ Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
+ V = ConstantArray::get(ATy, Elts);
+ } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
+ const Type *EltTy = VTy->getElementType();
+ for (unsigned i = 0; i != Size; ++i)
+ Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
+ V = ConstantVector::get(Elts);
+ } else {
+ V = UndefValue::get(CurTy);
+ }
+ break;
+ }
+ case bitc::CST_CODE_STRING: { // STRING: [values]
+ if (Record.empty())
+ return Error("Invalid CST_AGGREGATE record");
+
+ const ArrayType *ATy = cast<ArrayType>(CurTy);
+ const Type *EltTy = ATy->getElementType();
+
+ unsigned Size = Record.size();
+ std::vector<Constant*> Elts;
+ for (unsigned i = 0; i != Size; ++i)
+ Elts.push_back(ConstantInt::get(EltTy, Record[i]));
+ V = ConstantArray::get(ATy, Elts);
+ break;
+ }
+ case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
+ if (Record.empty())
+ return Error("Invalid CST_AGGREGATE record");
+
+ const ArrayType *ATy = cast<ArrayType>(CurTy);
+ const Type *EltTy = ATy->getElementType();
+
+ unsigned Size = Record.size();
+ std::vector<Constant*> Elts;
+ for (unsigned i = 0; i != Size; ++i)
+ Elts.push_back(ConstantInt::get(EltTy, Record[i]));
+ Elts.push_back(Constant::getNullValue(EltTy));
+ V = ConstantArray::get(ATy, Elts);
+ break;
+ }
+ case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
+ if (Record.size() < 3) return Error("Invalid CE_BINOP record");
+ int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
+ if (Opc < 0) {
+ V = UndefValue::get(CurTy); // Unknown binop.
+ } else {
+ Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
+ Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
+ V = ConstantExpr::get(Opc, LHS, RHS);
+ }
+ break;
+ }
+ case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
+ if (Record.size() < 3) return Error("Invalid CE_CAST record");
+ int Opc = GetDecodedCastOpcode(Record[0]);
+ if (Opc < 0) {
+ V = UndefValue::get(CurTy); // Unknown cast.
+ } else {
+ const Type *OpTy = getTypeByID(Record[1]);
+ if (!OpTy) return Error("Invalid CE_CAST record");
+ Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
+ V = ConstantExpr::getCast(Opc, Op, CurTy);
+ }
+ break;
+ }
+ case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
+ if (Record.size() & 1) return Error("Invalid CE_GEP record");
+ SmallVector<Constant*, 16> Elts;
+ for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
+ const Type *ElTy = getTypeByID(Record[i]);
+ if (!ElTy) return Error("Invalid CE_GEP record");
+ Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
+ }
+ V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1);
+ break;
+ }
+ case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#]
+ if (Record.size() < 3) return Error("Invalid CE_SELECT record");
+ V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
+ Type::Int1Ty),
+ ValueList.getConstantFwdRef(Record[1],CurTy),
+ ValueList.getConstantFwdRef(Record[2],CurTy));
+ break;
+ case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
+ if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
+ const VectorType *OpTy =
+ dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
+ if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
+ Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
+ Constant *Op1 = ValueList.getConstantFwdRef(Record[2],
+ OpTy->getElementType());
+ V = ConstantExpr::getExtractElement(Op0, Op1);
+ break;
+ }
+ case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
+ const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
+ if (Record.size() < 3 || OpTy == 0)
+ return Error("Invalid CE_INSERTELT record");
+ Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
+ Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
+ OpTy->getElementType());
+ Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
+ V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
+ break;
+ }
+ case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
+ const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
+ if (Record.size() < 3 || OpTy == 0)
+ return Error("Invalid CE_INSERTELT record");
+ Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
+ Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
+ const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements());
+ Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
+ V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
+ break;
+ }
+ case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
+ if (Record.size() < 4) return Error("Invalid CE_CMP record");
+ const Type *OpTy = getTypeByID(Record[0]);
+ if (OpTy == 0) return Error("Invalid CE_CMP record");
+ Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
+ Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
+
+ if (OpTy->isFloatingPoint())
+ V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
+ else
+ V = ConstantExpr::getICmp(Record[3], Op0, Op1);
+ break;
+ }
+ case bitc::CST_CODE_INLINEASM: {
+ if (Record.size() < 2) return Error("Invalid INLINEASM record");
+ std::string AsmStr, ConstrStr;
+ bool HasSideEffects = Record[0];
+ unsigned AsmStrSize = Record[1];
+ if (2+AsmStrSize >= Record.size())
+ return Error("Invalid INLINEASM record");
+ unsigned ConstStrSize = Record[2+AsmStrSize];
+ if (3+AsmStrSize+ConstStrSize > Record.size())
+ return Error("Invalid INLINEASM record");
+
+ for (unsigned i = 0; i != AsmStrSize; ++i)
+ AsmStr += (char)Record[2+i];
+ for (unsigned i = 0; i != ConstStrSize; ++i)
+ ConstrStr += (char)Record[3+AsmStrSize+i];
+ const PointerType *PTy = cast<PointerType>(CurTy);
+ V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
+ AsmStr, ConstrStr, HasSideEffects);
+ break;
+ }
+ }
+
+ ValueList.AssignValue(V, NextCstNo);
+ ++NextCstNo;
+ }
+}
+
+/// RememberAndSkipFunctionBody - When we see the block for a function body,
+/// remember where it is and then skip it. This lets us lazily deserialize the
+/// functions.
+bool BitcodeReader::RememberAndSkipFunctionBody() {
+ // Get the function we are talking about.
+ if (FunctionsWithBodies.empty())
+ return Error("Insufficient function protos");
+
+ Function *Fn = FunctionsWithBodies.back();
+ FunctionsWithBodies.pop_back();
+
+ // Save the current stream state.
+ uint64_t CurBit = Stream.GetCurrentBitNo();
+ DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
+
+ // Set the functions linkage to GhostLinkage so we know it is lazily
+ // deserialized.
+ Fn->setLinkage(GlobalValue::GhostLinkage);
+
+ // Skip over the function block for now.
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ return false;
+}
+
+bool BitcodeReader::ParseModule(const std::string &ModuleID) {
+ // Reject multiple MODULE_BLOCK's in a single bitstream.
+ if (TheModule)
+ return Error("Multiple MODULE_BLOCKs in same stream");
+
+ if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
+ return Error("Malformed block record");
+
+ // Otherwise, create the module.
+ TheModule = new Module(ModuleID);
+
+ SmallVector<uint64_t, 64> Record;
+ std::vector<std::string> SectionTable;
+
+ // Read all the records for this module.
+ while (!Stream.AtEndOfStream()) {
+ unsigned Code = Stream.ReadCode();
+ if (Code == bitc::END_BLOCK) {
+ if (Stream.ReadBlockEnd())
+ return Error("Error at end of module block");
+
+ // Patch the initializers for globals and aliases up.
+ ResolveGlobalAndAliasInits();
+ if (!GlobalInits.empty() || !AliasInits.empty())
+ return Error("Malformed global initializer set");
+ if (!FunctionsWithBodies.empty())
+ return Error("Too few function bodies found");
+
+ // Force deallocation of memory for these vectors to favor the client that
+ // want lazy deserialization.
+ std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
+ std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
+ std::vector<Function*>().swap(FunctionsWithBodies);
+ return false;
+ }
+
+ if (Code == bitc::ENTER_SUBBLOCK) {
+ switch (Stream.ReadSubBlockID()) {
+ default: // Skip unknown content.
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ break;
+ case bitc::BLOCKINFO_BLOCK_ID:
+ if (Stream.ReadBlockInfoBlock())
+ return Error("Malformed BlockInfoBlock");
+ break;
+ case bitc::PARAMATTR_BLOCK_ID:
+ if (ParseParamAttrBlock())
+ return true;
+ break;
+ case bitc::TYPE_BLOCK_ID:
+ if (ParseTypeTable())
+ return true;
+ break;
+ case bitc::TYPE_SYMTAB_BLOCK_ID:
+ if (ParseTypeSymbolTable())
+ return true;
+ break;
+ case bitc::VALUE_SYMTAB_BLOCK_ID:
+ if (ParseValueSymbolTable())
+ return true;
+ break;
+ case bitc::CONSTANTS_BLOCK_ID:
+ if (ParseConstants() || ResolveGlobalAndAliasInits())
+ return true;
+ break;
+ case bitc::FUNCTION_BLOCK_ID:
+ // If this is the first function body we've seen, reverse the
+ // FunctionsWithBodies list.
+ if (!HasReversedFunctionsWithBodies) {
+ std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
+ HasReversedFunctionsWithBodies = true;
+ }
+
+ if (RememberAndSkipFunctionBody())
+ return true;
+ break;
+ }
+ continue;
+ }
+
+ if (Code == bitc::DEFINE_ABBREV) {
+ Stream.ReadAbbrevRecord();
+ continue;
+ }
+
+ // Read a record.
+ switch (Stream.ReadRecord(Code, Record)) {
+ default: break; // Default behavior, ignore unknown content.
+ case bitc::MODULE_CODE_VERSION: // VERSION: [version#]
+ if (Record.size() < 1)
+ return Error("Malformed MODULE_CODE_VERSION");
+ // Only version #0 is supported so far.
+ if (Record[0] != 0)
+ return Error("Unknown bitstream version!");
+ break;
+ case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
+ std::string S;
+ if (ConvertToString(Record, 0, S))
+ return Error("Invalid MODULE_CODE_TRIPLE record");
+ TheModule->setTargetTriple(S);
+ break;
+ }
+ case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
+ std::string S;
+ if (ConvertToString(Record, 0, S))
+ return Error("Invalid MODULE_CODE_DATALAYOUT record");
+ TheModule->setDataLayout(S);
+ break;
+ }
+ case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
+ std::string S;
+ if (ConvertToString(Record, 0, S))
+ return Error("Invalid MODULE_CODE_ASM record");
+ TheModule->setModuleInlineAsm(S);
+ break;
+ }
+ case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
+ std::string S;
+ if (ConvertToString(Record, 0, S))
+ return Error("Invalid MODULE_CODE_DEPLIB record");
+ TheModule->addLibrary(S);
+ break;
+ }
+ case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
+ std::string S;
+ if (ConvertToString(Record, 0, S))
+ return Error("Invalid MODULE_CODE_SECTIONNAME record");
+ SectionTable.push_back(S);
+ break;
+ }
+ // GLOBALVAR: [type, isconst, initid,
+ // linkage, alignment, section, visibility, threadlocal]
+ case bitc::MODULE_CODE_GLOBALVAR: {
+ if (Record.size() < 6)
+ return Error("Invalid MODULE_CODE_GLOBALVAR record");
+ const Type *Ty = getTypeByID(Record[0]);
+ if (!isa<PointerType>(Ty))
+ return Error("Global not a pointer type!");
+ Ty = cast<PointerType>(Ty)->getElementType();
+
+ bool isConstant = Record[1];
+ GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
+ unsigned Alignment = (1 << Record[4]) >> 1;
+ std::string Section;
+ if (Record[5]) {
+ if (Record[5]-1 >= SectionTable.size())
+ return Error("Invalid section ID");
+ Section = SectionTable[Record[5]-1];
+ }
+ GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
+ if (Record.size() > 6)
+ Visibility = GetDecodedVisibility(Record[6]);
+ bool isThreadLocal = false;
+ if (Record.size() > 7)
+ isThreadLocal = Record[7];
+
+ GlobalVariable *NewGV =
+ new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule);
+ NewGV->setAlignment(Alignment);
+ if (!Section.empty())
+ NewGV->setSection(Section);
+ NewGV->setVisibility(Visibility);
+ NewGV->setThreadLocal(isThreadLocal);
+
+ ValueList.push_back(NewGV);
+
+ // Remember which value to use for the global initializer.
+ if (unsigned InitID = Record[2])
+ GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
+ break;
+ }
+ // FUNCTION: [type, callingconv, isproto, linkage, paramattr,
+ // alignment, section, visibility]
+ case bitc::MODULE_CODE_FUNCTION: {
+ if (Record.size() < 8)
+ return Error("Invalid MODULE_CODE_FUNCTION record");
+ const Type *Ty = getTypeByID(Record[0]);
+ if (!isa<PointerType>(Ty))
+ return Error("Function not a pointer type!");
+ const FunctionType *FTy =
+ dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
+ if (!FTy)
+ return Error("Function not a pointer to function type!");
+
+ Function *Func = new Function(FTy, GlobalValue::ExternalLinkage,
+ "", TheModule);
+
+ Func->setCallingConv(Record[1]);
+ bool isProto = Record[2];
+ Func->setLinkage(GetDecodedLinkage(Record[3]));
+
+ assert(Func->getFunctionType()->getParamAttrs() ==
+ getParamAttrs(Record[4]));
+
+ Func->setAlignment((1 << Record[5]) >> 1);
+ if (Record[6]) {
+ if (Record[6]-1 >= SectionTable.size())
+ return Error("Invalid section ID");
+ Func->setSection(SectionTable[Record[6]-1]);
+ }
+ Func->setVisibility(GetDecodedVisibility(Record[7]));
+
+ ValueList.push_back(Func);
+
+ // If this is a function with a body, remember the prototype we are
+ // creating now, so that we can match up the body with them later.
+ if (!isProto)
+ FunctionsWithBodies.push_back(Func);
+ break;
+ }
+ // ALIAS: [alias type, aliasee val#, linkage]
+ case bitc::MODULE_CODE_ALIAS: {
+ if (Record.size() < 3)
+ return Error("Invalid MODULE_ALIAS record");
+ const Type *Ty = getTypeByID(Record[0]);
+ if (!isa<PointerType>(Ty))
+ return Error("Function not a pointer type!");
+
+ GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
+ "", 0, TheModule);
+ ValueList.push_back(NewGA);
+ AliasInits.push_back(std::make_pair(NewGA, Record[1]));
+ break;
+ }
+ /// MODULE_CODE_PURGEVALS: [numvals]
+ case bitc::MODULE_CODE_PURGEVALS:
+ // Trim down the value list to the specified size.
+ if (Record.size() < 1 || Record[0] > ValueList.size())
+ return Error("Invalid MODULE_PURGEVALS record");
+ ValueList.shrinkTo(Record[0]);
+ break;
+ }
+ Record.clear();
+ }
+
+ return Error("Premature end of bitstream");
+}
+
+
+bool BitcodeReader::ParseBitcode() {
+ TheModule = 0;
+
+ if (Buffer->getBufferSize() & 3)
+ return Error("Bitcode stream should be a multiple of 4 bytes in length");
+
+ unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
+ Stream.init(BufPtr, BufPtr+Buffer->getBufferSize());
+
+ // Sniff for the signature.
+ if (Stream.Read(8) != 'B' ||
+ Stream.Read(8) != 'C' ||
+ Stream.Read(4) != 0x0 ||
+ Stream.Read(4) != 0xC ||
+ Stream.Read(4) != 0xE ||
+ Stream.Read(4) != 0xD)
+ return Error("Invalid bitcode signature");
+
+ // We expect a number of well-defined blocks, though we don't necessarily
+ // need to understand them all.
+ while (!Stream.AtEndOfStream()) {
+ unsigned Code = Stream.ReadCode();
+
+ if (Code != bitc::ENTER_SUBBLOCK)
+ return Error("Invalid record at top-level");
+
+ unsigned BlockID = Stream.ReadSubBlockID();
+
+ // We only know the MODULE subblock ID.
+ switch (BlockID) {
+ case bitc::BLOCKINFO_BLOCK_ID:
+ if (Stream.ReadBlockInfoBlock())
+ return Error("Malformed BlockInfoBlock");
+ break;
+ case bitc::MODULE_BLOCK_ID:
+ if (ParseModule(Buffer->getBufferIdentifier()))
+ return true;
+ break;
+ default:
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ break;
+ }
+ }
+
+ return false;
+}
+
+
+/// ParseFunctionBody - Lazily parse the specified function body block.
+bool BitcodeReader::ParseFunctionBody(Function *F) {
+ if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
+ return Error("Malformed block record");
+
+ unsigned ModuleValueListSize = ValueList.size();
+
+ // Add all the function arguments to the value table.
+ for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
+ ValueList.push_back(I);
+
+ unsigned NextValueNo = ValueList.size();
+ BasicBlock *CurBB = 0;
+ unsigned CurBBNo = 0;
+
+ // Read all the records.
+ SmallVector<uint64_t, 64> Record;
+ while (1) {
+ unsigned Code = Stream.ReadCode();
+ if (Code == bitc::END_BLOCK) {
+ if (Stream.ReadBlockEnd())
+ return Error("Error at end of function block");
+ break;
+ }
+
+ if (Code == bitc::ENTER_SUBBLOCK) {
+ switch (Stream.ReadSubBlockID()) {
+ default: // Skip unknown content.
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ break;
+ case bitc::CONSTANTS_BLOCK_ID:
+ if (ParseConstants()) return true;
+ NextValueNo = ValueList.size();
+ break;
+ case bitc::VALUE_SYMTAB_BLOCK_ID:
+ if (ParseValueSymbolTable()) return true;
+ break;
+ }
+ continue;
+ }
+
+ if (Code == bitc::DEFINE_ABBREV) {
+ Stream.ReadAbbrevRecord();
+ continue;
+ }
+
+ // Read a record.
+ Record.clear();
+ Instruction *I = 0;
+ switch (Stream.ReadRecord(Code, Record)) {
+ default: // Default behavior: reject
+ return Error("Unknown instruction");
+ case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks]
+ if (Record.size() < 1 || Record[0] == 0)
+ return Error("Invalid DECLAREBLOCKS record");
+ // Create all the basic blocks for the function.
+ FunctionBBs.resize(Record[0]);
+ for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
+ FunctionBBs[i] = new BasicBlock("", F);
+ CurBB = FunctionBBs[0];
+ continue;
+
+ case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
+ unsigned OpNum = 0;
+ Value *LHS, *RHS;
+ if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
+ getValue(Record, OpNum, LHS->getType(), RHS) ||
+ OpNum+1 != Record.size())
+ return Error("Invalid BINOP record");
+
+ int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType());
+ if (Opc == -1) return Error("Invalid BINOP record");
+ I = BinaryOperator::create((Instruction::BinaryOps)Opc, LHS, RHS);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
+ unsigned OpNum = 0;
+ Value *Op;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
+ OpNum+2 != Record.size())
+ return Error("Invalid CAST record");
+
+ const Type *ResTy = getTypeByID(Record[OpNum]);
+ int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
+ if (Opc == -1 || ResTy == 0)
+ return Error("Invalid CAST record");
+ I = CastInst::create((Instruction::CastOps)Opc, Op, ResTy);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
+ unsigned OpNum = 0;
+ Value *BasePtr;
+ if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
+ return Error("Invalid GEP record");
+
+ SmallVector<Value*, 16> GEPIdx;
+ while (OpNum != Record.size()) {
+ Value *Op;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op))
+ return Error("Invalid GEP record");
+ GEPIdx.push_back(Op);
+ }
+
+ I = new GetElementPtrInst(BasePtr, &GEPIdx[0], GEPIdx.size());
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
+ unsigned OpNum = 0;
+ Value *TrueVal, *FalseVal, *Cond;
+ if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
+ getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
+ getValue(Record, OpNum, Type::Int1Ty, Cond))
+ return Error("Invalid SELECT record");
+
+ I = new SelectInst(Cond, TrueVal, FalseVal);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
+ unsigned OpNum = 0;
+ Value *Vec, *Idx;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
+ getValue(Record, OpNum, Type::Int32Ty, Idx))
+ return Error("Invalid EXTRACTELT record");
+ I = new ExtractElementInst(Vec, Idx);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
+ unsigned OpNum = 0;
+ Value *Vec, *Elt, *Idx;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
+ getValue(Record, OpNum,
+ cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
+ getValue(Record, OpNum, Type::Int32Ty, Idx))
+ return Error("Invalid INSERTELT record");
+ I = new InsertElementInst(Vec, Elt, Idx);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
+ unsigned OpNum = 0;
+ Value *Vec1, *Vec2, *Mask;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
+ getValue(Record, OpNum, Vec1->getType(), Vec2))
+ return Error("Invalid SHUFFLEVEC record");
+
+ const Type *MaskTy =
+ VectorType::get(Type::Int32Ty,
+ cast<VectorType>(Vec1->getType())->getNumElements());
+
+ if (getValue(Record, OpNum, MaskTy, Mask))
+ return Error("Invalid SHUFFLEVEC record");
+ I = new ShuffleVectorInst(Vec1, Vec2, Mask);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred]
+ unsigned OpNum = 0;
+ Value *LHS, *RHS;
+ if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
+ getValue(Record, OpNum, LHS->getType(), RHS) ||
+ OpNum+1 != Record.size())
+ return Error("Invalid CMP record");
+
+ if (LHS->getType()->isFPOrFPVector())
+ I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
+ else
+ I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
+ if (Record.size() == 0) {
+ I = new ReturnInst();
+ break;
+ } else {
+ unsigned OpNum = 0;
+ Value *Op;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
+ OpNum != Record.size())
+ return Error("Invalid RET record");
+ I = new ReturnInst(Op);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
+ if (Record.size() != 1 && Record.size() != 3)
+ return Error("Invalid BR record");
+ BasicBlock *TrueDest = getBasicBlock(Record[0]);
+ if (TrueDest == 0)
+ return Error("Invalid BR record");
+
+ if (Record.size() == 1)
+ I = new BranchInst(TrueDest);
+ else {
+ BasicBlock *FalseDest = getBasicBlock(Record[1]);
+ Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
+ if (FalseDest == 0 || Cond == 0)
+ return Error("Invalid BR record");
+ I = new BranchInst(TrueDest, FalseDest, Cond);
+ }
+ break;
+ }
+ case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
+ if (Record.size() < 3 || (Record.size() & 1) == 0)
+ return Error("Invalid SWITCH record");
+ const Type *OpTy = getTypeByID(Record[0]);
+ Value *Cond = getFnValueByID(Record[1], OpTy);
+ BasicBlock *Default = getBasicBlock(Record[2]);
+ if (OpTy == 0 || Cond == 0 || Default == 0)
+ return Error("Invalid SWITCH record");
+ unsigned NumCases = (Record.size()-3)/2;
+ SwitchInst *SI = new SwitchInst(Cond, Default, NumCases);
+ for (unsigned i = 0, e = NumCases; i != e; ++i) {
+ ConstantInt *CaseVal =
+ dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
+ BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
+ if (CaseVal == 0 || DestBB == 0) {
+ delete SI;
+ return Error("Invalid SWITCH record!");
+ }
+ SI->addCase(CaseVal, DestBB);
+ }
+ I = SI;
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_INVOKE: { // INVOKE: [cc,fnty, op0,op1,op2, ...]
+ if (Record.size() < 4) return Error("Invalid INVOKE record");
+ unsigned CCInfo = Record[1];
+ BasicBlock *NormalBB = getBasicBlock(Record[2]);
+ BasicBlock *UnwindBB = getBasicBlock(Record[3]);
+
+ unsigned OpNum = 4;
+ Value *Callee;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
+ return Error("Invalid INVOKE record");
+
+ const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
+ const FunctionType *FTy = !CalleeTy ? 0 :
+ dyn_cast<FunctionType>(CalleeTy->getElementType());
+
+ // Check that the right number of fixed parameters are here.
+ if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
+ Record.size() < OpNum+FTy->getNumParams())
+ return Error("Invalid INVOKE record");
+
+ assert(FTy->getParamAttrs() == getParamAttrs(Record[0]));
+
+ SmallVector<Value*, 16> Ops;
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
+ Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
+ if (Ops.back() == 0) return Error("Invalid INVOKE record");
+ }
+
+ if (!FTy->isVarArg()) {
+ if (Record.size() != OpNum)
+ return Error("Invalid INVOKE record");
+ } else {
+ // Read type/value pairs for varargs params.
+ while (OpNum != Record.size()) {
+ Value *Op;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op))
+ return Error("Invalid INVOKE record");
+ Ops.push_back(Op);
+ }
+ }
+
+ I = new InvokeInst(Callee, NormalBB, UnwindBB, &Ops[0], Ops.size());
+ cast<InvokeInst>(I)->setCallingConv(CCInfo);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
+ I = new UnwindInst();
+ break;
+ case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
+ I = new UnreachableInst();
+ break;
+ case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
+ if (Record.size() < 1 || ((Record.size()-1)&1))
+ return Error("Invalid PHI record");
+ const Type *Ty = getTypeByID(Record[0]);
+ if (!Ty) return Error("Invalid PHI record");
+
+ PHINode *PN = new PHINode(Ty);
+ PN->reserveOperandSpace(Record.size()-1);
+
+ for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
+ Value *V = getFnValueByID(Record[1+i], Ty);
+ BasicBlock *BB = getBasicBlock(Record[2+i]);
+ if (!V || !BB) return Error("Invalid PHI record");
+ PN->addIncoming(V, BB);
+ }
+ I = PN;
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
+ if (Record.size() < 3)
+ return Error("Invalid MALLOC record");
+ const PointerType *Ty =
+ dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
+ Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
+ unsigned Align = Record[2];
+ if (!Ty || !Size) return Error("Invalid MALLOC record");
+ I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
+ unsigned OpNum = 0;
+ Value *Op;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
+ OpNum != Record.size())
+ return Error("Invalid FREE record");
+ I = new FreeInst(Op);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
+ if (Record.size() < 3)
+ return Error("Invalid ALLOCA record");
+ const PointerType *Ty =
+ dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
+ Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
+ unsigned Align = Record[2];
+ if (!Ty || !Size) return Error("Invalid ALLOCA record");
+ I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
+ unsigned OpNum = 0;
+ Value *Op;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
+ OpNum+2 != Record.size())
+ return Error("Invalid LOAD record");
+
+ I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
+ unsigned OpNum = 0;
+ Value *Val, *Ptr;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
+ getValue(Record, OpNum, PointerType::get(Val->getType()), Ptr) ||
+ OpNum+2 != Record.size())
+ return Error("Invalid STORE record");
+
+ I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_CALL: { // CALL: [cc, fnty, fnid, arg0, arg1...]
+ if (Record.size() < 2)
+ return Error("Invalid CALL record");
+
+ unsigned CCInfo = Record[1];
+
+ unsigned OpNum = 2;
+ Value *Callee;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
+ return Error("Invalid CALL record");
+
+ const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
+ const FunctionType *FTy = 0;
+ if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
+ if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
+ return Error("Invalid CALL record");
+
+ assert(FTy->getParamAttrs() == getParamAttrs(Record[0]));
+
+ SmallVector<Value*, 16> Args;
+ // Read the fixed params.
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
+ Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
+ if (Args.back() == 0) return Error("Invalid CALL record");
+ }
+
+ // Read type/value pairs for varargs params.
+ if (!FTy->isVarArg()) {
+ if (OpNum != Record.size())
+ return Error("Invalid CALL record");
+ } else {
+ while (OpNum != Record.size()) {
+ Value *Op;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op))
+ return Error("Invalid CALL record");
+ Args.push_back(Op);
+ }
+ }
+
+ I = new CallInst(Callee, &Args[0], Args.size());
+ cast<CallInst>(I)->setCallingConv(CCInfo>>1);
+ cast<CallInst>(I)->setTailCall(CCInfo & 1);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
+ if (Record.size() < 3)
+ return Error("Invalid VAARG record");
+ const Type *OpTy = getTypeByID(Record[0]);
+ Value *Op = getFnValueByID(Record[1], OpTy);
+ const Type *ResTy = getTypeByID(Record[2]);
+ if (!OpTy || !Op || !ResTy)
+ return Error("Invalid VAARG record");
+ I = new VAArgInst(Op, ResTy);
+ break;
+ }
+ }
+
+ // Add instruction to end of current BB. If there is no current BB, reject
+ // this file.
+ if (CurBB == 0) {
+ delete I;
+ return Error("Invalid instruction with no BB");
+ }
+ CurBB->getInstList().push_back(I);
+
+ // If this was a terminator instruction, move to the next block.
+ if (isa<TerminatorInst>(I)) {
+ ++CurBBNo;
+ CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
+ }
+
+ // Non-void values get registered in the value table for future use.
+ if (I && I->getType() != Type::VoidTy)
+ ValueList.AssignValue(I, NextValueNo++);
+ }
+
+ // Check the function list for unresolved values.
+ if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
+ if (A->getParent() == 0) {
+ // We found at least one unresolved value. Nuke them all to avoid leaks.
+ for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
+ if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
+ A->replaceAllUsesWith(UndefValue::get(A->getType()));
+ delete A;
+ }
+ }
+ return Error("Never resolved value found in function!");
+ }
+ }
+
+ // Trim the value list down to the size it was before we parsed this function.
+ ValueList.shrinkTo(ModuleValueListSize);
+ std::vector<BasicBlock*>().swap(FunctionBBs);
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// ModuleProvider implementation
+//===----------------------------------------------------------------------===//
+
+
+bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
+ // If it already is material, ignore the request.
+ if (!F->hasNotBeenReadFromBitcode()) return false;
+
+ DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
+ DeferredFunctionInfo.find(F);
+ assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
+
+ // Move the bit stream to the saved position of the deferred function body and
+ // restore the real linkage type for the function.
+ Stream.JumpToBit(DFII->second.first);
+ F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
+
+ if (ParseFunctionBody(F)) {
+ if (ErrInfo) *ErrInfo = ErrorString;
+ return true;
+ }
+
+ return false;
+}
+
+void BitcodeReader::dematerializeFunction(Function *F) {
+ // If this function isn't materialized, or if it is a proto, this is a noop.
+ if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
+ return;
+
+ assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
+
+ // Just forget the function body, we can remat it later.
+ F->deleteBody();
+ F->setLinkage(GlobalValue::GhostLinkage);
+}
+
+
+Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
+ for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I =
+ DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E;
+ ++I) {
+ Function *F = I->first;
+ if (F->hasNotBeenReadFromBitcode() &&
+ materializeFunction(F, ErrInfo))
+ return 0;
+ }
+ return TheModule;
+}
+
+
+/// This method is provided by the parent ModuleProvde class and overriden
+/// here. It simply releases the module from its provided and frees up our
+/// state.
+/// @brief Release our hold on the generated module
+Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
+ // Since we're losing control of this Module, we must hand it back complete
+ Module *M = ModuleProvider::releaseModule(ErrInfo);
+ FreeState();
+ return M;
+}
+
+
+//===----------------------------------------------------------------------===//
+// External interface
+//===----------------------------------------------------------------------===//
+
+/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
+///
+ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
+ std::string *ErrMsg) {
+ BitcodeReader *R = new BitcodeReader(Buffer);
+ if (R->ParseBitcode()) {
+ if (ErrMsg)
+ *ErrMsg = R->getErrorString();
+
+ // Don't let the BitcodeReader dtor delete 'Buffer'.
+ R->releaseMemoryBuffer();
+ delete R;
+ return 0;
+ }
+ return R;
+}
+
+/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
+/// If an error occurs, return null and fill in *ErrMsg if non-null.
+Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){
+ BitcodeReader *R;
+ R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg));
+ if (!R) return 0;
+
+ // Read in the entire module.
+ Module *M = R->materializeModule(ErrMsg);
+
+ // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
+ // there was an error.
+ R->releaseMemoryBuffer();
+
+ // If there was no error, tell ModuleProvider not to delete it when its dtor
+ // is run.
+ if (M)
+ M = R->releaseModule(ErrMsg);
+
+ delete R;
+ return M;
+}
diff --git a/lib/Bitcode/Reader/BitcodeReader.h b/lib/Bitcode/Reader/BitcodeReader.h
new file mode 100644
index 0000000..2f61b06
--- /dev/null
+++ b/lib/Bitcode/Reader/BitcodeReader.h
@@ -0,0 +1,202 @@
+//===- BitcodeReader.h - Internal BitcodeReader impl ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This header defines the BitcodeReader class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef BITCODE_READER_H
+#define BITCODE_READER_H
+
+#include "llvm/ModuleProvider.h"
+#include "llvm/Type.h"
+#include "llvm/User.h"
+#include "llvm/Bitcode/BitstreamReader.h"
+#include "llvm/Bitcode/LLVMBitCodes.h"
+#include "llvm/ADT/DenseMap.h"
+#include <vector>
+
+namespace llvm {
+ class MemoryBuffer;
+ class ParamAttrsList;
+
+class BitcodeReaderValueList : public User {
+ std::vector<Use> Uses;
+public:
+ BitcodeReaderValueList() : User(Type::VoidTy, Value::ArgumentVal, 0, 0) {}
+
+ // vector compatibility methods
+ unsigned size() const { return getNumOperands(); }
+ void push_back(Value *V) {
+ Uses.push_back(Use(V, this));
+ OperandList = &Uses[0];
+ ++NumOperands;
+ }
+
+ void clear() {
+ std::vector<Use>().swap(Uses);
+ }
+
+ Value *operator[](unsigned i) const { return getOperand(i); }
+
+ Value *back() const { return Uses.back(); }
+ void pop_back() { Uses.pop_back(); --NumOperands; }
+ bool empty() const { return NumOperands == 0; }
+ void shrinkTo(unsigned N) {
+ assert(N <= NumOperands && "Invalid shrinkTo request!");
+ Uses.resize(N);
+ NumOperands = N;
+ }
+ virtual void print(std::ostream&) const {}
+
+ Constant *getConstantFwdRef(unsigned Idx, const Type *Ty);
+ Value *getValueFwdRef(unsigned Idx, const Type *Ty);
+
+ void AssignValue(Value *V, unsigned Idx) {
+ if (Idx == size()) {
+ push_back(V);
+ } else if (Value *OldV = getOperand(Idx)) {
+ // If there was a forward reference to this value, replace it.
+ setOperand(Idx, V);
+ OldV->replaceAllUsesWith(V);
+ delete OldV;
+ } else {
+ initVal(Idx, V);
+ }
+ }
+
+private:
+ void initVal(unsigned Idx, Value *V) {
+ assert(Uses[Idx] == 0 && "Cannot init an already init'd Use!");
+ Uses[Idx].init(V, this);
+ }
+};
+
+
+class BitcodeReader : public ModuleProvider {
+ MemoryBuffer *Buffer;
+ BitstreamReader Stream;
+
+ const char *ErrorString;
+
+ std::vector<PATypeHolder> TypeList;
+ BitcodeReaderValueList ValueList;
+ std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
+ std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
+
+ /// ParamAttrs - The set of parameter attributes by index. Index zero in the
+ /// file is for null, and is thus not represented here. As such all indices
+ /// are off by one.
+ std::vector<const ParamAttrsList*> ParamAttrs;
+
+ /// FunctionBBs - While parsing a function body, this is a list of the basic
+ /// blocks for the function.
+ std::vector<BasicBlock*> FunctionBBs;
+
+ // When reading the module header, this list is populated with functions that
+ // have bodies later in the file.
+ std::vector<Function*> FunctionsWithBodies;
+
+ // After the module header has been read, the FunctionsWithBodies list is
+ // reversed. This keeps track of whether we've done this yet.
+ bool HasReversedFunctionsWithBodies;
+
+ /// DeferredFunctionInfo - When function bodies are initially scanned, this
+ /// map contains info about where to find deferred function body (in the
+ /// stream) and what linkage the original function had.
+ DenseMap<Function*, std::pair<uint64_t, unsigned> > DeferredFunctionInfo;
+public:
+ BitcodeReader(MemoryBuffer *buffer) : Buffer(buffer), ErrorString(0) {
+ HasReversedFunctionsWithBodies = false;
+ }
+ ~BitcodeReader() {
+ FreeState();
+ }
+
+ void FreeState();
+
+ /// releaseMemoryBuffer - This causes the reader to completely forget about
+ /// the memory buffer it contains, which prevents the buffer from being
+ /// destroyed when it is deleted.
+ void releaseMemoryBuffer() {
+ Buffer = 0;
+ }
+
+ virtual bool materializeFunction(Function *F, std::string *ErrInfo = 0);
+ virtual Module *materializeModule(std::string *ErrInfo = 0);
+ virtual void dematerializeFunction(Function *F);
+ virtual Module *releaseModule(std::string *ErrInfo = 0);
+
+ bool Error(const char *Str) {
+ ErrorString = Str;
+ return true;
+ }
+ const char *getErrorString() const { return ErrorString; }
+
+ /// @brief Main interface to parsing a bitcode buffer.
+ /// @returns true if an error occurred.
+ bool ParseBitcode();
+private:
+ const Type *getTypeByID(unsigned ID, bool isTypeTable = false);
+ Value *getFnValueByID(unsigned ID, const Type *Ty) {
+ return ValueList.getValueFwdRef(ID, Ty);
+ }
+ BasicBlock *getBasicBlock(unsigned ID) const {
+ if (ID >= FunctionBBs.size()) return 0; // Invalid ID
+ return FunctionBBs[ID];
+ }
+ const ParamAttrsList *getParamAttrs(unsigned i) const {
+ if (i-1 < ParamAttrs.size())
+ return ParamAttrs[i-1];
+ return 0;
+ }
+
+ /// getValueTypePair - Read a value/type pair out of the specified record from
+ /// slot 'Slot'. Increment Slot past the number of slots used in the record.
+ /// Return true on failure.
+ bool getValueTypePair(SmallVector<uint64_t, 64> &Record, unsigned &Slot,
+ unsigned InstNum, Value *&ResVal) {
+ if (Slot == Record.size()) return true;
+ unsigned ValNo = (unsigned)Record[Slot++];
+ if (ValNo < InstNum) {
+ // If this is not a forward reference, just return the value we already
+ // have.
+ ResVal = getFnValueByID(ValNo, 0);
+ return ResVal == 0;
+ } else if (Slot == Record.size()) {
+ return true;
+ }
+
+ unsigned TypeNo = (unsigned)Record[Slot++];
+ ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
+ return ResVal == 0;
+ }
+ bool getValue(SmallVector<uint64_t, 64> &Record, unsigned &Slot,
+ const Type *Ty, Value *&ResVal) {
+ if (Slot == Record.size()) return true;
+ unsigned ValNo = (unsigned)Record[Slot++];
+ ResVal = getFnValueByID(ValNo, Ty);
+ return ResVal == 0;
+ }
+
+
+ bool ParseModule(const std::string &ModuleID);
+ bool ParseParamAttrBlock();
+ bool ParseTypeTable();
+ bool ParseTypeSymbolTable();
+ bool ParseValueSymbolTable();
+ bool ParseConstants();
+ bool RememberAndSkipFunctionBody();
+ bool ParseFunctionBody(Function *F);
+ bool ResolveGlobalAndAliasInits();
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/lib/Bitcode/Reader/Makefile b/lib/Bitcode/Reader/Makefile
new file mode 100644
index 0000000..3d71cda
--- /dev/null
+++ b/lib/Bitcode/Reader/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Bitcode/Reader/Makefile -------------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file was developed by Chris Lattner and is distributed under
+# the University of Illinois Open Source License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../..
+LIBRARYNAME = LLVMBitReader
+BUILD_ARCHIVE = 1
+
+include $(LEVEL)/Makefile.common
+
diff --git a/lib/Bitcode/Writer/BitcodeWriter.cpp b/lib/Bitcode/Writer/BitcodeWriter.cpp
new file mode 100644
index 0000000..086dca8
--- /dev/null
+++ b/lib/Bitcode/Writer/BitcodeWriter.cpp
@@ -0,0 +1,1226 @@
+//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Bitcode writer implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Bitcode/ReaderWriter.h"
+#include "llvm/Bitcode/BitstreamWriter.h"
+#include "llvm/Bitcode/LLVMBitCodes.h"
+#include "ValueEnumerator.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
+#include "llvm/Module.h"
+#include "llvm/ParameterAttributes.h"
+#include "llvm/TypeSymbolTable.h"
+#include "llvm/ValueSymbolTable.h"
+#include "llvm/Support/MathExtras.h"
+using namespace llvm;
+
+/// These are manifest constants used by the bitcode writer. They do not need to
+/// be kept in sync with the reader, but need to be consistent within this file.
+enum {
+ CurVersion = 0,
+
+ // VALUE_SYMTAB_BLOCK abbrev id's.
+ VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+ VST_ENTRY_7_ABBREV,
+ VST_ENTRY_6_ABBREV,
+ VST_BBENTRY_6_ABBREV,
+
+ // CONSTANTS_BLOCK abbrev id's.
+ CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+ CONSTANTS_INTEGER_ABBREV,
+ CONSTANTS_CE_CAST_Abbrev,
+ CONSTANTS_NULL_Abbrev,
+
+ // FUNCTION_BLOCK abbrev id's.
+ FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+ FUNCTION_INST_BINOP_ABBREV,
+ FUNCTION_INST_CAST_ABBREV,
+ FUNCTION_INST_RET_VOID_ABBREV,
+ FUNCTION_INST_RET_VAL_ABBREV,
+ FUNCTION_INST_UNREACHABLE_ABBREV
+};
+
+
+static unsigned GetEncodedCastOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default: assert(0 && "Unknown cast instruction!");
+ case Instruction::Trunc : return bitc::CAST_TRUNC;
+ case Instruction::ZExt : return bitc::CAST_ZEXT;
+ case Instruction::SExt : return bitc::CAST_SEXT;
+ case Instruction::FPToUI : return bitc::CAST_FPTOUI;
+ case Instruction::FPToSI : return bitc::CAST_FPTOSI;
+ case Instruction::UIToFP : return bitc::CAST_UITOFP;
+ case Instruction::SIToFP : return bitc::CAST_SITOFP;
+ case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
+ case Instruction::FPExt : return bitc::CAST_FPEXT;
+ case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
+ case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
+ case Instruction::BitCast : return bitc::CAST_BITCAST;
+ }
+}
+
+static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default: assert(0 && "Unknown binary instruction!");
+ case Instruction::Add: return bitc::BINOP_ADD;
+ case Instruction::Sub: return bitc::BINOP_SUB;
+ case Instruction::Mul: return bitc::BINOP_MUL;
+ case Instruction::UDiv: return bitc::BINOP_UDIV;
+ case Instruction::FDiv:
+ case Instruction::SDiv: return bitc::BINOP_SDIV;
+ case Instruction::URem: return bitc::BINOP_UREM;
+ case Instruction::FRem:
+ case Instruction::SRem: return bitc::BINOP_SREM;
+ case Instruction::Shl: return bitc::BINOP_SHL;
+ case Instruction::LShr: return bitc::BINOP_LSHR;
+ case Instruction::AShr: return bitc::BINOP_ASHR;
+ case Instruction::And: return bitc::BINOP_AND;
+ case Instruction::Or: return bitc::BINOP_OR;
+ case Instruction::Xor: return bitc::BINOP_XOR;
+ }
+}
+
+
+
+static void WriteStringRecord(unsigned Code, const std::string &Str,
+ unsigned AbbrevToUse, BitstreamWriter &Stream) {
+ SmallVector<unsigned, 64> Vals;
+
+ // Code: [strchar x N]
+ for (unsigned i = 0, e = Str.size(); i != e; ++i)
+ Vals.push_back(Str[i]);
+
+ // Emit the finished record.
+ Stream.EmitRecord(Code, Vals, AbbrevToUse);
+}
+
+// Emit information about parameter attributes.
+static void WriteParamAttrTable(const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs();
+ if (Attrs.empty()) return;
+
+ Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
+
+ SmallVector<uint64_t, 64> Record;
+ for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
+ const ParamAttrsList *A = Attrs[i];
+ for (unsigned op = 0, e = A->size(); op != e; ++op) {
+ Record.push_back(A->getParamIndex(op));
+ Record.push_back(A->getParamAttrsAtIndex(op));
+ }
+
+ Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+/// WriteTypeTable - Write out the type table for a module.
+static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
+ const ValueEnumerator::TypeList &TypeList = VE.getTypes();
+
+ Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
+ SmallVector<uint64_t, 64> TypeVals;
+
+ // Abbrev for TYPE_CODE_POINTER.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
+
+ // Abbrev for TYPE_CODE_FUNCTION.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getParamAttrs().size()+1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
+
+ // Abbrev for TYPE_CODE_STRUCT.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
+
+ // Abbrev for TYPE_CODE_ARRAY.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
+
+ // Emit an entry count so the reader can reserve space.
+ TypeVals.push_back(TypeList.size());
+ Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
+ TypeVals.clear();
+
+ // Loop over all of the types, emitting each in turn.
+ for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
+ const Type *T = TypeList[i].first;
+ int AbbrevToUse = 0;
+ unsigned Code = 0;
+
+ switch (T->getTypeID()) {
+ default: assert(0 && "Unknown type!");
+ case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
+ case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
+ case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
+ case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
+ case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
+ case Type::IntegerTyID:
+ // INTEGER: [width]
+ Code = bitc::TYPE_CODE_INTEGER;
+ TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
+ break;
+ case Type::PointerTyID:
+ // POINTER: [pointee type]
+ Code = bitc::TYPE_CODE_POINTER;
+ TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType()));
+ AbbrevToUse = PtrAbbrev;
+ break;
+
+ case Type::FunctionTyID: {
+ const FunctionType *FT = cast<FunctionType>(T);
+ // FUNCTION: [isvararg, attrid, retty, paramty x N]
+ Code = bitc::TYPE_CODE_FUNCTION;
+ TypeVals.push_back(FT->isVarArg());
+ TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs()));
+ TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
+ for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
+ TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
+ AbbrevToUse = FunctionAbbrev;
+ break;
+ }
+ case Type::StructTyID: {
+ const StructType *ST = cast<StructType>(T);
+ // STRUCT: [ispacked, eltty x N]
+ Code = bitc::TYPE_CODE_STRUCT;
+ TypeVals.push_back(ST->isPacked());
+ // Output all of the element types.
+ for (StructType::element_iterator I = ST->element_begin(),
+ E = ST->element_end(); I != E; ++I)
+ TypeVals.push_back(VE.getTypeID(*I));
+ AbbrevToUse = StructAbbrev;
+ break;
+ }
+ case Type::ArrayTyID: {
+ const ArrayType *AT = cast<ArrayType>(T);
+ // ARRAY: [numelts, eltty]
+ Code = bitc::TYPE_CODE_ARRAY;
+ TypeVals.push_back(AT->getNumElements());
+ TypeVals.push_back(VE.getTypeID(AT->getElementType()));
+ AbbrevToUse = ArrayAbbrev;
+ break;
+ }
+ case Type::VectorTyID: {
+ const VectorType *VT = cast<VectorType>(T);
+ // VECTOR [numelts, eltty]
+ Code = bitc::TYPE_CODE_VECTOR;
+ TypeVals.push_back(VT->getNumElements());
+ TypeVals.push_back(VE.getTypeID(VT->getElementType()));
+ break;
+ }
+ }
+
+ // Emit the finished record.
+ Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
+ TypeVals.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+static unsigned getEncodedLinkage(const GlobalValue *GV) {
+ switch (GV->getLinkage()) {
+ default: assert(0 && "Invalid linkage!");
+ case GlobalValue::GhostLinkage: // Map ghost linkage onto external.
+ case GlobalValue::ExternalLinkage: return 0;
+ case GlobalValue::WeakLinkage: return 1;
+ case GlobalValue::AppendingLinkage: return 2;
+ case GlobalValue::InternalLinkage: return 3;
+ case GlobalValue::LinkOnceLinkage: return 4;
+ case GlobalValue::DLLImportLinkage: return 5;
+ case GlobalValue::DLLExportLinkage: return 6;
+ case GlobalValue::ExternalWeakLinkage: return 7;
+ }
+}
+
+static unsigned getEncodedVisibility(const GlobalValue *GV) {
+ switch (GV->getVisibility()) {
+ default: assert(0 && "Invalid visibility!");
+ case GlobalValue::DefaultVisibility: return 0;
+ case GlobalValue::HiddenVisibility: return 1;
+ case GlobalValue::ProtectedVisibility: return 2;
+ }
+}
+
+// Emit top-level description of module, including target triple, inline asm,
+// descriptors for global variables, and function prototype info.
+static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ // Emit the list of dependent libraries for the Module.
+ for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
+ WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
+
+ // Emit various pieces of data attached to a module.
+ if (!M->getTargetTriple().empty())
+ WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
+ 0/*TODO*/, Stream);
+ if (!M->getDataLayout().empty())
+ WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
+ 0/*TODO*/, Stream);
+ if (!M->getModuleInlineAsm().empty())
+ WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
+ 0/*TODO*/, Stream);
+
+ // Emit information about sections, computing how many there are. Also
+ // compute the maximum alignment value.
+ std::map<std::string, unsigned> SectionMap;
+ unsigned MaxAlignment = 0;
+ unsigned MaxGlobalType = 0;
+ for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
+ GV != E; ++GV) {
+ MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
+ MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
+
+ if (!GV->hasSection()) continue;
+ // Give section names unique ID's.
+ unsigned &Entry = SectionMap[GV->getSection()];
+ if (Entry != 0) continue;
+ WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
+ 0/*TODO*/, Stream);
+ Entry = SectionMap.size();
+ }
+ for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
+ MaxAlignment = std::max(MaxAlignment, F->getAlignment());
+ if (!F->hasSection()) continue;
+ // Give section names unique ID's.
+ unsigned &Entry = SectionMap[F->getSection()];
+ if (Entry != 0) continue;
+ WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
+ 0/*TODO*/, Stream);
+ Entry = SectionMap.size();
+ }
+
+ // Emit abbrev for globals, now that we know # sections and max alignment.
+ unsigned SimpleGVarAbbrev = 0;
+ if (!M->global_empty()) {
+ // Add an abbrev for common globals with no visibility or thread localness.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(MaxGlobalType+1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage.
+ if (MaxAlignment == 0) // Alignment.
+ Abbv->Add(BitCodeAbbrevOp(0));
+ else {
+ unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(MaxEncAlignment+1)));
+ }
+ if (SectionMap.empty()) // Section.
+ Abbv->Add(BitCodeAbbrevOp(0));
+ else
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(SectionMap.size()+1)));
+ // Don't bother emitting vis + thread local.
+ SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
+ }
+
+ // Emit the global variable information.
+ SmallVector<unsigned, 64> Vals;
+ for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
+ GV != E; ++GV) {
+ unsigned AbbrevToUse = 0;
+
+ // GLOBALVAR: [type, isconst, initid,
+ // linkage, alignment, section, visibility, threadlocal]
+ Vals.push_back(VE.getTypeID(GV->getType()));
+ Vals.push_back(GV->isConstant());
+ Vals.push_back(GV->isDeclaration() ? 0 :
+ (VE.getValueID(GV->getInitializer()) + 1));
+ Vals.push_back(getEncodedLinkage(GV));
+ Vals.push_back(Log2_32(GV->getAlignment())+1);
+ Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
+ if (GV->isThreadLocal() ||
+ GV->getVisibility() != GlobalValue::DefaultVisibility) {
+ Vals.push_back(getEncodedVisibility(GV));
+ Vals.push_back(GV->isThreadLocal());
+ } else {
+ AbbrevToUse = SimpleGVarAbbrev;
+ }
+
+ Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
+ Vals.clear();
+ }
+
+ // Emit the function proto information.
+ for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
+ // FUNCTION: [type, callingconv, isproto, linkage, alignment, section,
+ // visibility]
+ Vals.push_back(VE.getTypeID(F->getType()));
+ Vals.push_back(F->getCallingConv());
+ Vals.push_back(F->isDeclaration());
+ Vals.push_back(getEncodedLinkage(F));
+
+ // Note: we emit the param attr ID number for the function type of this
+ // function. In the future, we intend for attrs to be properties of
+ // functions, instead of on the type. This is to support this future work.
+ Vals.push_back(VE.getParamAttrID(F->getFunctionType()->getParamAttrs()));
+
+ Vals.push_back(Log2_32(F->getAlignment())+1);
+ Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
+ Vals.push_back(getEncodedVisibility(F));
+
+ unsigned AbbrevToUse = 0;
+ Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
+ Vals.clear();
+ }
+
+
+ // Emit the alias information.
+ for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
+ AI != E; ++AI) {
+ Vals.push_back(VE.getTypeID(AI->getType()));
+ Vals.push_back(VE.getValueID(AI->getAliasee()));
+ Vals.push_back(getEncodedLinkage(AI));
+ unsigned AbbrevToUse = 0;
+ Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
+ Vals.clear();
+ }
+}
+
+
+static void WriteConstants(unsigned FirstVal, unsigned LastVal,
+ const ValueEnumerator &VE,
+ BitstreamWriter &Stream, bool isGlobal) {
+ if (FirstVal == LastVal) return;
+
+ Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
+
+ unsigned AggregateAbbrev = 0;
+ unsigned String8Abbrev = 0;
+ unsigned CString7Abbrev = 0;
+ unsigned CString6Abbrev = 0;
+ // If this is a constant pool for the module, emit module-specific abbrevs.
+ if (isGlobal) {
+ // Abbrev for CST_CODE_AGGREGATE.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
+ AggregateAbbrev = Stream.EmitAbbrev(Abbv);
+
+ // Abbrev for CST_CODE_STRING.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ String8Abbrev = Stream.EmitAbbrev(Abbv);
+ // Abbrev for CST_CODE_CSTRING.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+ CString7Abbrev = Stream.EmitAbbrev(Abbv);
+ // Abbrev for CST_CODE_CSTRING.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ CString6Abbrev = Stream.EmitAbbrev(Abbv);
+ }
+
+ SmallVector<uint64_t, 64> Record;
+
+ const ValueEnumerator::ValueList &Vals = VE.getValues();
+ const Type *LastTy = 0;
+ for (unsigned i = FirstVal; i != LastVal; ++i) {
+ const Value *V = Vals[i].first;
+ // If we need to switch types, do so now.
+ if (V->getType() != LastTy) {
+ LastTy = V->getType();
+ Record.push_back(VE.getTypeID(LastTy));
+ Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
+ CONSTANTS_SETTYPE_ABBREV);
+ Record.clear();
+ }
+
+ if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
+ Record.push_back(unsigned(IA->hasSideEffects()));
+
+ // Add the asm string.
+ const std::string &AsmStr = IA->getAsmString();
+ Record.push_back(AsmStr.size());
+ for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
+ Record.push_back(AsmStr[i]);
+
+ // Add the constraint string.
+ const std::string &ConstraintStr = IA->getConstraintString();
+ Record.push_back(ConstraintStr.size());
+ for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
+ Record.push_back(ConstraintStr[i]);
+ Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
+ Record.clear();
+ continue;
+ }
+ const Constant *C = cast<Constant>(V);
+ unsigned Code = -1U;
+ unsigned AbbrevToUse = 0;
+ if (C->isNullValue()) {
+ Code = bitc::CST_CODE_NULL;
+ } else if (isa<UndefValue>(C)) {
+ Code = bitc::CST_CODE_UNDEF;
+ } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
+ if (IV->getBitWidth() <= 64) {
+ int64_t V = IV->getSExtValue();
+ if (V >= 0)
+ Record.push_back(V << 1);
+ else
+ Record.push_back((-V << 1) | 1);
+ Code = bitc::CST_CODE_INTEGER;
+ AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
+ } else { // Wide integers, > 64 bits in size.
+ // We have an arbitrary precision integer value to write whose
+ // bit width is > 64. However, in canonical unsigned integer
+ // format it is likely that the high bits are going to be zero.
+ // So, we only write the number of active words.
+ unsigned NWords = IV->getValue().getActiveWords();
+ const uint64_t *RawWords = IV->getValue().getRawData();
+ for (unsigned i = 0; i != NWords; ++i) {
+ int64_t V = RawWords[i];
+ if (V >= 0)
+ Record.push_back(V << 1);
+ else
+ Record.push_back((-V << 1) | 1);
+ }
+ Code = bitc::CST_CODE_WIDE_INTEGER;
+ }
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+ Code = bitc::CST_CODE_FLOAT;
+ if (CFP->getType() == Type::FloatTy) {
+ Record.push_back(FloatToBits((float)CFP->getValue()));
+ } else {
+ assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!");
+ Record.push_back(DoubleToBits((double)CFP->getValue()));
+ }
+ } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
+ // Emit constant strings specially.
+ unsigned NumOps = C->getNumOperands();
+ // If this is a null-terminated string, use the denser CSTRING encoding.
+ if (C->getOperand(NumOps-1)->isNullValue()) {
+ Code = bitc::CST_CODE_CSTRING;
+ --NumOps; // Don't encode the null, which isn't allowed by char6.
+ } else {
+ Code = bitc::CST_CODE_STRING;
+ AbbrevToUse = String8Abbrev;
+ }
+ bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
+ bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
+ Record.push_back(V);
+ isCStr7 &= (V & 128) == 0;
+ if (isCStrChar6)
+ isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
+ }
+
+ if (isCStrChar6)
+ AbbrevToUse = CString6Abbrev;
+ else if (isCStr7)
+ AbbrevToUse = CString7Abbrev;
+ } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
+ isa<ConstantVector>(V)) {
+ Code = bitc::CST_CODE_AGGREGATE;
+ for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
+ Record.push_back(VE.getValueID(C->getOperand(i)));
+ AbbrevToUse = AggregateAbbrev;
+ } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ switch (CE->getOpcode()) {
+ default:
+ if (Instruction::isCast(CE->getOpcode())) {
+ Code = bitc::CST_CODE_CE_CAST;
+ Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
+ Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
+ } else {
+ assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
+ Code = bitc::CST_CODE_CE_BINOP;
+ Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ }
+ break;
+ case Instruction::GetElementPtr:
+ Code = bitc::CST_CODE_CE_GEP;
+ for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
+ Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(i)));
+ }
+ break;
+ case Instruction::Select:
+ Code = bitc::CST_CODE_CE_SELECT;
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(VE.getValueID(C->getOperand(2)));
+ break;
+ case Instruction::ExtractElement:
+ Code = bitc::CST_CODE_CE_EXTRACTELT;
+ Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ break;
+ case Instruction::InsertElement:
+ Code = bitc::CST_CODE_CE_INSERTELT;
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(VE.getValueID(C->getOperand(2)));
+ break;
+ case Instruction::ShuffleVector:
+ Code = bitc::CST_CODE_CE_SHUFFLEVEC;
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(VE.getValueID(C->getOperand(2)));
+ break;
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ Code = bitc::CST_CODE_CE_CMP;
+ Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(CE->getPredicate());
+ break;
+ }
+ } else {
+ assert(0 && "Unknown constant!");
+ }
+ Stream.EmitRecord(Code, Record, AbbrevToUse);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+static void WriteModuleConstants(const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ const ValueEnumerator::ValueList &Vals = VE.getValues();
+
+ // Find the first constant to emit, which is the first non-globalvalue value.
+ // We know globalvalues have been emitted by WriteModuleInfo.
+ for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
+ if (!isa<GlobalValue>(Vals[i].first)) {
+ WriteConstants(i, Vals.size(), VE, Stream, true);
+ return;
+ }
+ }
+}
+
+/// PushValueAndType - The file has to encode both the value and type id for
+/// many values, because we need to know what type to create for forward
+/// references. However, most operands are not forward references, so this type
+/// field is not needed.
+///
+/// This function adds V's value ID to Vals. If the value ID is higher than the
+/// instruction ID, then it is a forward reference, and it also includes the
+/// type ID.
+static bool PushValueAndType(Value *V, unsigned InstID,
+ SmallVector<unsigned, 64> &Vals,
+ ValueEnumerator &VE) {
+ unsigned ValID = VE.getValueID(V);
+ Vals.push_back(ValID);
+ if (ValID >= InstID) {
+ Vals.push_back(VE.getTypeID(V->getType()));
+ return true;
+ }
+ return false;
+}
+
+/// WriteInstruction - Emit an instruction to the specified stream.
+static void WriteInstruction(const Instruction &I, unsigned InstID,
+ ValueEnumerator &VE, BitstreamWriter &Stream,
+ SmallVector<unsigned, 64> &Vals) {
+ unsigned Code = 0;
+ unsigned AbbrevToUse = 0;
+ switch (I.getOpcode()) {
+ default:
+ if (Instruction::isCast(I.getOpcode())) {
+ Code = bitc::FUNC_CODE_INST_CAST;
+ if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
+ AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
+ Vals.push_back(VE.getTypeID(I.getType()));
+ Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
+ } else {
+ assert(isa<BinaryOperator>(I) && "Unknown instruction!");
+ Code = bitc::FUNC_CODE_INST_BINOP;
+ if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
+ AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
+ Vals.push_back(VE.getValueID(I.getOperand(1)));
+ Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
+ }
+ break;
+
+ case Instruction::GetElementPtr:
+ Code = bitc::FUNC_CODE_INST_GEP;
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+ PushValueAndType(I.getOperand(i), InstID, Vals, VE);
+ break;
+ case Instruction::Select:
+ Code = bitc::FUNC_CODE_INST_SELECT;
+ PushValueAndType(I.getOperand(1), InstID, Vals, VE);
+ Vals.push_back(VE.getValueID(I.getOperand(2)));
+ Vals.push_back(VE.getValueID(I.getOperand(0)));
+ break;
+ case Instruction::ExtractElement:
+ Code = bitc::FUNC_CODE_INST_EXTRACTELT;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ Vals.push_back(VE.getValueID(I.getOperand(1)));
+ break;
+ case Instruction::InsertElement:
+ Code = bitc::FUNC_CODE_INST_INSERTELT;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ Vals.push_back(VE.getValueID(I.getOperand(1)));
+ Vals.push_back(VE.getValueID(I.getOperand(2)));
+ break;
+ case Instruction::ShuffleVector:
+ Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ Vals.push_back(VE.getValueID(I.getOperand(1)));
+ Vals.push_back(VE.getValueID(I.getOperand(2)));
+ break;
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ Code = bitc::FUNC_CODE_INST_CMP;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ Vals.push_back(VE.getValueID(I.getOperand(1)));
+ Vals.push_back(cast<CmpInst>(I).getPredicate());
+ break;
+
+ case Instruction::Ret:
+ Code = bitc::FUNC_CODE_INST_RET;
+ if (!I.getNumOperands())
+ AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
+ else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
+ AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
+ break;
+ case Instruction::Br:
+ Code = bitc::FUNC_CODE_INST_BR;
+ Vals.push_back(VE.getValueID(I.getOperand(0)));
+ if (cast<BranchInst>(I).isConditional()) {
+ Vals.push_back(VE.getValueID(I.getOperand(1)));
+ Vals.push_back(VE.getValueID(I.getOperand(2)));
+ }
+ break;
+ case Instruction::Switch:
+ Code = bitc::FUNC_CODE_INST_SWITCH;
+ Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+ Vals.push_back(VE.getValueID(I.getOperand(i)));
+ break;
+ case Instruction::Invoke: {
+ const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
+ const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+ Code = bitc::FUNC_CODE_INST_INVOKE;
+
+ // Note: we emit the param attr ID number for the function type of this
+ // function. In the future, we intend for attrs to be properties of
+ // functions, instead of on the type. This is to support this future work.
+ Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs()));
+
+ Vals.push_back(cast<InvokeInst>(I).getCallingConv());
+ Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest
+ Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
+
+ // Emit value #'s for the fixed parameters.
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+ Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param.
+
+ // Emit type/value pairs for varargs params.
+ if (FTy->isVarArg()) {
+ for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
+ i != e; ++i)
+ PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
+ }
+ break;
+ }
+ case Instruction::Unwind:
+ Code = bitc::FUNC_CODE_INST_UNWIND;
+ break;
+ case Instruction::Unreachable:
+ Code = bitc::FUNC_CODE_INST_UNREACHABLE;
+ AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
+ break;
+
+ case Instruction::PHI:
+ Code = bitc::FUNC_CODE_INST_PHI;
+ Vals.push_back(VE.getTypeID(I.getType()));
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+ Vals.push_back(VE.getValueID(I.getOperand(i)));
+ break;
+
+ case Instruction::Malloc:
+ Code = bitc::FUNC_CODE_INST_MALLOC;
+ Vals.push_back(VE.getTypeID(I.getType()));
+ Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
+ Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
+ break;
+
+ case Instruction::Free:
+ Code = bitc::FUNC_CODE_INST_FREE;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ break;
+
+ case Instruction::Alloca:
+ Code = bitc::FUNC_CODE_INST_ALLOCA;
+ Vals.push_back(VE.getTypeID(I.getType()));
+ Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
+ Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
+ break;
+
+ case Instruction::Load:
+ Code = bitc::FUNC_CODE_INST_LOAD;
+ if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
+ AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
+
+ Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
+ Vals.push_back(cast<LoadInst>(I).isVolatile());
+ break;
+ case Instruction::Store:
+ Code = bitc::FUNC_CODE_INST_STORE;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE); // val.
+ Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr.
+ Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
+ Vals.push_back(cast<StoreInst>(I).isVolatile());
+ break;
+ case Instruction::Call: {
+ const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
+ const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+
+ Code = bitc::FUNC_CODE_INST_CALL;
+
+ // Note: we emit the param attr ID number for the function type of this
+ // function. In the future, we intend for attrs to be properties of
+ // functions, instead of on the type. This is to support this future work.
+ Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs()));
+
+ Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) |
+ unsigned(cast<CallInst>(I).isTailCall()));
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE); // Callee
+
+ // Emit value #'s for the fixed parameters.
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+ Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param.
+
+ // Emit type/value pairs for varargs params.
+ if (FTy->isVarArg()) {
+ unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
+ for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
+ i != e; ++i)
+ PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs
+ }
+ break;
+ }
+ case Instruction::VAArg:
+ Code = bitc::FUNC_CODE_INST_VAARG;
+ Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
+ Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
+ Vals.push_back(VE.getTypeID(I.getType())); // restype.
+ break;
+ }
+
+ Stream.EmitRecord(Code, Vals, AbbrevToUse);
+ Vals.clear();
+}
+
+// Emit names for globals/functions etc.
+static void WriteValueSymbolTable(const ValueSymbolTable &VST,
+ const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ if (VST.empty()) return;
+ Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
+
+ // FIXME: Set up the abbrev, we know how many values there are!
+ // FIXME: We know if the type names can use 7-bit ascii.
+ SmallVector<unsigned, 64> NameVals;
+
+ for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
+ SI != SE; ++SI) {
+
+ const ValueName &Name = *SI;
+
+ // Figure out the encoding to use for the name.
+ bool is7Bit = true;
+ bool isChar6 = true;
+ for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
+ C != E; ++C) {
+ if (isChar6)
+ isChar6 = BitCodeAbbrevOp::isChar6(*C);
+ if ((unsigned char)*C & 128) {
+ is7Bit = false;
+ break; // don't bother scanning the rest.
+ }
+ }
+
+ unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
+
+ // VST_ENTRY: [valueid, namechar x N]
+ // VST_BBENTRY: [bbid, namechar x N]
+ unsigned Code;
+ if (isa<BasicBlock>(SI->getValue())) {
+ Code = bitc::VST_CODE_BBENTRY;
+ if (isChar6)
+ AbbrevToUse = VST_BBENTRY_6_ABBREV;
+ } else {
+ Code = bitc::VST_CODE_ENTRY;
+ if (isChar6)
+ AbbrevToUse = VST_ENTRY_6_ABBREV;
+ else if (is7Bit)
+ AbbrevToUse = VST_ENTRY_7_ABBREV;
+ }
+
+ NameVals.push_back(VE.getValueID(SI->getValue()));
+ for (const char *P = Name.getKeyData(),
+ *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
+ NameVals.push_back((unsigned char)*P);
+
+ // Emit the finished record.
+ Stream.EmitRecord(Code, NameVals, AbbrevToUse);
+ NameVals.clear();
+ }
+ Stream.ExitBlock();
+}
+
+/// WriteFunction - Emit a function body to the module stream.
+static void WriteFunction(const Function &F, ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
+ VE.incorporateFunction(F);
+
+ SmallVector<unsigned, 64> Vals;
+
+ // Emit the number of basic blocks, so the reader can create them ahead of
+ // time.
+ Vals.push_back(VE.getBasicBlocks().size());
+ Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
+ Vals.clear();
+
+ // If there are function-local constants, emit them now.
+ unsigned CstStart, CstEnd;
+ VE.getFunctionConstantRange(CstStart, CstEnd);
+ WriteConstants(CstStart, CstEnd, VE, Stream, false);
+
+ // Keep a running idea of what the instruction ID is.
+ unsigned InstID = CstEnd;
+
+ // Finally, emit all the instructions, in order.
+ for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
+ I != E; ++I) {
+ WriteInstruction(*I, InstID, VE, Stream, Vals);
+ if (I->getType() != Type::VoidTy)
+ ++InstID;
+ }
+
+ // Emit names for all the instructions etc.
+ WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
+
+ VE.purgeFunction();
+ Stream.ExitBlock();
+}
+
+/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
+static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
+ const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ if (TST.empty()) return;
+
+ Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
+
+ // 7-bit fixed width VST_CODE_ENTRY strings.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+ unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
+
+ SmallVector<unsigned, 64> NameVals;
+
+ for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
+ TI != TE; ++TI) {
+ // TST_ENTRY: [typeid, namechar x N]
+ NameVals.push_back(VE.getTypeID(TI->second));
+
+ const std::string &Str = TI->first;
+ bool is7Bit = true;
+ for (unsigned i = 0, e = Str.size(); i != e; ++i) {
+ NameVals.push_back((unsigned char)Str[i]);
+ if (Str[i] & 128)
+ is7Bit = false;
+ }
+
+ // Emit the finished record.
+ Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
+ NameVals.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+// Emit blockinfo, which defines the standard abbreviations etc.
+static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
+ // We only want to emit block info records for blocks that have multiple
+ // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
+ // blocks can defined their abbrevs inline.
+ Stream.EnterBlockInfoBlock(2);
+
+ { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ Abbv) != VST_ENTRY_8_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ { // 7-bit fixed width VST_ENTRY strings.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ Abbv) != VST_ENTRY_7_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // 6-bit char6 VST_ENTRY strings.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ Abbv) != VST_ENTRY_6_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // 6-bit char6 VST_BBENTRY strings.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ Abbv) != VST_BBENTRY_6_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+
+
+ { // SETTYPE abbrev for CONSTANTS_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+ Abbv) != CONSTANTS_SETTYPE_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ { // INTEGER abbrev for CONSTANTS_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+ Abbv) != CONSTANTS_INTEGER_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ { // CE_CAST abbrev for CONSTANTS_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
+
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+ Abbv) != CONSTANTS_CE_CAST_Abbrev)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // NULL abbrev for CONSTANTS_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+ Abbv) != CONSTANTS_NULL_Abbrev)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ // FIXME: This should only use space for first class types!
+
+ { // INST_LOAD abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_LOAD_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // INST_BINOP abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_BINOP_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // INST_CAST abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_CAST_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ { // INST_RET abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // INST_RET abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ Stream.ExitBlock();
+}
+
+
+/// WriteModule - Emit the specified module to the bitstream.
+static void WriteModule(const Module *M, BitstreamWriter &Stream) {
+ Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
+
+ // Emit the version number if it is non-zero.
+ if (CurVersion) {
+ SmallVector<unsigned, 1> Vals;
+ Vals.push_back(CurVersion);
+ Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
+ }
+
+ // Analyze the module, enumerating globals, functions, etc.
+ ValueEnumerator VE(M);
+
+ // Emit blockinfo, which defines the standard abbreviations etc.
+ WriteBlockInfo(VE, Stream);
+
+ // Emit information about parameter attributes.
+ WriteParamAttrTable(VE, Stream);
+
+ // Emit information describing all of the types in the module.
+ WriteTypeTable(VE, Stream);
+
+ // Emit top-level description of module, including target triple, inline asm,
+ // descriptors for global variables, and function prototype info.
+ WriteModuleInfo(M, VE, Stream);
+
+ // Emit constants.
+ WriteModuleConstants(VE, Stream);
+
+ // If we have any aggregate values in the value table, purge them - these can
+ // only be used to initialize global variables. Doing so makes the value
+ // namespace smaller for code in functions.
+ int NumNonAggregates = VE.PurgeAggregateValues();
+ if (NumNonAggregates != -1) {
+ SmallVector<unsigned, 1> Vals;
+ Vals.push_back(NumNonAggregates);
+ Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
+ }
+
+ // Emit function bodies.
+ for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
+ if (!I->isDeclaration())
+ WriteFunction(*I, VE, Stream);
+
+ // Emit the type symbol table information.
+ WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
+
+ // Emit names for globals/functions etc.
+ WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
+
+ Stream.ExitBlock();
+}
+
+
+/// WriteBitcodeToFile - Write the specified module to the specified output
+/// stream.
+void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
+ std::vector<unsigned char> Buffer;
+ BitstreamWriter Stream(Buffer);
+
+ Buffer.reserve(256*1024);
+
+ // Emit the file header.
+ Stream.Emit((unsigned)'B', 8);
+ Stream.Emit((unsigned)'C', 8);
+ Stream.Emit(0x0, 4);
+ Stream.Emit(0xC, 4);
+ Stream.Emit(0xE, 4);
+ Stream.Emit(0xD, 4);
+
+ // Emit the module.
+ WriteModule(M, Stream);
+
+ // Write the generated bitstream to "Out".
+ Out.write((char*)&Buffer.front(), Buffer.size());
+
+ // Make sure it hits disk now.
+ Out.flush();
+}
diff --git a/lib/Bitcode/Writer/BitcodeWriterPass.cpp b/lib/Bitcode/Writer/BitcodeWriterPass.cpp
new file mode 100644
index 0000000..7412311
--- /dev/null
+++ b/lib/Bitcode/Writer/BitcodeWriterPass.cpp
@@ -0,0 +1,43 @@
+//===--- Bitcode/Writer/BitcodeWriterPass.cpp - Bitcode Writer ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// BitcodeWriterPass implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Bitcode/ReaderWriter.h"
+#include "llvm/Pass.h"
+using namespace llvm;
+
+namespace {
+ class WriteBitcodePass : public ModulePass {
+ std::ostream *Out; // ostream to print on
+ public:
+ static char ID; // Pass identifcation, replacement for typeid
+ WriteBitcodePass() : ModulePass((intptr_t) &ID), Out(0) { }
+ WriteBitcodePass(std::ostream &o) : ModulePass((intptr_t) &ID), Out(&o) {}
+
+ bool runOnModule(Module &M) {
+ if (Out)
+ WriteBitcodeToFile(&M, *Out);
+ return false;
+ }
+ };
+}
+
+char WriteBitcodePass::ID = 0;
+static RegisterPass<WriteBitcodePass> X("emitbitcode", "Bitcode Writer");
+
+/// CreateBitcodeWriterPass - Create and return a pass that writes the module
+/// to the specified ostream.
+ModulePass *llvm::CreateBitcodeWriterPass(std::ostream &Str) {
+ return new WriteBitcodePass(Str);
+}
+
+
diff --git a/lib/Bitcode/Writer/Makefile b/lib/Bitcode/Writer/Makefile
new file mode 100644
index 0000000..c87387a
--- /dev/null
+++ b/lib/Bitcode/Writer/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Bitcode/Reader/Makefile -------------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file was developed by Chris Lattner and is distributed under
+# the University of Illinois Open Source License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../..
+LIBRARYNAME = LLVMBitWriter
+BUILD_ARCHIVE = 1
+
+include $(LEVEL)/Makefile.common
+
diff --git a/lib/Bitcode/Writer/ValueEnumerator.cpp b/lib/Bitcode/Writer/ValueEnumerator.cpp
new file mode 100644
index 0000000..6b3885e
--- /dev/null
+++ b/lib/Bitcode/Writer/ValueEnumerator.cpp
@@ -0,0 +1,320 @@
+//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ValueEnumerator class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ValueEnumerator.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/TypeSymbolTable.h"
+#include "llvm/ValueSymbolTable.h"
+#include <algorithm>
+using namespace llvm;
+
+static bool isFirstClassType(const std::pair<const llvm::Type*,
+ unsigned int> &P) {
+ return P.first->isFirstClassType();
+}
+
+static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) {
+ return isa<IntegerType>(V.first->getType());
+}
+
+static bool CompareByFrequency(const std::pair<const llvm::Type*,
+ unsigned int> &P1,
+ const std::pair<const llvm::Type*,
+ unsigned int> &P2) {
+ return P1.second > P2.second;
+}
+
+/// ValueEnumerator - Enumerate module-level information.
+ValueEnumerator::ValueEnumerator(const Module *M) {
+ // Enumerate the global variables.
+ for (Module::const_global_iterator I = M->global_begin(),
+ E = M->global_end(); I != E; ++I)
+ EnumerateValue(I);
+
+ // Enumerate the functions.
+ for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
+ EnumerateValue(I);
+
+ // Enumerate the aliases.
+ for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
+ I != E; ++I)
+ EnumerateValue(I);
+
+ // Remember what is the cutoff between globalvalue's and other constants.
+ unsigned FirstConstant = Values.size();
+
+ // Enumerate the global variable initializers.
+ for (Module::const_global_iterator I = M->global_begin(),
+ E = M->global_end(); I != E; ++I)
+ if (I->hasInitializer())
+ EnumerateValue(I->getInitializer());
+
+ // Enumerate the aliasees.
+ for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
+ I != E; ++I)
+ EnumerateValue(I->getAliasee());
+
+ // Enumerate types used by the type symbol table.
+ EnumerateTypeSymbolTable(M->getTypeSymbolTable());
+
+ // Insert constants that are named at module level into the slot pool so that
+ // the module symbol table can refer to them...
+ EnumerateValueSymbolTable(M->getValueSymbolTable());
+
+ // Enumerate types used by function bodies and argument lists.
+ for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
+
+ for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; ++I)
+ EnumerateType(I->getType());
+
+ for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
+ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
+ OI != E; ++OI)
+ EnumerateOperandType(*OI);
+ EnumerateType(I->getType());
+ }
+ }
+
+ // Optimize constant ordering.
+ OptimizeConstants(FirstConstant, Values.size());
+
+ // Sort the type table by frequency so that most commonly used types are early
+ // in the table (have low bit-width).
+ std::stable_sort(Types.begin(), Types.end(), CompareByFrequency);
+
+ // Partition the Type ID's so that the first-class types occur before the
+ // aggregate types. This allows the aggregate types to be dropped from the
+ // type table after parsing the global variable initializers.
+ std::partition(Types.begin(), Types.end(), isFirstClassType);
+
+ // Now that we rearranged the type table, rebuild TypeMap.
+ for (unsigned i = 0, e = Types.size(); i != e; ++i)
+ TypeMap[Types[i].first] = i+1;
+}
+
+// Optimize constant ordering.
+struct CstSortPredicate {
+ ValueEnumerator &VE;
+ CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
+ bool operator()(const std::pair<const Value*, unsigned> &LHS,
+ const std::pair<const Value*, unsigned> &RHS) {
+ // Sort by plane.
+ if (LHS.first->getType() != RHS.first->getType())
+ return VE.getTypeID(LHS.first->getType()) <
+ VE.getTypeID(RHS.first->getType());
+ // Then by frequency.
+ return LHS.second > RHS.second;
+ }
+};
+
+/// OptimizeConstants - Reorder constant pool for denser encoding.
+void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
+ if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
+
+ CstSortPredicate P(*this);
+ std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
+
+ // Ensure that integer constants are at the start of the constant pool. This
+ // is important so that GEP structure indices come before gep constant exprs.
+ std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
+ isIntegerValue);
+
+ // Rebuild the modified portion of ValueMap.
+ for (; CstStart != CstEnd; ++CstStart)
+ ValueMap[Values[CstStart].first] = CstStart+1;
+}
+
+
+/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
+/// table.
+void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
+ for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
+ TI != TE; ++TI)
+ EnumerateType(TI->second);
+}
+
+/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
+/// table into the values table.
+void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
+ for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
+ VI != VE; ++VI)
+ EnumerateValue(VI->getValue());
+}
+
+void ValueEnumerator::EnumerateValue(const Value *V) {
+ assert(V->getType() != Type::VoidTy && "Can't insert void values!");
+
+ // Check to see if it's already in!
+ unsigned &ValueID = ValueMap[V];
+ if (ValueID) {
+ // Increment use count.
+ Values[ValueID-1].second++;
+ return;
+ }
+
+ // Enumerate the type of this value.
+ EnumerateType(V->getType());
+
+ if (const Constant *C = dyn_cast<Constant>(V)) {
+ if (isa<GlobalValue>(C)) {
+ // Initializers for globals are handled explicitly elsewhere.
+ } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
+ // Do not enumerate the initializers for an array of simple characters.
+ // The initializers just polute the value table, and we emit the strings
+ // specially.
+ } else if (C->getNumOperands()) {
+ // If a constant has operands, enumerate them. This makes sure that if a
+ // constant has uses (for example an array of const ints), that they are
+ // inserted also.
+
+ // We prefer to enumerate them with values before we enumerate the user
+ // itself. This makes it more likely that we can avoid forward references
+ // in the reader. We know that there can be no cycles in the constants
+ // graph that don't go through a global variable.
+ for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
+ I != E; ++I)
+ EnumerateValue(*I);
+
+ // Finally, add the value. Doing this could make the ValueID reference be
+ // dangling, don't reuse it.
+ Values.push_back(std::make_pair(V, 1U));
+ ValueMap[V] = Values.size();
+ return;
+ }
+ }
+
+ // Add the value.
+ Values.push_back(std::make_pair(V, 1U));
+ ValueID = Values.size();
+}
+
+
+void ValueEnumerator::EnumerateType(const Type *Ty) {
+ unsigned &TypeID = TypeMap[Ty];
+
+ if (TypeID) {
+ // If we've already seen this type, just increase its occurrence count.
+ Types[TypeID-1].second++;
+ return;
+ }
+
+ // First time we saw this type, add it.
+ Types.push_back(std::make_pair(Ty, 1U));
+ TypeID = Types.size();
+
+ // Enumerate subtypes.
+ for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
+ I != E; ++I)
+ EnumerateType(*I);
+
+ // If this is a function type, enumerate the param attrs.
+ if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty))
+ EnumerateParamAttrs(FTy->getParamAttrs());
+}
+
+// Enumerate the types for the specified value. If the value is a constant,
+// walk through it, enumerating the types of the constant.
+void ValueEnumerator::EnumerateOperandType(const Value *V) {
+ EnumerateType(V->getType());
+ if (const Constant *C = dyn_cast<Constant>(V)) {
+ // If this constant is already enumerated, ignore it, we know its type must
+ // be enumerated.
+ if (ValueMap.count(V)) return;
+
+ // This constant may have operands, make sure to enumerate the types in
+ // them.
+ for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
+ EnumerateOperandType(C->getOperand(i));
+ }
+}
+
+void ValueEnumerator::EnumerateParamAttrs(const ParamAttrsList *PAL) {
+ if (PAL == 0) return; // null is always 0.
+ // Do a lookup.
+ unsigned &Entry = ParamAttrMap[PAL];
+ if (Entry == 0) {
+ // Never saw this before, add it.
+ ParamAttrs.push_back(PAL);
+ Entry = ParamAttrs.size();
+ }
+}
+
+
+/// PurgeAggregateValues - If there are any aggregate values at the end of the
+/// value list, remove them and return the count of the remaining values. If
+/// there are none, return -1.
+int ValueEnumerator::PurgeAggregateValues() {
+ // If there are no aggregate values at the end of the list, return -1.
+ if (Values.empty() || Values.back().first->getType()->isFirstClassType())
+ return -1;
+
+ // Otherwise, remove aggregate values...
+ while (!Values.empty() && !Values.back().first->getType()->isFirstClassType())
+ Values.pop_back();
+
+ // ... and return the new size.
+ return Values.size();
+}
+
+void ValueEnumerator::incorporateFunction(const Function &F) {
+ NumModuleValues = Values.size();
+
+ // Adding function arguments to the value table.
+ for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
+ I != E; ++I)
+ EnumerateValue(I);
+
+ FirstFuncConstantID = Values.size();
+
+ // Add all function-level constants to the value table.
+ for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
+ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
+ OI != E; ++OI) {
+ if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
+ isa<InlineAsm>(*OI))
+ EnumerateValue(*OI);
+ }
+ BasicBlocks.push_back(BB);
+ ValueMap[BB] = BasicBlocks.size();
+ }
+
+ // Optimize the constant layout.
+ OptimizeConstants(FirstFuncConstantID, Values.size());
+
+ FirstInstID = Values.size();
+
+ // Add all of the instructions.
+ for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
+ if (I->getType() != Type::VoidTy)
+ EnumerateValue(I);
+ }
+ }
+}
+
+void ValueEnumerator::purgeFunction() {
+ /// Remove purged values from the ValueMap.
+ for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
+ ValueMap.erase(Values[i].first);
+ for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
+ ValueMap.erase(BasicBlocks[i]);
+
+ Values.resize(NumModuleValues);
+ BasicBlocks.clear();
+}
+
diff --git a/lib/Bitcode/Writer/ValueEnumerator.h b/lib/Bitcode/Writer/ValueEnumerator.h
new file mode 100644
index 0000000..e255411
--- /dev/null
+++ b/lib/Bitcode/Writer/ValueEnumerator.h
@@ -0,0 +1,126 @@
+//===-- Bitcode/Writer/ValueEnumerator.h - Number values --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class gives values and types Unique ID's.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef VALUE_ENUMERATOR_H
+#define VALUE_ENUMERATOR_H
+
+#include "llvm/ADT/DenseMap.h"
+#include <vector>
+
+namespace llvm {
+
+class Type;
+class Value;
+class BasicBlock;
+class Function;
+class Module;
+class ParamAttrsList;
+class TypeSymbolTable;
+class ValueSymbolTable;
+
+class ValueEnumerator {
+public:
+ // For each type, we remember its Type* and occurrence frequency.
+ typedef std::vector<std::pair<const Type*, unsigned> > TypeList;
+
+ // For each value, we remember its Value* and occurrence frequency.
+ typedef std::vector<std::pair<const Value*, unsigned> > ValueList;
+private:
+ typedef DenseMap<const Type*, unsigned> TypeMapType;
+ TypeMapType TypeMap;
+ TypeList Types;
+
+ typedef DenseMap<const Value*, unsigned> ValueMapType;
+ ValueMapType ValueMap;
+ ValueList Values;
+
+ typedef DenseMap<const ParamAttrsList*, unsigned> ParamAttrMapType;
+ ParamAttrMapType ParamAttrMap;
+ std::vector<const ParamAttrsList*> ParamAttrs;
+
+ /// BasicBlocks - This contains all the basic blocks for the currently
+ /// incorporated function. Their reverse mapping is stored in ValueMap.
+ std::vector<const BasicBlock*> BasicBlocks;
+
+ /// When a function is incorporated, this is the size of the Values list
+ /// before incorporation.
+ unsigned NumModuleValues;
+ unsigned FirstFuncConstantID;
+ unsigned FirstInstID;
+
+ ValueEnumerator(const ValueEnumerator &); // DO NOT IMPLEMENT
+ void operator=(const ValueEnumerator &); // DO NOT IMPLEMENT
+public:
+ ValueEnumerator(const Module *M);
+
+ unsigned getValueID(const Value *V) const {
+ ValueMapType::const_iterator I = ValueMap.find(V);
+ assert(I != ValueMap.end() && "Value not in slotcalculator!");
+ return I->second-1;
+ }
+
+ unsigned getTypeID(const Type *T) const {
+ TypeMapType::const_iterator I = TypeMap.find(T);
+ assert(I != TypeMap.end() && "Type not in ValueEnumerator!");
+ return I->second-1;
+ }
+
+ unsigned getParamAttrID(const ParamAttrsList *PAL) const {
+ if (PAL == 0) return 0; // Null maps to zero.
+ ParamAttrMapType::const_iterator I = ParamAttrMap.find(PAL);
+ assert(I != ParamAttrMap.end() && "ParamAttr not in ValueEnumerator!");
+ return I->second;
+ }
+
+ /// getFunctionConstantRange - Return the range of values that corresponds to
+ /// function-local constants.
+ void getFunctionConstantRange(unsigned &Start, unsigned &End) const {
+ Start = FirstFuncConstantID;
+ End = FirstInstID;
+ }
+
+ const ValueList &getValues() const { return Values; }
+ const TypeList &getTypes() const { return Types; }
+ const std::vector<const BasicBlock*> &getBasicBlocks() const {
+ return BasicBlocks;
+ }
+ const std::vector<const ParamAttrsList*> &getParamAttrs() const {
+ return ParamAttrs;
+ }
+
+ /// PurgeAggregateValues - If there are any aggregate values at the end of the
+ /// value list, remove them and return the count of the remaining values. If
+ /// there are none, return -1.
+ int PurgeAggregateValues();
+
+ /// incorporateFunction/purgeFunction - If you'd like to deal with a function,
+ /// use these two methods to get its data into the ValueEnumerator!
+ ///
+ void incorporateFunction(const Function &F);
+ void purgeFunction();
+
+private:
+ void OptimizeConstants(unsigned CstStart, unsigned CstEnd);
+
+ void EnumerateValue(const Value *V);
+ void EnumerateType(const Type *T);
+ void EnumerateOperandType(const Value *V);
+ void EnumerateParamAttrs(const ParamAttrsList *PAL);
+
+ void EnumerateTypeSymbolTable(const TypeSymbolTable &ST);
+ void EnumerateValueSymbolTable(const ValueSymbolTable &ST);
+};
+
+} // End llvm namespace
+
+#endif